Properties

Label 1020.2.y.a.769.3
Level $1020$
Weight $2$
Character 1020.769
Analytic conductor $8.145$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1020,2,Mod(769,1020)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1020.769"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1020, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1020 = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1020.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.14474100617\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 769.3
Character \(\chi\) \(=\) 1020.769
Dual form 1020.2.y.a.829.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-1.35208 + 1.78098i) q^{5} +(-2.38946 + 2.38946i) q^{7} +1.00000i q^{9} +(-4.26466 - 4.26466i) q^{11} +2.80533i q^{13} +(2.21541 - 0.303277i) q^{15} +(3.60237 + 2.00572i) q^{17} -4.71202i q^{19} +3.37921 q^{21} +(6.40321 - 6.40321i) q^{23} +(-1.34376 - 4.81605i) q^{25} +(0.707107 - 0.707107i) q^{27} +(6.84047 - 6.84047i) q^{29} +(-1.54284 + 1.54284i) q^{31} +6.03114i q^{33} +(-1.02484 - 7.48633i) q^{35} +(-4.27355 - 4.27355i) q^{37} +(1.98367 - 1.98367i) q^{39} +(2.72196 + 2.72196i) q^{41} +2.24911 q^{43} +(-1.78098 - 1.35208i) q^{45} +10.4895i q^{47} -4.41908i q^{49} +(-1.12900 - 3.96552i) q^{51} +1.54211 q^{53} +(13.3614 - 1.82911i) q^{55} +(-3.33190 + 3.33190i) q^{57} -3.65396i q^{59} +(-1.08330 - 1.08330i) q^{61} +(-2.38946 - 2.38946i) q^{63} +(-4.99623 - 3.79303i) q^{65} -1.38282i q^{67} -9.05551 q^{69} +(6.44031 - 6.44031i) q^{71} +(0.994674 + 0.994674i) q^{73} +(-2.45527 + 4.35564i) q^{75} +20.3805 q^{77} +(-8.31627 - 8.31627i) q^{79} -1.00000 q^{81} -3.99974 q^{83} +(-8.44283 + 3.70385i) q^{85} -9.67388 q^{87} -13.9632 q^{89} +(-6.70323 - 6.70323i) q^{91} +2.18190 q^{93} +(8.39200 + 6.37102i) q^{95} +(-10.7777 - 10.7777i) q^{97} +(4.26466 - 4.26466i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 4 q^{5} - 8 q^{11} - 16 q^{21} + 24 q^{29} - 16 q^{31} + 8 q^{35} + 8 q^{39} - 8 q^{41} + 4 q^{45} + 28 q^{55} + 16 q^{61} - 24 q^{69} + 56 q^{71} + 32 q^{75} + 16 q^{79} - 40 q^{81} - 40 q^{85}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1020\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −1.35208 + 1.78098i −0.604668 + 0.796477i
\(6\) 0 0
\(7\) −2.38946 + 2.38946i −0.903133 + 0.903133i −0.995706 0.0925731i \(-0.970491\pi\)
0.0925731 + 0.995706i \(0.470491\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −4.26466 4.26466i −1.28584 1.28584i −0.937288 0.348556i \(-0.886672\pi\)
−0.348556 0.937288i \(-0.613328\pi\)
\(12\) 0 0
\(13\) 2.80533i 0.778058i 0.921225 + 0.389029i \(0.127189\pi\)
−0.921225 + 0.389029i \(0.872811\pi\)
\(14\) 0 0
\(15\) 2.21541 0.303277i 0.572015 0.0783058i
\(16\) 0 0
\(17\) 3.60237 + 2.00572i 0.873704 + 0.486458i
\(18\) 0 0
\(19\) 4.71202i 1.08101i −0.841340 0.540505i \(-0.818233\pi\)
0.841340 0.540505i \(-0.181767\pi\)
\(20\) 0 0
\(21\) 3.37921 0.737405
\(22\) 0 0
\(23\) 6.40321 6.40321i 1.33516 1.33516i 0.434481 0.900681i \(-0.356932\pi\)
0.900681 0.434481i \(-0.143068\pi\)
\(24\) 0 0
\(25\) −1.34376 4.81605i −0.268753 0.963209i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 6.84047 6.84047i 1.27024 1.27024i 0.324283 0.945960i \(-0.394877\pi\)
0.945960 0.324283i \(-0.105123\pi\)
\(30\) 0 0
\(31\) −1.54284 + 1.54284i −0.277102 + 0.277102i −0.831951 0.554849i \(-0.812776\pi\)
0.554849 + 0.831951i \(0.312776\pi\)
