Newspace parameters
Level: | \( N \) | \(=\) | \( 384 = 2^{7} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 384.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(0.191640964851\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{2}\) |
Projective field: | Galois closure of \(\Q(\sqrt{-2}, \sqrt{3})\) |
Artin image: | $D_4$ |
Artin field: | Galois closure of 4.0.3072.1 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(133\) | \(257\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
0 | −1.00000 | 0 | 0 | 0 | 0 | 0 | 1.00000 | 0 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-2}) \) |
12.b | even | 2 | 1 | RM by \(\Q(\sqrt{3}) \) |
24.h | odd | 2 | 1 | CM by \(\Q(\sqrt{-6}) \) |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 384.1.h.a | ✓ | 1 |
3.b | odd | 2 | 1 | 384.1.h.b | yes | 1 | |
4.b | odd | 2 | 1 | 384.1.h.b | yes | 1 | |
8.b | even | 2 | 1 | 384.1.h.b | yes | 1 | |
8.d | odd | 2 | 1 | CM | 384.1.h.a | ✓ | 1 |
12.b | even | 2 | 1 | RM | 384.1.h.a | ✓ | 1 |
16.e | even | 4 | 2 | 768.1.e.c | 2 | ||
16.f | odd | 4 | 2 | 768.1.e.c | 2 | ||
24.f | even | 2 | 1 | 384.1.h.b | yes | 1 | |
24.h | odd | 2 | 1 | CM | 384.1.h.a | ✓ | 1 |
32.g | even | 8 | 4 | 3072.1.i.f | 4 | ||
32.h | odd | 8 | 4 | 3072.1.i.f | 4 | ||
48.i | odd | 4 | 2 | 768.1.e.c | 2 | ||
48.k | even | 4 | 2 | 768.1.e.c | 2 | ||
96.o | even | 8 | 4 | 3072.1.i.f | 4 | ||
96.p | odd | 8 | 4 | 3072.1.i.f | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
384.1.h.a | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
384.1.h.a | ✓ | 1 | 8.d | odd | 2 | 1 | CM |
384.1.h.a | ✓ | 1 | 12.b | even | 2 | 1 | RM |
384.1.h.a | ✓ | 1 | 24.h | odd | 2 | 1 | CM |
384.1.h.b | yes | 1 | 3.b | odd | 2 | 1 | |
384.1.h.b | yes | 1 | 4.b | odd | 2 | 1 | |
384.1.h.b | yes | 1 | 8.b | even | 2 | 1 | |
384.1.h.b | yes | 1 | 24.f | even | 2 | 1 | |
768.1.e.c | 2 | 16.e | even | 4 | 2 | ||
768.1.e.c | 2 | 16.f | odd | 4 | 2 | ||
768.1.e.c | 2 | 48.i | odd | 4 | 2 | ||
768.1.e.c | 2 | 48.k | even | 4 | 2 | ||
3072.1.i.f | 4 | 32.g | even | 8 | 4 | ||
3072.1.i.f | 4 | 32.h | odd | 8 | 4 | ||
3072.1.i.f | 4 | 96.o | even | 8 | 4 | ||
3072.1.i.f | 4 | 96.p | odd | 8 | 4 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11} - 2 \)
acting on \(S_{1}^{\mathrm{new}}(384, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T + 1 \)
$5$
\( T \)
$7$
\( T \)
$11$
\( T - 2 \)
$13$
\( T \)
$17$
\( T \)
$19$
\( T \)
$23$
\( T \)
$29$
\( T \)
$31$
\( T \)
$37$
\( T \)
$41$
\( T \)
$43$
\( T \)
$47$
\( T \)
$53$
\( T \)
$59$
\( T + 2 \)
$61$
\( T \)
$67$
\( T \)
$71$
\( T \)
$73$
\( T + 2 \)
$79$
\( T \)
$83$
\( T - 2 \)
$89$
\( T \)
$97$
\( T - 2 \)
show more
show less