Properties

Label 3060.2.z.g.829.17
Level $3060$
Weight $2$
Character 3060.829
Analytic conductor $24.434$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(829,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.17
Character \(\chi\) \(=\) 3060.829
Dual form 3060.2.z.g.2809.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.78098 + 1.35208i) q^{5} +(2.38946 + 2.38946i) q^{7} +(4.26466 - 4.26466i) q^{11} +2.80533i q^{13} +(3.60237 - 2.00572i) q^{17} +4.71202i q^{19} +(6.40321 + 6.40321i) q^{23} +(1.34376 + 4.81605i) q^{25} +(-6.84047 - 6.84047i) q^{29} +(-1.54284 - 1.54284i) q^{31} +(1.02484 + 7.48633i) q^{35} +(4.27355 - 4.27355i) q^{37} +(-2.72196 + 2.72196i) q^{41} -2.24911 q^{43} -10.4895i q^{47} +4.41908i q^{49} +1.54211 q^{53} +(13.3614 - 1.82911i) q^{55} -3.65396i q^{59} +(-1.08330 + 1.08330i) q^{61} +(-3.79303 + 4.99623i) q^{65} -1.38282i q^{67} +(-6.44031 - 6.44031i) q^{71} +(-0.994674 + 0.994674i) q^{73} +20.3805 q^{77} +(-8.31627 + 8.31627i) q^{79} -3.99974 q^{83} +(9.12764 + 1.29855i) q^{85} +13.9632 q^{89} +(-6.70323 + 6.70323i) q^{91} +(-6.37102 + 8.39200i) q^{95} +(10.7777 - 10.7777i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 4 q^{5} + 8 q^{11} - 24 q^{29} - 16 q^{31} - 8 q^{35} + 8 q^{41} + 28 q^{55} + 16 q^{61} - 56 q^{71} + 16 q^{79} - 40 q^{85} - 32 q^{89} + 64 q^{91} - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.78098 + 1.35208i 0.796477 + 0.604668i
\(6\) 0 0
\(7\) 2.38946 + 2.38946i 0.903133 + 0.903133i 0.995706 0.0925731i \(-0.0295092\pi\)
−0.0925731 + 0.995706i \(0.529509\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.26466 4.26466i 1.28584 1.28584i 0.348556 0.937288i \(-0.386672\pi\)
0.937288 0.348556i \(-0.113328\pi\)
\(12\) 0 0
\(13\) 2.80533i 0.778058i 0.921225 + 0.389029i \(0.127189\pi\)
−0.921225 + 0.389029i \(0.872811\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.60237 2.00572i 0.873704 0.486458i
\(18\) 0 0
\(19\) 4.71202i 1.08101i 0.841340 + 0.540505i \(0.181767\pi\)
−0.841340 + 0.540505i \(0.818233\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.40321 + 6.40321i 1.33516 + 1.33516i 0.900681 + 0.434481i \(0.143068\pi\)
0.434481 + 0.900681i \(0.356932\pi\)
\(24\) 0 0
\(25\) 1.34376 + 4.81605i 0.268753 + 0.963209i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.84047 6.84047i −1.27024 1.27024i −0.945960 0.324283i \(-0.894877\pi\)
−0.324283 0.945960i \(-0.605123\pi\)
\(30\) 0 0
\(31\) −1.54284 1.54284i −0.277102 0.277102i 0.554849 0.831951i \(-0.312776\pi\)
−0.831951 + 0.554849i \(0.812776\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.02484 + 7.48633i 0.173229 + 1.26542i
\(36\) 0 0
\(37\) 4.27355 4.27355i 0.702568 0.702568i −0.262393 0.964961i \(-0.584512\pi\)
0.964961 + 0.262393i \(0.0845118\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.72196 + 2.72196i −0.425099 + 0.425099i −0.886955 0.461856i \(-0.847184\pi\)
0.461856 + 0.886955i \(0.347184\pi\)
\(42\) 0 0
\(43\) −2.24911 −0.342986 −0.171493 0.985185i \(-0.554859\pi\)
−0.171493 + 0.985185i \(0.554859\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.4895i 1.53005i −0.644001 0.765025i \(-0.722727\pi\)
0.644001 0.765025i \(-0.277273\pi\)
\(48\) 0 0
\(49\) 4.41908i 0.631298i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.54211 0.211824 0.105912 0.994375i \(-0.466224\pi\)
0.105912 + 0.994375i \(0.466224\pi\)
\(54\) 0 0
\(55\) 13.3614 1.82911i 1.80165 0.246637i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.65396i 0.475705i −0.971301 0.237852i \(-0.923557\pi\)
0.971301 0.237852i \(-0.0764435\pi\)
\(60\) 0 0
\(61\) −1.08330 + 1.08330i −0.138702 + 0.138702i −0.773049 0.634347i \(-0.781269\pi\)
0.634347 + 0.773049i \(0.281269\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.79303 + 4.99623i −0.470467 + 0.619706i
\(66\) 0 0
\(67\) 1.38282i 0.168938i −0.996426 0.0844691i \(-0.973081\pi\)
0.996426 0.0844691i \(-0.0269194\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.44031 6.44031i −0.764325 0.764325i 0.212776 0.977101i \(-0.431749\pi\)
−0.977101 + 0.212776i \(0.931749\pi\)
\(72\) 0 0
\(73\) −0.994674 + 0.994674i −0.116418 + 0.116418i −0.762916 0.646498i \(-0.776233\pi\)
0.646498 + 0.762916i \(0.276233\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.3805 2.32258
\(78\) 0 0
\(79\) −8.31627 + 8.31627i −0.935654 + 0.935654i −0.998051 0.0623974i \(-0.980125\pi\)
0.0623974 + 0.998051i \(0.480125\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.99974 −0.439029 −0.219514 0.975609i \(-0.570447\pi\)
−0.219514 + 0.975609i \(0.570447\pi\)
\(84\) 0 0