\(32\) 0 0
\(33\) 6.03114i 1.04989i
\(34\) 0 0
\(35\) −1.02484 7.48633i −0.173229 1.26542i
\(36\) 0 0
\(37\) −4.27355 4.27355i −0.702568 0.702568i 0.262393 0.964961i \(-0.415488\pi\)
−0.964961 + 0.262393i \(0.915488\pi\)
\(38\) 0 0
\(39\) 1.98367 1.98367i 0.317641 0.317641i
\(40\) 0 0
\(41\) 2.72196 + 2.72196i 0.425099 + 0.425099i 0.886955 0.461856i \(-0.152816\pi\)
−0.461856 + 0.886955i \(0.652816\pi\)
\(42\) 0 0
\(43\) 2.24911 0.342986 0.171493 0.985185i \(-0.445141\pi\)
0.171493 + 0.985185i \(0.445141\pi\)
\(44\) 0 0
\(45\) −1.78098 1.35208i −0.265492 0.201556i
\(46\) 0 0
\(47\) 10.4895i 1.53005i 0.644001 + 0.765025i \(0.277273\pi\)
−0.644001 + 0.765025i \(0.722727\pi\)
\(48\) 0 0
\(49\) 4.41908i 0.631298i
\(50\) 0 0
\(51\) −1.12900 3.96552i −0.158092 0.555284i
\(52\) 0 0
\(53\) 1.54211 0.211824 0.105912 0.994375i \(-0.466224\pi\)
0.105912 + 0.994375i \(0.466224\pi\)
\(54\) 0 0
\(55\) 13.3614 1.82911i 1.80165 0.246637i
\(56\) 0 0
\(57\) −3.33190 + 3.33190i −0.441321 + 0.441321i
\(58\) 0 0
\(59\) 3.65396i 0.475705i −0.971301 0.237852i \(-0.923557\pi\)
0.971301 0.237852i \(-0.0764435\pi\)
\(60\) 0 0
\(61\) −1.08330 1.08330i −0.138702 0.138702i 0.634347 0.773049i \(-0.281269\pi\)
−0.773049 + 0.634347i \(0.781269\pi\)
\(62\) 0 0
\(63\) −2.38946 2.38946i −0.301044 0.301044i
\(64\) 0 0
\(65\) −4.99623 3.79303i −0.619706 0.470467i
\(66\) 0 0
\(67\) 1.38282i 0.168938i −0.996426 0.0844691i \(-0.973081\pi\)
0.996426 0.0844691i \(-0.0269194\pi\)
\(68\) 0 0
\(69\) −9.05551 −1.09016
\(70\) 0 0
\(71\) 6.44031 6.44031i 0.764325 0.764325i −0.212776 0.977101i \(-0.568251\pi\)
0.977101 + 0.212776i \(0.0682506\pi\)
\(72\) 0 0
\(73\) 0.994674 + 0.994674i 0.116418 + 0.116418i 0.762916 0.646498i \(-0.223767\pi\)
−0.646498 + 0.762916i \(0.723767\pi\)
\(74\) 0 0
\(75\) −2.45527 + 4.35564i −0.283511 + 0.502946i
\(76\) 0 0
\(77\) 20.3805 2.32258
\(78\) 0 0
\(79\) −8.31627 8.31627i −0.935654 0.935654i 0.0623974 0.998051i \(-0.480125\pi\)
−0.998051 + 0.0623974i \(0.980125\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −3.99974 −0.439029 −0.219514 0.975609i \(-0.570447\pi\)
−0.219514 + 0.975609i \(0.570447\pi\)
\(84\) 0 0
\(85\) −8.44283 + 3.70385i −0.915754 + 0.401739i
\(86\) 0 0
\(87\) −9.67388 −1.03715
\(88\) 0 0
\(89\) −13.9632 −1.48010 −0.740049 0.672553i \(-0.765198\pi\)
−0.740049 + 0.672553i \(0.765198\pi\)
\(90\) 0 0
\(91\) −6.70323 6.70323i −0.702690 0.702690i
\(92\) 0 0
\(93\) 2.18190 0.226252
\(94\) 0 0
\(95\) 8.39200 + 6.37102i 0.861001 + 0.653653i
\(96\) 0 0
\(97\) −10.7777 10.7777i −1.09431 1.09431i −0.995063 0.0992474i \(-0.968356\pi\)
−0.0992474 0.995063i \(-0.531644\pi\)
\(98\) 0 0
\(99\) 4.26466 4.26466i 0.428615 0.428615i
\(100\) 0 0
\(101\) 13.8478 1.37791 0.688954 0.724805i \(-0.258070\pi\)
0.688954 + 0.724805i \(0.258070\pi\)
\(102\) 0 0
\(103\) 3.52129i 0.346963i −0.984837 0.173481i \(-0.944498\pi\)
0.984837 0.173481i \(-0.0555016\pi\)
\(104\) 0 0
\(105\) −4.56896 + 6.01830i −0.445885 + 0.587326i
\(106\) 0 0
\(107\) −8.77511 8.77511i −0.848322 0.848322i 0.141602 0.989924i \(-0.454775\pi\)
−0.989924 + 0.141602i \(0.954775\pi\)
\(108\) 0 0
\(109\) −8.32449 8.32449i −0.797341 0.797341i 0.185334 0.982676i \(-0.440663\pi\)
−0.982676 + 0.185334i \(0.940663\pi\)
\(110\) 0 0
\(111\) 6.04371i 0.573644i
\(112\) 0 0
\(113\) 7.33189 7.33189i 0.689726 0.689726i −0.272445 0.962171i \(-0.587832\pi\)
