Defining parameters
Level: | \( N \) | \(=\) | \( 3072 = 2^{10} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3072.i (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(512\) | ||
Trace bound: | \(33\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3072, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 144 | 40 | 104 |
Cusp forms | 48 | 24 | 24 |
Eisenstein series | 96 | 16 | 80 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 24 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3072, [\chi])\) into newform subspaces
Decomposition of \(S_{1}^{\mathrm{old}}(3072, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3072, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(768, [\chi])\)\(^{\oplus 3}\)