Properties

Label 768.1.i
Level $768$
Weight $1$
Character orbit 768.i
Rep. character $\chi_{768}(65,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $2$
Sturm bound $128$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 768.i (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 48 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(128\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(768, [\chi])\).

Total New Old
Modular forms 56 8 48
Cusp forms 8 8 0
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + O(q^{10}) \) \( 8 q - 8 q^{49} - 8 q^{81} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(768, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
768.1.i.a 768.i 48.i $4$ $0.383$ \(\Q(\zeta_{8})\) $D_{4}$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{8}q^{3}+(\zeta_{8}+\zeta_{8}^{3})q^{7}+\zeta_{8}^{2}q^{9}+\cdots\)
768.1.i.b 768.i 48.i $4$ $0.383$ \(\Q(\zeta_{8})\) $D_{4}$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{8}q^{3}+(-\zeta_{8}-\zeta_{8}^{3})q^{7}+\zeta_{8}^{2}q^{9}+\cdots\)