0.962171 + 0.272445i \(0.0878324\pi\)
\(114\) 0 0
\(115\) 2.74633 + 20.0616i 0.256096 + 1.87076i
\(116\) 0 0
\(117\) −2.80533 −0.259353
\(118\) 0 0
\(119\) −13.4003 + 3.81515i −1.22841 + 0.349734i
\(120\) 0 0
\(121\) 25.3747i 2.30679i
\(122\) 0 0
\(123\) 3.84944i 0.347092i
\(124\) 0 0
\(125\) 10.3941 + 4.11846i 0.929681 + 0.368367i
\(126\) 0 0
\(127\) 15.4196 1.36827 0.684133 0.729357i \(-0.260181\pi\)
0.684133 + 0.729357i \(0.260181\pi\)
\(128\) 0 0
\(129\) −1.59036 1.59036i −0.140023 0.140023i
\(130\) 0 0
\(131\) 7.12212 7.12212i 0.622262 0.622262i −0.323847 0.946109i \(-0.604976\pi\)
0.946109 + 0.323847i \(0.104976\pi\)
\(132\) 0 0
\(133\) 11.2592 + 11.2592i 0.976297 + 0.976297i
\(134\) 0 0
\(135\) 0.303277 + 2.21541i 0.0261019 + 0.190672i
\(136\) 0 0
\(137\) 5.39737i 0.461128i −0.973057 0.230564i \(-0.925943\pi\)
0.973057 0.230564i \(-0.0740572\pi\)
\(138\) 0 0
\(139\) −5.39376 + 5.39376i −0.457493 + 0.457493i −0.897832 0.440339i \(-0.854858\pi\)
0.440339 + 0.897832i \(0.354858\pi\)
\(140\) 0 0
\(141\) 7.41719 7.41719i 0.624640 0.624640i
\(142\) 0 0
\(143\) 11.9638 11.9638i 1.00046 1.00046i
\(144\) 0 0
\(145\) 2.93387 + 21.4316i 0.243644 + 1.77980i
\(146\) 0 0
\(147\) −3.12476 + 3.12476i −0.257726 + 0.257726i
\(148\) 0 0
\(149\) 0.288811 0.0236603 0.0118301 0.999930i \(-0.496234\pi\)
0.0118301 + 0.999930i \(0.496234\pi\)
\(150\) 0 0
\(151\) 0.348985i 0.0284000i −0.999899 0.0142000i \(-0.995480\pi\)
0.999899 0.0142000i \(-0.00452015\pi\)
\(152\) 0 0
\(153\) −2.00572 + 3.60237i −0.162153 + 0.291235i
\(154\) 0 0
\(155\) −0.661720 4.83379i −0.0531506 0.388260i
\(156\) 0 0
\(157\) 12.6572i 1.01015i 0.863075 + 0.505076i \(0.168535\pi\)
−0.863075 + 0.505076i \(0.831465\pi\)
\(158\) 0 0
\(159\) −1.09043 1.09043i −0.0864770 0.0864770i
\(160\) 0 0
\(161\) 30.6005i 2.41166i
\(162\) 0 0
\(163\) −10.1621 + 10.1621i −0.795958 + 0.795958i −0.982455 0.186497i \(-0.940286\pi\)
0.186497 + 0.982455i \(0.440286\pi\)
\(164\) 0 0
\(165\) −10.7413 8.15458i −0.836211 0.634833i
\(166\) 0 0
\(167\) −4.22338 4.22338i −0.326815 0.326815i 0.524559 0.851374i \(-0.324230\pi\)
−0.851374 + 0.524559i \(0.824230\pi\)
\(168\) 0 0
\(169\) 5.13013 0.394626
\(170\) 0 0
\(171\) 4.71202 0.360337
\(172\) 0 0
\(173\) −0.809262 0.809262i −0.0615271 0.0615271i 0.675674 0.737201i \(-0.263853\pi\)
−0.737201 + 0.675674i \(0.763853\pi\)
\(174\) 0 0
\(175\) 14.7186 + 8.29690i 1.11263 + 0.627187i
\(176\) 0 0
\(177\) −2.58374 + 2.58374i −0.194206 + 0.194206i
\(178\) 0 0
\(179\) 22.2296i 1.66152i −0.556633 0.830759i \(-0.687907\pi\)
0.556633 0.830759i \(-0.312093\pi\)
\(180\) 0 0
\(181\) −3.76373 3.76373i −0.279756 0.279756i 0.553256 0.833012i \(-0.313385\pi\)
−0.833012 + 0.553256i \(0.813385\pi\)
\(182\) 0 0
\(183\) 1.53202i 0.113250i
\(184\) 0 0
\(185\) 13.3893 1.83292i 0.984399 0.134759i
\(186\) 0 0
\(187\) −6.80919 23.9166i −0.497937 1.74896i
\(188\) 0 0
\(189\) 3.37921i 0.245802i
\(190\) 0 0
\(191\) −10.4029 −0.752728 −0.376364 0.926472i \(-0.622826\pi\)
−0.376364 + 0.926472i \(0.622826\pi\)
\(192\) 0 0
\(193\) −11.8621 + 11.8621i −0.853851 + 0.853851i −0.990605 0.136754i \(-0.956333\pi\)
0.136754 + 0.990605i \(0.456333\pi\)
\(194\) 0 0
\(195\) 0.850792 + 6.21494i 0.0609264 + 0.445061i
\(196\) 0 0
\(197\) 14.5178 14.5178i 1.03435 1.03435i 0.0349653 0.999389i \(-0.488868\pi\)
0.999389 0.0349653i \(-0.0111321\pi\)
\(198\) 0 0