\(85\) 9.12764 + 1.29855i 0.990031 + 0.140848i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.9632 1.48010 0.740049 0.672553i \(-0.234802\pi\)
0.740049 + 0.672553i \(0.234802\pi\)
\(90\) 0 0
\(91\) −6.70323 + 6.70323i −0.702690 + 0.702690i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.37102 + 8.39200i −0.653653 + 0.861001i
\(96\) 0 0
\(97\) 10.7777 10.7777i 1.09431 1.09431i 0.0992474 0.995063i \(-0.468356\pi\)
0.995063 0.0992474i \(-0.0316435\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.8478 −1.37791 −0.688954 0.724805i \(-0.741930\pi\)
−0.688954 + 0.724805i \(0.741930\pi\)
\(102\) 0 0
\(103\) 3.52129i 0.346963i −0.984837 0.173481i \(-0.944498\pi\)
0.984837 0.173481i \(-0.0555016\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.77511 + 8.77511i −0.848322 + 0.848322i −0.989924 0.141602i \(-0.954775\pi\)
0.141602 + 0.989924i \(0.454775\pi\)
\(108\) 0 0
\(109\) −8.32449 + 8.32449i −0.797341 + 0.797341i −0.982676 0.185334i \(-0.940663\pi\)
0.185334 + 0.982676i \(0.440663\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.33189 + 7.33189i 0.689726 + 0.689726i 0.962171 0.272445i \(-0.0878324\pi\)
−0.272445 + 0.962171i \(0.587832\pi\)
\(114\) 0 0
\(115\) 2.74633 + 20.0616i 0.256096 + 1.87076i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 13.4003 + 3.81515i 1.22841 + 0.349734i
\(120\) 0 0
\(121\) 25.3747i 2.30679i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.11846 + 10.3941i −0.368367 + 0.929681i
\(126\) 0 0
\(127\) −15.4196 −1.36827 −0.684133 0.729357i \(-0.739819\pi\)
−0.684133 + 0.729357i \(0.739819\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.12212 7.12212i −0.622262 0.622262i 0.323847 0.946109i \(-0.395024\pi\)
−0.946109 + 0.323847i \(0.895024\pi\)
\(132\) 0 0
\(133\) −11.2592 + 11.2592i −0.976297 + 0.976297i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.39737i 0.461128i 0.973057 + 0.230564i \(0.0740572\pi\)
−0.973057 + 0.230564i \(0.925943\pi\)
\(138\) 0 0
\(139\) −5.39376 5.39376i −0.457493 0.457493i 0.440339 0.897832i \(-0.354858\pi\)
−0.897832 + 0.440339i \(0.854858\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.9638 + 11.9638i 1.00046 + 1.00046i
\(144\) 0 0
\(145\) −2.93387 21.4316i −0.243644 1.77980i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.288811 −0.0236603 −0.0118301 0.999930i \(-0.503766\pi\)
−0.0118301 + 0.999930i \(0.503766\pi\)
\(150\) 0 0
\(151\) 0.348985i 0.0284000i 0.999899 + 0.0142000i \(0.00452015\pi\)
−0.999899 + 0.0142000i \(0.995480\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.661720 4.83379i −0.0531506 0.388260i
\(156\) 0 0
\(157\) 12.6572i 1.01015i 0.863075 + 0.505076i \(0.168535\pi\)
−0.863075 + 0.505076i \(0.831465\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 30.6005i 2.41166i
\(162\) 0 0
\(163\) 10.1621 + 10.1621i 0.795958 + 0.795958i 0.982455 0.186497i \(-0.0597136\pi\)
−0.186497 + 0.982455i \(0.559714\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.22338 + 4.22338i −0.326815 + 0.326815i −0.851374 0.524559i \(-0.824230\pi\)
0.524559 + 0.851374i \(0.324230\pi\)
\(168\) 0 0
\(169\) 5.13013 0.394626
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.809262 + 0.809262i −0.0615271 + 0.0615271i −0.737201 0.675674i \(-0.763853\pi\)
0.675674 + 0.737201i \(0.263853\pi\)
\(174\) 0 0
\(175\) −8.29690 + 14.7186i −0.627187 + 1.11263i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 22.2296i 1.66152i −0.556633 0.830759i \(-0.687907\pi\)
0.556633 0.830759i \(-0.312093\pi\)
\(180\) 0 0
\(181\) −3.76373 + 3.76373i −0.279756 + 0.279756i −0.833012 0.553256i \(-0.813385\pi\)
0.553256 + 0.833012i \(0.313385\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.3893 1.83292i 0.984399 0.134759i
\(186\) 0 0
\(187\) 6.80919 23.9166i 0.497937 1.74896i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.4029 0.752728 0.376364 0.926472i \(-0.377174\pi\)
0.376364 + 0.926472i \(0.377174\pi\)
\(192\) 0 0
\(193\) 11.8621 + 11.8621i 0.853851 + 0.853851i 0.990605 0.136754i \(-0.0436669\pi\)
−0.136754 + 0.990605i \(0.543667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.5178 + 14.5178i 1.03435 + 1.03435i 0.999389 + 0.0349653i \(0.0111321\pi\)
0.0349653 + 0.999389i \(0.488868\pi\)
\(198\) 0 0
\(199\) 11.1693 + 11.1693i 0.791771 + 0.791771i 0.981782 0.190011i \(-0.0608524\pi\)
−0.190011 + 0.981782i \(0.560852\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 32.6901i 2.29440i
\(204\) 0 0
\(205\) −8.52806 + 1.16745i −0.595626 + 0.0815379i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.0952 + 20.0952i 1.39001 + 1.39001i
