Defining parameters
Level: | \( N \) | \(=\) | \( 768 = 2^{8} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 768.i (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(768, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 8 | 48 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(768, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
768.1.i.a | $4$ | $0.383$ | \(\Q(\zeta_{8})\) | $D_{4}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}q^{3}+(\zeta_{8}+\zeta_{8}^{3})q^{7}+\zeta_{8}^{2}q^{9}+\cdots\) |
768.1.i.b | $4$ | $0.383$ | \(\Q(\zeta_{8})\) | $D_{4}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}q^{3}+(-\zeta_{8}-\zeta_{8}^{3})q^{7}+\zeta_{8}^{2}q^{9}+\cdots\) |