\(199\) 11.1693 11.1693i 0.791771 0.791771i −0.190011 0.981782i \(-0.560852\pi\)
0.981782 + 0.190011i \(0.0608524\pi\)
\(200\) 0 0
\(201\) −0.977801 + 0.977801i −0.0689688 + 0.0689688i
\(202\) 0 0
\(203\) 32.6901i 2.29440i
\(204\) 0 0
\(205\) −8.52806 + 1.16745i −0.595626 + 0.0815379i
\(206\) 0 0
\(207\) 6.40321 + 6.40321i 0.445054 + 0.445054i
\(208\) 0 0
\(209\) −20.0952 + 20.0952i −1.39001 + 1.39001i
\(210\) 0 0
\(211\) 12.5528 + 12.5528i 0.864174 + 0.864174i 0.991820 0.127646i \(-0.0407422\pi\)
−0.127646 + 0.991820i \(0.540742\pi\)
\(212\) 0 0
\(213\) −9.10798 −0.624068
\(214\) 0 0
\(215\) −3.04097 + 4.00561i −0.207392 + 0.273180i
\(216\) 0 0
\(217\) 7.37311i 0.500519i
\(218\) 0 0
\(219\) 1.40668i 0.0950547i
\(220\) 0 0
\(221\) −5.62670 + 10.1058i −0.378493 + 0.679792i
\(222\) 0 0
\(223\) 4.73119 0.316824 0.158412 0.987373i \(-0.449363\pi\)
0.158412 + 0.987373i \(0.449363\pi\)
\(224\) 0 0
\(225\) 4.81605 1.34376i 0.321070 0.0895842i
\(226\) 0 0
\(227\) −6.01353 + 6.01353i −0.399132 + 0.399132i −0.877927 0.478795i \(-0.841074\pi\)
0.478795 + 0.877927i \(0.341074\pi\)
\(228\) 0 0
\(229\) 4.61922i 0.305247i 0.988284 + 0.152623i \(0.0487721\pi\)
−0.988284 + 0.152623i \(0.951228\pi\)
\(230\) 0 0
\(231\) −14.4112 14.4112i −0.948187 0.948187i
\(232\) 0 0
\(233\) −6.47363 6.47363i −0.424101 0.424101i 0.462512 0.886613i \(-0.346948\pi\)
−0.886613 + 0.462512i \(0.846948\pi\)
\(234\) 0 0
\(235\) −18.6815 14.1826i −1.21865 0.925172i
\(236\) 0 0
\(237\) 11.7610i 0.763958i
\(238\) 0 0
\(239\) 7.81975 0.505818 0.252909 0.967490i \(-0.418613\pi\)
0.252909 + 0.967490i \(0.418613\pi\)
\(240\) 0 0
\(241\) −6.68972 + 6.68972i −0.430923 + 0.430923i −0.888942 0.458019i \(-0.848559\pi\)
0.458019 + 0.888942i \(0.348559\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 7.87029 + 5.97495i 0.502814 + 0.381726i
\(246\) 0 0
\(247\) 13.2188 0.841089
\(248\) 0 0
\(249\) 2.82824 + 2.82824i 0.179233 + 0.179233i
\(250\) 0 0
\(251\) −4.73604 −0.298936 −0.149468 0.988767i \(-0.547756\pi\)
−0.149468 + 0.988767i \(0.547756\pi\)
\(252\) 0 0
\(253\) −54.6151 −3.43362
\(254\) 0 0
\(255\) 8.58901 + 3.35097i 0.537864 + 0.209846i
\(256\) 0 0
\(257\) −2.35995 −0.147209 −0.0736047 0.997287i \(-0.523450\pi\)
−0.0736047 + 0.997287i \(0.523450\pi\)
\(258\) 0 0
\(259\) 20.4230 1.26902
\(260\) 0 0
\(261\) 6.84047 + 6.84047i 0.423414 + 0.423414i
\(262\) 0 0
\(263\) 18.7175 1.15417 0.577084 0.816685i \(-0.304191\pi\)
0.577084 + 0.816685i \(0.304191\pi\)
\(264\) 0 0
\(265\) −2.08505 + 2.74646i −0.128084 + 0.168713i
\(266\) 0 0
\(267\) 9.87349 + 9.87349i 0.604247 + 0.604247i
\(268\) 0 0
\(269\) 4.44388 4.44388i 0.270948 0.270948i −0.558534 0.829482i \(-0.688636\pi\)
0.829482 + 0.558534i \(0.188636\pi\)
\(270\) 0 0
\(271\) −3.55255 −0.215802 −0.107901 0.994162i \(-0.534413\pi\)
−0.107901 + 0.994162i \(0.534413\pi\)
\(272\) 0 0
\(273\) 9.47980i 0.573744i
\(274\) 0 0
\(275\) −14.8081 + 26.2695i −0.892963 + 1.58411i
\(276\) 0 0
\(277\) 8.28598 + 8.28598i 0.497856 + 0.497856i 0.910770 0.412914i \(-0.135489\pi\)
−0.412914 + 0.910770i \(0.635489\pi\)
\(278\) 0 0
\(279\) −1.54284 1.54284i −0.0923672 0.0923672i
\(280\) 0 0
\(281\) 10.7011i 0.638373i 0.947692 + 0.319187i \(0.103410\pi\)
−0.947692 + 0.319187i \(0.896590\pi\)
\(282\) 0 0
\(283\) 10.6946 10.6946i 0.635729 0.635729i −0.313770 0.949499i \(-0.601592\pi\)
0.949499 + 0.313770i \(0.101592\pi\)
\(284\) 0 0