\(210\) 0 0
\(211\) 12.5528 12.5528i 0.864174 0.864174i −0.127646 0.991820i \(-0.540742\pi\)
0.991820 + 0.127646i \(0.0407422\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00561 3.04097i −0.273180 0.207392i
\(216\) 0 0
\(217\) 7.37311i 0.500519i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.62670 + 10.1058i 0.378493 + 0.679792i
\(222\) 0 0
\(223\) −4.73119 −0.316824 −0.158412 0.987373i \(-0.550637\pi\)
−0.158412 + 0.987373i \(0.550637\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.01353 6.01353i −0.399132 0.399132i 0.478795 0.877927i \(-0.341074\pi\)
−0.877927 + 0.478795i \(0.841074\pi\)
\(228\) 0 0
\(229\) 4.61922i 0.305247i −0.988284 0.152623i \(-0.951228\pi\)
0.988284 0.152623i \(-0.0487721\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.47363 + 6.47363i −0.424101 + 0.424101i −0.886613 0.462512i \(-0.846948\pi\)
0.462512 + 0.886613i \(0.346948\pi\)
\(234\) 0 0
\(235\) 14.1826 18.6815i 0.925172 1.21865i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.81975 −0.505818 −0.252909 0.967490i \(-0.581387\pi\)
−0.252909 + 0.967490i \(0.581387\pi\)
\(240\) 0 0
\(241\) −6.68972 6.68972i −0.430923 0.430923i 0.458019 0.888942i \(-0.348559\pi\)
−0.888942 + 0.458019i \(0.848559\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.97495 + 7.87029i −0.381726 + 0.502814i
\(246\) 0 0
\(247\) −13.2188 −0.841089
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.73604 0.298936 0.149468 0.988767i \(-0.452244\pi\)
0.149468 + 0.988767i \(0.452244\pi\)
\(252\) 0 0
\(253\) 54.6151 3.43362
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.35995 −0.147209 −0.0736047 0.997287i \(-0.523450\pi\)
−0.0736047 + 0.997287i \(0.523450\pi\)
\(258\) 0 0
\(259\) 20.4230 1.26902
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.7175 1.15417 0.577084 0.816685i \(-0.304191\pi\)
0.577084 + 0.816685i \(0.304191\pi\)
\(264\) 0 0
\(265\) 2.74646 + 2.08505i 0.168713 + 0.128084i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.44388 4.44388i −0.270948 0.270948i 0.558534 0.829482i \(-0.311364\pi\)
−0.829482 + 0.558534i \(0.811364\pi\)
\(270\) 0 0
\(271\) −3.55255 −0.215802 −0.107901 0.994162i \(-0.534413\pi\)
−0.107901 + 0.994162i \(0.534413\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 26.2695 + 14.8081i 1.58411 + 0.892963i
\(276\) 0 0
\(277\) −8.28598 + 8.28598i −0.497856 + 0.497856i −0.910770 0.412914i \(-0.864511\pi\)
0.412914 + 0.910770i \(0.364511\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.7011i 0.638373i 0.947692 + 0.319187i \(0.103410\pi\)
−0.947692 + 0.319187i \(0.896590\pi\)
\(282\) 0 0
\(283\) −10.6946 10.6946i −0.635729 0.635729i 0.313770 0.949499i \(-0.398408\pi\)
−0.949499 + 0.313770i \(0.898408\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −13.0081 −0.767842
\(288\) 0 0
\(289\) 8.95418 14.4507i 0.526717 0.850041i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.7337i 1.44496i 0.691394 + 0.722478i \(0.256997\pi\)
−0.691394 + 0.722478i \(0.743003\pi\)
\(294\) 0 0
\(295\) 4.94044 6.50762i 0.287644 0.378888i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.9631 + 17.9631i −1.03883 + 1.03883i
\(300\) 0 0
\(301\) −5.37416 5.37416i −0.309761 0.309761i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.39404 + 0.464625i −0.194342 + 0.0266044i
\(306\) 0 0
\(307\) 16.7478i 0.955846i −0.878402 0.477923i \(-0.841390\pi\)
0.878402 0.477923i \(-0.158610\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.87130 + 2.87130i 0.162816 + 0.162816i 0.783813 0.620997i \(-0.213272\pi\)
−0.620997 + 0.783813i \(0.713272\pi\)
\(312\) 0 0
\(313\) −22.8159 22.8159i −1.28963 1.28963i −0.935009 0.354624i \(-0.884609\pi\)
−0.354624 0.935009i \(-0.615391\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.8512 12.8512i −0.721793 0.721793i 0.247177 0.968970i \(-0.420497\pi\)
−0.968970 + 0.247177i \(0.920497\pi\)
\(318\) 0 0
\(319\) −58.3446 −3.26667
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.45098 + 16.9744i 0.525867 + 0.944483i
\(324\) 0 0
\(325\) −13.5106 + 3.76970i −0.749433 + 0.209105i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 25.0643 25.0643i 1.38184 1.38184i
\(330\) 0 0
\(331\) 14.5405i 0.799221i 0.916685 + 0.399610i \(0.130855\pi\)
−0.916685 + 0.399610i \(0.869145\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.86968 2.46277i 0.102152 0.134556i
\(336\) 0 0
\(337\) 12.9706 12.9706i 0.706551 0.706551i −0.259257 0.965808i \(-0.583478\pi\)
0.965808 + 0.259257i \(0.0834778\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −13.1593 −0.712619