\(285\) −1.42905 10.4390i −0.0846494 0.618355i
\(286\) 0 0
\(287\) −13.0081 −0.767842
\(288\) 0 0
\(289\) 8.95418 + 14.4507i 0.526717 + 0.850041i
\(290\) 0 0
\(291\) 15.2420i 0.893501i
\(292\) 0 0
\(293\) 24.7337i 1.44496i −0.691394 0.722478i \(-0.743003\pi\)
0.691394 0.722478i \(-0.256997\pi\)
\(294\) 0 0
\(295\) 6.50762 + 4.94044i 0.378888 + 0.287644i
\(296\) 0 0
\(297\) −6.03114 −0.349962
\(298\) 0 0
\(299\) 17.9631 + 17.9631i 1.03883 + 1.03883i
\(300\) 0 0
\(301\) −5.37416 + 5.37416i −0.309761 + 0.309761i
\(302\) 0 0
\(303\) −9.79188 9.79188i −0.562529 0.562529i
\(304\) 0 0
\(305\) 3.39404 0.464625i 0.194342 0.0266044i
\(306\) 0 0
\(307\) 16.7478i 0.955846i −0.878402 0.477923i \(-0.841390\pi\)
0.878402 0.477923i \(-0.158610\pi\)
\(308\) 0 0
\(309\) −2.48993 + 2.48993i −0.141647 + 0.141647i
\(310\) 0 0
\(311\) −2.87130 + 2.87130i −0.162816 + 0.162816i −0.783813 0.620997i \(-0.786728\pi\)
0.620997 + 0.783813i \(0.286728\pi\)
\(312\) 0 0
\(313\) 22.8159 22.8159i 1.28963 1.28963i 0.354624 0.935009i \(-0.384609\pi\)
0.935009 0.354624i \(-0.115391\pi\)
\(314\) 0 0
\(315\) 7.48633 1.02484i 0.421807 0.0577431i
\(316\) 0 0
\(317\) −12.8512 + 12.8512i −0.721793 + 0.721793i −0.968970 0.247177i \(-0.920497\pi\)
0.247177 + 0.968970i \(0.420497\pi\)
\(318\) 0 0
\(319\) −58.3446 −3.26667
\(320\) 0 0
\(321\) 12.4099i 0.692652i
\(322\) 0 0
\(323\) 9.45098 16.9744i 0.525867 0.944483i
\(324\) 0 0
\(325\) 13.5106 3.76970i 0.749433 0.209105i
\(326\) 0 0
\(327\) 11.7726i 0.651026i
\(328\) 0 0
\(329\) −25.0643 25.0643i −1.38184 1.38184i
\(330\) 0 0
\(331\) 14.5405i 0.799221i −0.916685 0.399610i \(-0.869145\pi\)
0.916685 0.399610i \(-0.130855\pi\)
\(332\) 0 0
\(333\) 4.27355 4.27355i 0.234189 0.234189i
\(334\) 0 0
\(335\) 2.46277 + 1.86968i 0.134556 + 0.102152i
\(336\) 0 0
\(337\) −12.9706 12.9706i −0.706551 0.706551i 0.259257 0.965808i \(-0.416522\pi\)
−0.965808 + 0.259257i \(0.916522\pi\)
\(338\) 0 0
\(339\) −10.3689 −0.563159
\(340\) 0 0
\(341\) 13.1593 0.712619
\(342\) 0 0
\(343\) −6.16701 6.16701i −0.332987 0.332987i
\(344\) 0 0
\(345\) 12.2438 16.1277i 0.659182 0.868284i
\(346\) 0 0
\(347\) 7.42014 7.42014i 0.398334 0.398334i −0.479311 0.877645i \(-0.659113\pi\)
0.877645 + 0.479311i \(0.159113\pi\)
\(348\) 0 0
\(349\) 28.8613i 1.54491i −0.635069 0.772455i \(-0.719029\pi\)
0.635069 0.772455i \(-0.280971\pi\)
\(350\) 0 0
\(351\) 1.98367 + 1.98367i 0.105880 + 0.105880i
\(352\) 0 0
\(353\) 12.6440i 0.672973i −0.941688 0.336486i \(-0.890761\pi\)
0.941688 0.336486i \(-0.109239\pi\)
\(354\) 0 0
\(355\) 2.76224 + 20.1779i 0.146604 + 1.07093i
\(356\) 0 0
\(357\) 12.1732 + 6.77775i 0.644273 + 0.358717i
\(358\) 0 0
\(359\) 34.1499i 1.80236i −0.433441 0.901182i \(-0.642701\pi\)
0.433441 0.901182i \(-0.357299\pi\)
\(360\) 0 0
\(361\) −3.20311 −0.168585
\(362\) 0 0
\(363\) 17.9426 17.9426i 0.941742 0.941742i
\(364\) 0 0
\(365\) −3.11637 + 0.426614i −0.163118 + 0.0223300i
\(366\) 0 0
\(367\) −10.7838 + 10.7838i −0.562907 + 0.562907i −0.930132 0.367225i \(-0.880308\pi\)
0.367225 + 0.930132i \(0.380308\pi\)
\(368\) 0 0
\(369\) −2.72196 + 2.72196i −0.141700 + 0.141700i
\(370\) 0 0
\(371\) −3.68481 + 3.68481i −0.191306 + 0.191306i
\(372\) 0 0
\(373\) 26.1065i 1.35174i 0.737020 + 0.675870i \(0.236232\pi\)
−0.737020 + 0.675870i \(0.763768\pi\)
\(374\) 0 0
\(375\) −4.43758 10.2620i −0.229155 0.529926i
\(376\) 0 0
\(377\) 19.1898 + 19.1898i 0.988323 + 0.988323i
\(378\) 0 0
\(379\) 2.87742 2.87742i 0.147803 0.147803i −0.629333 0.777136i \(-0.716672\pi\)
0.777136 + 0.629333i \(0.216672\pi\)
\(380\) 0 0
\(381\) −10.9033 10.9033i −0.558592 0.558592i
\(382\) 0 0
\(383\) −35.3658 −1.80711 −0.903554 0.428475i \(-0.859051\pi\)
−0.903554 + 0.428475i \(0.859051\pi\)
\(384\) 0 0
\(385\) −27.5561 + 36.2972i −1.40439 + 1.84988i
\(386\) 0 0
\(387\) 2.24911i 0.114329i
\(388\) 0 0
\(389\) 19.7757i 1.00267i −0.865254 0.501334i \(-0.832843\pi\)
0.865254 0.501334i \(-0.167157\pi\)
\(390\) 0 0
\(391\) 35.9098 10.2237i 1.81604 0.517035i
\(392\) 0 0
\(393\) −10.0722 −0.508075
\(394\) 0 0
\(395\) 26.0554 3.56684i 1.31099 0.179467i
\(396\) 0 0
\(397\) −8.17926 + 8.17926i −0.410505 + 0.410505i −0.881914 0.471409i \(-0.843745\pi\)
0.471409 + 0.881914i \(0.343745\pi\)
\(398\) 0 0
\(399\) 15.9229i 0.797143i
\(400\) 0 0
\(401\) −7.82988 7.82988i −0.391006 0.391006i 0.484040 0.875046i \(-0.339169\pi\)
−0.875046 + 0.484040i \(0.839169\pi\)
\(402\) 0 0
\(403\) −4.32816 4.32816i −0.215601 0.215601i
\(404\) 0 0
\(405\) 1.35208 1.78098i 0.0671854 0.0884975i
\(406\) 0 0
\(407\) 36.4505i 1.80678i
\(408\) 0 0
\(409\) −7.46124 −0.368935 −0.184467 0.982839i \(-0.559056\pi\)
−0.184467 + 0.982839i \(0.559056\pi\)
\(410\) 0 0
\(411\) −3.81652 + 3.81652i −0.188255 + 0.188255i
\(412\) 0 0
\(413\) 8.73101 + 8.73101i 0.429625 + 0.429625i
\(414\) 0 0
\(415\) 5.40797 7.12345i 0.265467 0.349676i
\(416\) 0 0
\(417\) 7.62793 0.373542
\(418\) 0 0
\(419\) 4.12125 + 4.12125i 0.201336 + 0.201336i 0.800572 0.599236i \(-0.204529\pi\)
−0.599236 + 0.800572i \(0.704529\pi\)
\(420\) 0 0
\(421\) 23.7970 1.15980 0.579899 0.814689i \(-0.303092\pi\)
0.579899 + 0.814689i \(0.303092\pi\)
\(422\) 0 0
\(423\) −10.4895 −0.510016
\(424\) 0 0
\(425\) 4.81890 20.0444i 0.233751 0.972296i
\(426\) 0 0
\(427\) 5.17701 0.250533
\(428\) 0 0
\(429\) −16.9193 −0.816873
\(430\) 0 0
\(431\) 22.9770 + 22.9770i 1.10676 + 1.10676i 0.993573 + 0.113192i \(0.0361074\pi\)
0.113192 + 0.993573i \(0.463893\pi\)
\(432\) 0 0
\(433\) −3.63235 −0.174560 −0.0872798 0.996184i \(-0.527817\pi\)
−0.0872798 + 0.996184i \(0.527817\pi\)
\(434\) 0 0
\(435\) 13.0799 17.2290i 0.627131 0.826066i
\(436\) 0 0
\(437\) −30.1720 30.1720i −1.44332 1.44332i
\(438\) 0 0
\(439\) −22.3229 + 22.3229i −1.06541 + 1.06541i −0.0677083 + 0.997705i \(0.521569\pi\)
−0.997705 + 0.0677083i \(0.978431\pi\)
\(440\) 0 0
\(441\) 4.41908 0.210433
\(442\) 0 0
\(443\) 36.7744i 1.74720i 0.486642 + 0.873601i \(0.338221\pi\)
−0.486642 + 0.873601i \(0.661779\pi\)
\(444\) 0 0
\(445\) 18.8794 24.8682i 0.894968 1.17886i
\(446\) 0 0
\(447\) −0.204220 0.204220i −0.00965927 0.00965927i
\(448\) 0 0
\(449\) 8.75527 + 8.75527i 0.413187 + 0.413187i 0.882847 0.469660i \(-0.155624\pi\)
−0.469660 + 0.882847i \(0.655624\pi\)
\(450\) 0 0
\(451\) 23.2165i 1.09322i
\(452\) 0 0
\(453\) −0.246770 + 0.246770i −0.0115942 + 0.0115942i
\(454\) 0 0
\(455\) 21.0016 2.87501i 0.984571 0.134782i
\(456\) 0 0
\(457\) 19.8700 0.929479 0.464739 0.885447i \(-0.346148\pi\)
0.464739 + 0.885447i \(0.346148\pi\)
\(458\) 0 0
\(459\) 3.96552 1.12900i 0.185095 0.0526974i
\(460\) 0 0
\(461\) 18.4951i 0.861402i −0.902495 0.430701i \(-0.858266\pi\)
0.902495 0.430701i \(-0.141734\pi\)
\(462\) 0 0
\(463\) 39.0259i 1.81369i 0.421465 + 0.906845i \(0.361516\pi\)
−0.421465 + 0.906845i \(0.638484\pi\)
\(464\) 0 0