\(342\) 0 0
\(343\) 6.16701 6.16701i 0.332987 0.332987i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.42014 + 7.42014i 0.398334 + 0.398334i 0.877645 0.479311i \(-0.159113\pi\)
−0.479311 + 0.877645i \(0.659113\pi\)
\(348\) 0 0
\(349\) 28.8613i 1.54491i 0.635069 + 0.772455i \(0.280971\pi\)
−0.635069 + 0.772455i \(0.719029\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.6440i 0.672973i 0.941688 + 0.336486i \(0.109239\pi\)
−0.941688 + 0.336486i \(0.890761\pi\)
\(354\) 0 0
\(355\) −2.76224 20.1779i −0.146604 1.07093i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 34.1499i 1.80236i −0.433441 0.901182i \(-0.642701\pi\)
0.433441 0.901182i \(-0.357299\pi\)
\(360\) 0 0
\(361\) −3.20311 −0.168585
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.11637 + 0.426614i −0.163118 + 0.0223300i
\(366\) 0 0
\(367\) 10.7838 + 10.7838i 0.562907 + 0.562907i 0.930132 0.367225i \(-0.119692\pi\)
−0.367225 + 0.930132i \(0.619692\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.68481 + 3.68481i 0.191306 + 0.191306i
\(372\) 0 0
\(373\) 26.1065i 1.35174i 0.737020 + 0.675870i \(0.236232\pi\)
−0.737020 + 0.675870i \(0.763768\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.1898 19.1898i 0.988323 0.988323i
\(378\) 0 0
\(379\) 2.87742 + 2.87742i 0.147803 + 0.147803i 0.777136 0.629333i \(-0.216672\pi\)
−0.629333 + 0.777136i \(0.716672\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.3658 −1.80711 −0.903554 0.428475i \(-0.859051\pi\)
−0.903554 + 0.428475i \(0.859051\pi\)
\(384\) 0 0
\(385\) 36.2972 + 27.5561i 1.84988 + 1.40439i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.7757i 1.00267i −0.865254 0.501334i \(-0.832843\pi\)
0.865254 0.501334i \(-0.167157\pi\)
\(390\) 0 0
\(391\) 35.9098 + 10.2237i 1.81604 + 0.517035i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −26.0554 + 3.56684i −1.31099 + 0.179467i
\(396\) 0 0
\(397\) 8.17926 + 8.17926i 0.410505 + 0.410505i 0.881914 0.471409i \(-0.156255\pi\)
−0.471409 + 0.881914i \(0.656255\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.82988 7.82988i 0.391006 0.391006i −0.484040 0.875046i \(-0.660831\pi\)
0.875046 + 0.484040i \(0.160831\pi\)
\(402\) 0 0
\(403\) 4.32816 4.32816i 0.215601 0.215601i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 36.4505i 1.80678i
\(408\) 0 0
\(409\) −7.46124 −0.368935 −0.184467 0.982839i \(-0.559056\pi\)
−0.184467 + 0.982839i \(0.559056\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.73101 8.73101i 0.429625 0.429625i
\(414\) 0 0
\(415\) −7.12345 5.40797i −0.349676 0.265467i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.12125 + 4.12125i −0.201336 + 0.201336i −0.800572 0.599236i \(-0.795471\pi\)
0.599236 + 0.800572i \(0.295471\pi\)
\(420\) 0 0
\(421\) 23.7970 1.15980 0.579899 0.814689i \(-0.303092\pi\)
0.579899 + 0.814689i \(0.303092\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.5004 + 14.6540i 0.703371 + 0.710823i
\(426\) 0 0
\(427\) −5.17701 −0.250533
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.9770 + 22.9770i −1.10676 + 1.10676i −0.113192 + 0.993573i \(0.536107\pi\)
−0.993573 + 0.113192i \(0.963893\pi\)
\(432\) 0 0
\(433\) 3.63235 0.174560 0.0872798 0.996184i \(-0.472183\pi\)
0.0872798 + 0.996184i \(0.472183\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −30.1720 + 30.1720i −1.44332 + 1.44332i
\(438\) 0 0
\(439\) −22.3229 22.3229i −1.06541 1.06541i −0.997705 0.0677083i \(-0.978431\pi\)
−0.0677083 0.997705i \(-0.521569\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.7744i 1.74720i −0.486642 0.873601i \(-0.661779\pi\)
0.486642 0.873601i \(-0.338221\pi\)
\(444\) 0 0
\(445\) 24.8682 + 18.8794i 1.17886 + 0.894968i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.75527 + 8.75527i −0.413187 + 0.413187i −0.882847 0.469660i \(-0.844376\pi\)
0.469660 + 0.882847i \(0.344376\pi\)
\(450\) 0 0
\(451\) 23.2165i 1.09322i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −21.0016 + 2.87501i −0.984571 + 0.134782i
\(456\) 0 0
\(457\) −19.8700 −0.929479 −0.464739 0.885447i \(-0.653852\pi\)
−0.464739 + 0.885447i \(0.653852\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.4951i 0.861402i −0.902495 0.430701i \(-0.858266\pi\)
0.902495 0.430701i \(-0.141734\pi\)
\(462\) 0 0
\(463\) 39.0259i 1.81369i 0.421465 + 0.906845i \(0.361516\pi\)
−0.421465 + 0.906845i \(0.638484\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.7619 −0.775650 −0.387825 0.921733i \(-0.626773\pi\)
−0.387825 + 0.921733i \(0.626773\pi\)
\(468\) 0 0
\(469\) 3.30420 3.30420i 0.152574 0.152574i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9.59168 + 9.59168i −0.441026 + 0.441026i