\(465\) −2.95010 + 3.88592i −0.136808 + 0.180205i
\(466\) 0 0
\(467\) −16.7619 −0.775650 −0.387825 0.921733i \(-0.626773\pi\)
−0.387825 + 0.921733i \(0.626773\pi\)
\(468\) 0 0
\(469\) 3.30420 + 3.30420i 0.152574 + 0.152574i
\(470\) 0 0
\(471\) 8.94996 8.94996i 0.412393 0.412393i
\(472\) 0 0
\(473\) −9.59168 9.59168i −0.441026 0.441026i
\(474\) 0 0
\(475\) −22.6933 + 6.33184i −1.04124 + 0.290525i
\(476\) 0 0
\(477\) 1.54211i 0.0706082i
\(478\) 0 0
\(479\) 15.7464 15.7464i 0.719470 0.719470i −0.249027 0.968497i \(-0.580111\pi\)
0.968497 + 0.249027i \(0.0801107\pi\)
\(480\) 0 0
\(481\) 11.9887 11.9887i 0.546638 0.546638i
\(482\) 0 0
\(483\) 21.6378 21.6378i 0.984555 0.984555i
\(484\) 0 0
\(485\) 33.7672 4.62254i 1.53329 0.209899i
\(486\) 0 0
\(487\) 8.81863 8.81863i 0.399610 0.399610i −0.478485 0.878096i \(-0.658814\pi\)
0.878096 + 0.478485i \(0.158814\pi\)
\(488\) 0 0
\(489\) 14.3714 0.649897
\(490\) 0 0
\(491\) 28.9417i 1.30612i −0.757307 0.653060i \(-0.773485\pi\)
0.757307 0.653060i \(-0.226515\pi\)
\(492\) 0 0
\(493\) 38.3620 10.9219i 1.72774 0.491896i
\(494\) 0 0
\(495\) 1.82911 + 13.3614i 0.0822122 + 0.600551i
\(496\) 0 0
\(497\) 30.7778i 1.38057i
\(498\) 0 0
\(499\) −16.9409 16.9409i −0.758380 0.758380i 0.217647 0.976027i \(-0.430162\pi\)
−0.976027 + 0.217647i \(0.930162\pi\)
\(500\) 0 0
\(501\) 5.97276i 0.266843i
\(502\) 0 0
\(503\) −30.4137 + 30.4137i −1.35608 + 1.35608i −0.477387 + 0.878693i \(0.658416\pi\)
−0.878693 + 0.477387i \(0.841584\pi\)
\(504\) 0 0
\(505\) −18.7233 + 24.6626i −0.833178 + 1.09747i
\(506\) 0 0
\(507\) −3.62755 3.62755i −0.161105 0.161105i
\(508\) 0 0
\(509\) 7.44875 0.330160 0.165080 0.986280i \(-0.447212\pi\)
0.165080 + 0.986280i \(0.447212\pi\)
\(510\) 0 0
\(511\) −4.75348 −0.210281
\(512\) 0 0
\(513\) −3.33190 3.33190i −0.147107 0.147107i
\(514\) 0 0
\(515\) 6.27133 + 4.76106i 0.276348 + 0.209797i
\(516\) 0 0
\(517\) 44.7341 44.7341i 1.96740 1.96740i
\(518\) 0 0
\(519\) 1.14447i 0.0502366i
\(520\) 0 0
\(521\) −6.53353 6.53353i −0.286239 0.286239i 0.549352 0.835591i \(-0.314875\pi\)
−0.835591 + 0.549352i \(0.814875\pi\)
\(522\) 0 0
\(523\) 9.89276i 0.432580i 0.976329 + 0.216290i \(0.0693957\pi\)
−0.976329 + 0.216290i \(0.930604\pi\)
\(524\) 0 0
\(525\) −4.54086 16.2744i −0.198179 0.710275i
\(526\) 0 0
\(527\) −8.65237 + 2.46338i −0.376903 + 0.107306i
\(528\) 0 0
\(529\) 59.0023i 2.56532i
\(530\) 0 0
\(531\) 3.65396 0.158568
\(532\) 0 0
\(533\) −7.63600 + 7.63600i −0.330752 + 0.330752i
\(534\) 0 0
\(535\) 27.4929 3.76363i 1.18862 0.162716i
\(536\) 0 0
\(537\) −15.7187 + 15.7187i −0.678312 + 0.678312i
\(538\) 0 0
\(539\) −18.8459 + 18.8459i −0.811750 + 0.811750i
\(540\) 0 0
\(541\) 3.93386 3.93386i 0.169130 0.169130i −0.617467 0.786597i \(-0.711841\pi\)
0.786597 + 0.617467i \(0.211841\pi\)
\(542\) 0 0
\(543\) 5.32272i 0.228420i
\(544\) 0 0
\(545\) 26.0811 3.57036i 1.11719 0.152937i
\(546\) 0 0
\(547\) −15.4239 15.4239i −0.659477 0.659477i 0.295779 0.955256i \(-0.404421\pi\)
−0.955256 + 0.295779i \(0.904421\pi\)
\(548\) 0 0
\(549\) 1.08330 1.08330i 0.0462341 0.0462341i
\(550\) 0 0
\(551\) −32.2324 32.2324i −1.37315 1.37315i
\(552\) 0 0
\(553\) 39.7429 1.69004
\(554\) 0 0
\(555\) −10.7637 8.17158i −0.456894 0.346864i
\(556\) 0 0
\(557\) 16.8327i 0.713224i 0.934252 + 0.356612i \(0.116068\pi\)
−0.934252 + 0.356612i \(0.883932\pi\)
\(558\) 0 0
\(559\) 6.30948i 0.266863i