\(474\) 0 0
\(475\) −22.6933 + 6.33184i −1.04124 + 0.290525i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.7464 15.7464i −0.719470 0.719470i 0.249027 0.968497i \(-0.419889\pi\)
−0.968497 + 0.249027i \(0.919889\pi\)
\(480\) 0 0
\(481\) 11.9887 + 11.9887i 0.546638 + 0.546638i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 33.7672 4.62254i 1.53329 0.209899i
\(486\) 0 0
\(487\) −8.81863 8.81863i −0.399610 0.399610i 0.478485 0.878096i \(-0.341186\pi\)
−0.878096 + 0.478485i \(0.841186\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 28.9417i 1.30612i −0.757307 0.653060i \(-0.773485\pi\)
0.757307 0.653060i \(-0.226515\pi\)
\(492\) 0 0
\(493\) −38.3620 10.9219i −1.72774 0.491896i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 30.7778i 1.38057i
\(498\) 0 0
\(499\) −16.9409 + 16.9409i −0.758380 + 0.758380i −0.976027 0.217647i \(-0.930162\pi\)
0.217647 + 0.976027i \(0.430162\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −30.4137 30.4137i −1.35608 1.35608i −0.878693 0.477387i \(-0.841584\pi\)
−0.477387 0.878693i \(-0.658416\pi\)
\(504\) 0 0
\(505\) −24.6626 18.7233i −1.09747 0.833178i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.44875 −0.330160 −0.165080 0.986280i \(-0.552788\pi\)
−0.165080 + 0.986280i \(0.552788\pi\)
\(510\) 0 0
\(511\) −4.75348 −0.210281
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.76106 6.27133i 0.209797 0.276348i
\(516\) 0 0
\(517\) −44.7341 44.7341i −1.96740 1.96740i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.53353 6.53353i 0.286239 0.286239i −0.549352 0.835591i \(-0.685125\pi\)
0.835591 + 0.549352i \(0.185125\pi\)
\(522\) 0 0
\(523\) 9.89276i 0.432580i 0.976329 + 0.216290i \(0.0693957\pi\)
−0.976329 + 0.216290i \(0.930604\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.65237 2.46338i −0.376903 0.107306i
\(528\) 0 0
\(529\) 59.0023i 2.56532i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.63600 7.63600i −0.330752 0.330752i
\(534\) 0 0
\(535\) −27.4929 + 3.76363i −1.18862 + 0.162716i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.8459 + 18.8459i 0.811750 + 0.811750i
\(540\) 0 0
\(541\) 3.93386 + 3.93386i 0.169130 + 0.169130i 0.786597 0.617467i \(-0.211841\pi\)
−0.617467 + 0.786597i \(0.711841\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −26.0811 + 3.57036i −1.11719 + 0.152937i
\(546\) 0 0
\(547\) 15.4239 15.4239i 0.659477 0.659477i −0.295779 0.955256i \(-0.595579\pi\)
0.955256 + 0.295779i \(0.0955792\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 32.2324 32.2324i 1.37315 1.37315i
\(552\) 0 0
\(553\) −39.7429 −1.69004
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.8327i 0.713224i −0.934252 0.356612i \(-0.883932\pi\)
0.934252 0.356612i \(-0.116068\pi\)
\(558\) 0 0
\(559\) 6.30948i 0.266863i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −37.2966 −1.57187 −0.785933 0.618311i \(-0.787817\pi\)
−0.785933 + 0.618311i \(0.787817\pi\)
\(564\) 0 0
\(565\) 3.14463 + 22.9712i 0.132296 + 0.966407i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.6070i 1.19927i 0.800275 + 0.599633i \(0.204687\pi\)
−0.800275 + 0.599633i \(0.795313\pi\)
\(570\) 0 0
\(571\) −14.0413 + 14.0413i −0.587611 + 0.587611i −0.936984 0.349373i \(-0.886395\pi\)
0.349373 + 0.936984i \(0.386395\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −22.2338 + 39.4426i −0.927212 + 1.64487i
\(576\) 0 0
\(577\) 36.5537i 1.52175i −0.648899 0.760874i \(-0.724770\pi\)
0.648899 0.760874i \(-0.275230\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.55724 9.55724i −0.396501 0.396501i
\(582\) 0 0
\(583\) 6.57656 6.57656i 0.272373 0.272373i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.8032 0.858638 0.429319 0.903153i \(-0.358754\pi\)
0.429319 + 0.903153i \(0.358754\pi\)
\(588\) 0 0
\(589\) 7.26987 7.26987i 0.299550 0.299550i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.498805 −0.0204835 −0.0102417 0.999948i \(-0.503260\pi\)
−0.0102417 + 0.999948i \(0.503260\pi\)
\(594\) 0 0
\(595\) 18.7073 + 24.9130i 0.766925 + 1.02133i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.1051 1.06662 0.533312 0.845919i \(-0.320947\pi\)
0.533312 + 0.845919i \(0.320947\pi\)
\(600\) 0 0
\(601\) 28.2569 28.2569i 1.15262 1.15262i 0.166598 0.986025i \(-0.446722\pi\)
0.986025 0.166598i \(-0.0532781\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 34.3086 45.1917i 1.39484 1.83730i
\(606\) 0 0
\(607\) −1.13156 + 1.13156i −0.0459285 + 0.0459285i −0.729698 0.683770i \(-0.760339\pi\)
0.683770 + 0.729698i \(0.260339\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.4265 1.19047
\(612\) 0 0
\(613\) 47.5168i 1.91918i −0.281395 0.959592i \(-0.590797\pi\)
0.281395 0.959592i \(-0.409203\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.9113 24.9113i 1.00289 1.00289i 0.00289372 0.999996i \(-0.499079\pi\)
0.999996 0.00289372i \(-0.000921101\pi\)
\(618\) 0 0
\(619\) 25.4359 25.4359i 1.02235 1.02235i 0.0226092 0.999744i \(-0.492803\pi\)
0.999744 0.0226092i \(-0.00719734\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 33.3646 + 33.3646i 1.33673 + 1.33673i
\(624\) 0 0
\(625\) −21.3886 + 12.9433i −0.855544 + 0.517730i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.82338 23.9665i 0.272066 0.955606i
\(630\) 0 0
\(631\) 17.7721i 0.707497i 0.935340 + 0.353749i \(0.115093\pi\)
−0.935340 + 0.353749i \(0.884907\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −27.4619 20.8485i −1.08979 0.827347i
\(636\) 0 0
\(637\) −12.3970 −0.491186
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.52009 + 4.52009i 0.178533 + 0.178533i 0.790716 0.612183i \(-0.209708\pi\)
−0.612183 + 0.790716i \(0.709708\pi\)
\(642\) 0 0
\(643\) −13.7299 + 13.7299i −0.541453 + 0.541453i −0.923955 0.382502i \(-0.875063\pi\)
0.382502 + 0.923955i \(0.375063\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.1216i 0.712432i −0.934404 0.356216i \(-0.884067\pi\)
0.934404 0.356216i \(-0.115933\pi\)
\(648\) 0 0
\(649\) −15.5829 15.5829i −0.611682 0.611682i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.8153 11.8153i −0.462370 0.462370i 0.437062 0.899432i \(-0.356019\pi\)
−0.899432 + 0.437062i \(0.856019\pi\)
\(654\) 0 0
\(655\) −3.05466 22.3140i −0.119356 0.871880i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.5043 −0.603960 −0.301980 0.953314i \(-0.597648\pi\)
−0.301980 + 0.953314i \(0.597648\pi\)
\(660\) 0 0
\(661\) 24.3150i 0.945743i −0.881131 0.472872i \(-0.843217\pi\)
0.881131 0.472872i \(-0.156783\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −35.2757 + 4.82905i −1.36793 + 0.187263i
\(666\) 0 0
\(667\) 87.6019i 3.39196i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.23981i 0.356699i
\(672\) 0 0
\(673\) 27.9718 + 27.9718i 1.07823 + 1.07823i 0.996668 + 0.0815665i \(0.0259923\pi\)
0.0815665 + 0.996668i \(0.474008\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.7842 + 16.7842i −0.645069 + 0.645069i −0.951797 0.306728i \(-0.900766\pi\)
0.306728 + 0.951797i \(0.400766\pi\)
\(678\) 0 0
\(679\) 51.5059 1.97661
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −26.0516 + 26.0516i −0.996838 + 0.996838i −0.999995 0.00315743i \(-0.998995\pi\)
0.00315743 + 0.999995i \(0.498995\pi\)
\(684\) 0 0
\(685\) −7.29767 + 9.61259i −0.278830 + 0.367278i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.32611i 0.164812i
\(690\) 0 0
\(691\) −4.56148 + 4.56148i −0.173527 + 0.173527i −0.788527 0.615000i \(-0.789156\pi\)
0.615000 + 0.788527i \(0.289156\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.31338 16.8990i −0.0877514 0.641015i
\(696\) 0 0
\(697\) −4.34603 + 15.2650i −0.164618 + 0.578204i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.3026 0.691280 0.345640 0.938367i \(-0.387662\pi\)
0.345640 + 0.938367i \(0.387662\pi\)
\(702\) 0 0
\(703\) 20.1370 + 20.1370i 0.759483 + 0.759483i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −33.0889 33.0889i −1.24443 1.24443i
\(708\) 0 0
\(709\) 17.8191 + 17.8191i 0.669209 + 0.669209i 0.957533 0.288324i \(-0.0930981\pi\)
−0.288324 + 0.957533i \(0.593098\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19.7582i 0.739951i
\(714\) 0 0
\(715\) 5.13124 + 37.4832i 0.191898 + 1.40179i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.05095 + 9.05095i 0.337544 + 0.337544i 0.855442 0.517899i \(-0.173286\pi\)
−0.517899 + 0.855442i \(0.673286\pi\)
\(720\) 0 0
\(721\) 8.41399 8.41399i 0.313353 0.313353i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 23.7520 42.1360i 0.882129 1.56489i
\(726\) 0 0
\(727\) 12.9739i 0.481177i −0.970627 0.240588i \(-0.922660\pi\)
0.970627 0.240588i \(-0.0773404\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.10212 + 4.51108i −0.299668 + 0.166848i
\(732\) 0 0
\(733\) 30.8931 1.14106 0.570531 0.821276i \(-0.306737\pi\)
0.570531 + 0.821276i \(0.306737\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.89726 5.89726i −0.217228 0.217228i
\(738\) 0 0
\(739\) 26.3986i 0.971087i −0.874213 0.485543i \(-0.838622\pi\)
0.874213 0.485543i \(-0.161378\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.13107 + 7.13107i −0.261614 + 0.261614i −0.825709 0.564096i \(-0.809225\pi\)
0.564096 + 0.825709i \(0.309225\pi\)
\(744\) 0 0
\(745\) −0.514365 0.390495i −0.0188449 0.0143066i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −41.9356 −1.53230
\(750\) 0 0
\(751\) −4.06370 4.06370i −0.148287 0.148287i 0.629066 0.777352i \(-0.283438\pi\)
−0.777352 + 0.629066i \(0.783438\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.471855 + 0.621534i −0.0171726 + 0.0226199i
\(756\) 0 0
\(757\) −8.51336 −0.309423 −0.154712 0.987960i \(-0.549445\pi\)
−0.154712 + 0.987960i \(0.549445\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −54.1864 −1.96426 −0.982128 0.188216i \(-0.939729\pi\)
−0.982128 + 0.188216i \(0.939729\pi\)
\(762\) 0 0
\(763\) −39.7821 −1.44021
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.2506 0.370126
\(768\) 0 0
\(769\) 21.0180 0.757927 0.378964 0.925412i \(-0.376281\pi\)
0.378964 + 0.925412i \(0.376281\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 44.8315 1.61248 0.806239 0.591590i \(-0.201499\pi\)
0.806239 + 0.591590i \(0.201499\pi\)
\(774\) 0 0
\(775\) 5.35716 9.50358i 0.192435 0.341379i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.8259 12.8259i −0.459537 0.459537i
\(780\) 0 0
\(781\) −54.9315 −1.96560
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −17.1135 + 22.5421i −0.610806 + 0.804563i
\(786\) 0 0
\(787\) −16.9154 + 16.9154i −0.602970 + 0.602970i −0.941100 0.338130i \(-0.890206\pi\)
0.338130 + 0.941100i \(0.390206\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 35.0386i 1.24583i
\(792\) 0 0
\(793\) −3.03901 3.03901i −0.107918 0.107918i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.89001 −0.279478 −0.139739 0.990188i \(-0.544626\pi\)
−0.139739 + 0.990188i \(0.544626\pi\)
\(798\) 0 0
\(799\) −21.0390 37.7871i −0.744305 1.33681i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.48389i 0.299390i
\(804\) 0 0
\(805\) −41.3743 + 54.4988i −1.45825 + 1.92083i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.2754 34.2754i 1.20506 1.20506i 0.232452 0.972608i \(-0.425325\pi\)
0.972608 0.232452i \(-0.0746747\pi\)
\(810\) 0 0
\(811\) 6.17565 + 6.17565i 0.216856 + 0.216856i 0.807172 0.590316i \(-0.200997\pi\)
−0.590316 + 0.807172i \(0.700997\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.35851 + 31.8385i 0.152672 + 1.11525i
\(816\) 0 0
\(817\) 10.5978i 0.370771i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16.7192 16.7192i −0.583505 0.583505i 0.352360 0.935865i \(-0.385379\pi\)
−0.935865 + 0.352360i \(0.885379\pi\)
\(822\) 0 0
\(823\) 18.3320 + 18.3320i 0.639013 + 0.639013i 0.950312 0.311299i \(-0.100764\pi\)
−0.311299 + 0.950312i \(0.600764\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25.2223 25.2223i −0.877065 0.877065i 0.116165 0.993230i \(-0.462940\pi\)
−0.993230 + 0.116165i \(0.962940\pi\)
\(828\) 0 0
\(829\) −6.97218 −0.242154 −0.121077 0.992643i \(-0.538635\pi\)
−0.121077 + 0.992643i \(0.538635\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.86344 + 15.9192i 0.307100 + 0.551567i
\(834\) 0 0
\(835\) −13.2321 + 1.81140i −0.457915 + 0.0626861i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −34.0874 + 34.0874i −1.17683 + 1.17683i −0.196278 + 0.980548i \(0.562885\pi\)
−0.980548 + 0.196278i \(0.937115\pi\)
\(840\) 0 0
\(841\) 64.5840i 2.22704i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9.13665 + 6.93634i 0.314310 + 0.238618i
\(846\) 0 0
\(847\) 60.6319 60.6319i 2.08334 2.08334i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 54.7289 1.87608
\(852\) 0 0
\(853\) 14.3998 14.3998i 0.493041 0.493041i −0.416222 0.909263i \(-0.636646\pi\)
0.909263 + 0.416222i \(0.136646\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.90013 + 1.90013i 0.0649072 + 0.0649072i 0.738815 0.673908i \(-0.235386\pi\)
−0.673908 + 0.738815i \(0.735386\pi\)
\(858\) 0 0
\(859\) 13.2517i 0.452143i 0.974111 + 0.226072i \(0.0725883\pi\)
−0.974111 + 0.226072i \(0.927412\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 37.8899i 1.28979i −0.764273 0.644893i \(-0.776902\pi\)
0.764273 0.644893i \(-0.223098\pi\)
\(864\) 0 0
\(865\) −2.53546 + 0.347091i −0.0862084 + 0.0118015i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 70.9322i 2.40621i
\(870\) 0 0
\(871\) 3.87926 0.131444
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −34.6774 + 14.9955i −1.17231 + 0.506941i
\(876\) 0 0
\(877\) 6.90096 + 6.90096i 0.233029 + 0.233029i 0.813956 0.580927i \(-0.197310\pi\)
−0.580927 + 0.813956i \(0.697310\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.85040 4.85040i −0.163414 0.163414i 0.620663 0.784077i \(-0.286863\pi\)
−0.784077 + 0.620663i \(0.786863\pi\)
\(882\) 0 0
\(883\) 37.4138i 1.25908i 0.776970 + 0.629538i \(0.216756\pi\)
−0.776970 + 0.629538i \(0.783244\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.1504 13.1504i 0.441546 0.441546i −0.450985 0.892531i \(-0.648927\pi\)
0.892531 + 0.450985i \(0.148927\pi\)
\(888\) 0 0
\(889\) −36.8445 36.8445i −1.23573 1.23573i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 49.4267 1.65400
\(894\) 0 0
\(895\) 30.0562 39.5904i 1.00467 1.32336i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 21.1074i 0.703973i
\(900\) 0 0
\(901\) 5.55524 3.09303i 0.185072 0.103044i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.7920 + 1.61426i −0.391979 + 0.0536597i
\(906\) 0 0
\(907\) −12.6188 12.6188i −0.419001 0.419001i 0.465859 0.884859i \(-0.345746\pi\)
−0.884859 + 0.465859i \(0.845746\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.01480 + 4.01480i −0.133016 + 0.133016i −0.770480 0.637464i \(-0.779983\pi\)
0.637464 + 0.770480i \(0.279983\pi\)
\(912\) 0 0
\(913\) −17.0575 + 17.0575i −0.564522 + 0.564522i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 34.0361i 1.12397i
\(918\) 0 0
\(919\) 13.4225 0.442768 0.221384 0.975187i \(-0.428943\pi\)
0.221384 + 0.975187i \(0.428943\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 18.0672 18.0672i 0.594689 0.594689i
\(924\) 0 0
\(925\) 26.3243 + 14.8390i 0.865536 + 0.487903i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −26.6853 + 26.6853i −0.875517 + 0.875517i −0.993067 0.117550i \(-0.962496\pi\)
0.117550 + 0.993067i \(0.462496\pi\)
\(930\) 0 0
\(931\) −20.8228 −0.682440
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 44.4642 33.3884i 1.45413 1.09192i
\(936\) 0 0
\(937\) 45.0578 1.47198 0.735988 0.676995i \(-0.236718\pi\)
0.735988 + 0.676995i \(0.236718\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −35.4120 + 35.4120i −1.15440 + 1.15440i −0.168738 + 0.985661i \(0.553969\pi\)
−0.985661 + 0.168738i \(0.946031\pi\)
\(942\) 0 0
\(943\) −34.8586 −1.13515
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.5934 + 15.5934i −0.506718 + 0.506718i −0.913518 0.406799i \(-0.866645\pi\)
0.406799 + 0.913518i \(0.366645\pi\)
\(948\) 0 0
\(949\) −2.79039 2.79039i −0.0905798 0.0905798i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.0170i 1.16671i 0.812219 + 0.583353i \(0.198259\pi\)
−0.812219 + 0.583353i \(0.801741\pi\)
\(954\) 0 0
\(955\) 18.5273 + 14.0656i 0.599531 + 0.455151i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.8968 + 12.8968i −0.416460 + 0.416460i
\(960\) 0 0
\(961\) 26.2393i 0.846429i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.08763 + 37.1646i 0.163777 + 1.19637i
\(966\) 0 0
\(967\) −19.0087 −0.611279 −0.305639 0.952147i \(-0.598870\pi\)
−0.305639 + 0.952147i \(0.598870\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.994297i 0.0319085i 0.999873 + 0.0159543i \(0.00507861\pi\)
−0.999873 + 0.0159543i \(0.994921\pi\)
\(972\) 0 0
\(973\) 25.7764i 0.826354i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.6574 0.756868 0.378434 0.925628i \(-0.376463\pi\)
0.378434 + 0.925628i \(0.376463\pi\)
\(978\) 0 0
\(979\) 59.5484 59.5484i 1.90317 1.90317i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −32.4392 + 32.4392i −1.03465 + 1.03465i −0.0352715 + 0.999378i \(0.511230\pi\)
−0.999378 + 0.0352715i \(0.988770\pi\)
\(984\) 0 0
\(985\) 6.22668 + 45.4852i 0.198399 + 1.44928i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −14.4015 14.4015i −0.457941 0.457941i
\(990\) 0 0
\(991\) −36.2049 36.2049i −1.15009 1.15009i −0.986535 0.163552i \(-0.947705\pi\)
−0.163552 0.986535i \(-0.552295\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.79050 + 34.9941i 0.151869 + 1.10939i
\(996\) 0 0
\(997\) 9.20588 + 9.20588i 0.291553 + 0.291553i 0.837694 0.546140i \(-0.183903\pi\)
−0.546140 + 0.837694i \(0.683903\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.z.g.829.17 40
3.2 odd 2 1020.2.y.a.829.18 yes 40
5.4 even 2 inner 3060.2.z.g.829.15 40
15.14 odd 2 1020.2.y.a.829.3 yes 40
17.4 even 4 inner 3060.2.z.g.2809.15 40
51.38 odd 4 1020.2.y.a.769.3 40
85.4 even 4 inner 3060.2.z.g.2809.17 40
255.89 odd 4 1020.2.y.a.769.18 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.y.a.769.3 40 51.38 odd 4
1020.2.y.a.769.18 yes 40 255.89 odd 4
1020.2.y.a.829.3 yes 40 15.14 odd 2
1020.2.y.a.829.18 yes 40 3.2 odd 2
3060.2.z.g.829.15 40 5.4 even 2 inner
3060.2.z.g.829.17 40 1.1 even 1 trivial
3060.2.z.g.2809.15 40 17.4 even 4 inner
3060.2.z.g.2809.17 40 85.4 even 4 inner