\(560\) 0 0
\(561\) −12.0968 + 21.7264i −0.510726 + 0.917290i
\(562\) 0 0
\(563\) −37.2966 −1.57187 −0.785933 0.618311i \(-0.787817\pi\)
−0.785933 + 0.618311i \(0.787817\pi\)
\(564\) 0 0
\(565\) 3.14463 + 22.9712i 0.132296 + 0.966407i
\(566\) 0 0
\(567\) 2.38946 2.38946i 0.100348 0.100348i
\(568\) 0 0
\(569\) 28.6070i 1.19927i 0.800275 + 0.599633i \(0.204687\pi\)
−0.800275 + 0.599633i \(0.795313\pi\)
\(570\) 0 0
\(571\) −14.0413 14.0413i −0.587611 0.587611i 0.349373 0.936984i \(-0.386395\pi\)
−0.936984 + 0.349373i \(0.886395\pi\)
\(572\) 0 0
\(573\) 7.35597 + 7.35597i 0.307300 + 0.307300i
\(574\) 0 0
\(575\) −39.4426 22.2338i −1.64487 0.927212i
\(576\) 0 0
\(577\) 36.5537i 1.52175i −0.648899 0.760874i \(-0.724770\pi\)
0.648899 0.760874i \(-0.275230\pi\)
\(578\) 0 0
\(579\) 16.7755 0.697167
\(580\) 0 0
\(581\) 9.55724 9.55724i 0.396501 0.396501i
\(582\) 0 0
\(583\) −6.57656 6.57656i −0.272373 0.272373i
\(584\) 0 0
\(585\) 3.79303 4.99623i 0.156822 0.206569i
\(586\) 0 0
\(587\) 20.8032 0.858638 0.429319 0.903153i \(-0.358754\pi\)
0.429319 + 0.903153i \(0.358754\pi\)
\(588\) 0 0
\(589\) 7.26987 + 7.26987i 0.299550 + 0.299550i
\(590\) 0 0
\(591\) −20.5313 −0.844546
\(592\) 0 0
\(593\) −0.498805 −0.0204835 −0.0102417 0.999948i \(-0.503260\pi\)
−0.0102417 + 0.999948i \(0.503260\pi\)
\(594\) 0 0
\(595\) 11.3236 29.0241i 0.464223 1.18987i
\(596\) 0 0
\(597\) −15.7958 −0.646478
\(598\) 0 0
\(599\) −26.1051 −1.06662 −0.533312 0.845919i \(-0.679053\pi\)
−0.533312 + 0.845919i \(0.679053\pi\)
\(600\) 0 0
\(601\) 28.2569 + 28.2569i 1.15262 + 1.15262i 0.986025 + 0.166598i \(0.0532781\pi\)
0.166598 + 0.986025i \(0.446722\pi\)
\(602\) 0 0
\(603\) 1.38282 0.0563128
\(604\) 0 0
\(605\) −45.1917 34.3086i −1.83730 1.39484i
\(606\) 0 0
\(607\) 1.13156 + 1.13156i 0.0459285 + 0.0459285i 0.729698 0.683770i \(-0.239661\pi\)
−0.683770 + 0.729698i \(0.739661\pi\)
\(608\) 0 0
\(609\) 23.1154 23.1154i 0.936684 0.936684i
\(610\) 0 0
\(611\) −29.4265 −1.19047
\(612\) 0 0
\(613\) 47.5168i 1.91918i −0.281395 0.959592i \(-0.590797\pi\)
0.281395 0.959592i \(-0.409203\pi\)
\(614\) 0 0
\(615\) 6.85576 + 5.20474i 0.276451 + 0.209876i
\(616\) 0 0
\(617\) 24.9113 + 24.9113i 1.00289 + 1.00289i 0.999996 + 0.00289372i \(0.000921101\pi\)
0.00289372 + 0.999996i \(0.499079\pi\)
\(618\) 0 0
\(619\) 25.4359 + 25.4359i 1.02235 + 1.02235i 0.999744 + 0.0226092i \(0.00719734\pi\)
0.0226092 + 0.999744i \(0.492803\pi\)
\(620\) 0 0
\(621\) 9.05551i 0.363385i
\(622\) 0 0
\(623\) 33.3646 33.3646i 1.33673 1.33673i
\(624\) 0 0
\(625\) −21.3886 + 12.9433i −0.855544 + 0.517730i
\(626\) 0 0
\(627\) 28.4188 1.13494
\(628\) 0 0
\(629\) −6.82338 23.9665i −0.272066 0.955606i
\(630\) 0 0
\(631\) 17.7721i 0.707497i −0.935340 0.353749i \(-0.884907\pi\)
0.935340 0.353749i \(-0.115093\pi\)
\(632\) 0 0
\(633\) 17.7524i 0.705595i
\(634\) 0 0
\(635\) −20.8485 + 27.4619i −0.827347 + 1.08979i
\(636\) 0 0
\(637\) 12.3970 0.491186
\(638\) 0 0
\(639\) 6.44031 + 6.44031i 0.254775 + 0.254775i
\(640\) 0 0
\(641\) −4.52009 + 4.52009i −0.178533 + 0.178533i −0.790716 0.612183i \(-0.790292\pi\)
0.612183 + 0.790716i \(0.290292\pi\)
\(642\) 0 0
\(643\) 13.7299 + 13.7299i 0.541453 + 0.541453i 0.923955 0.382502i \(-0.124937\pi\)
−0.382502 + 0.923955i \(0.624937\pi\)
\(644\) 0 0
\(645\) 4.98268 0.682102i 0.196193 0.0268577i
\(646\) 0 0
\(647\) 18.1216i 0.712432i 0.934404 + 0.356216i \(0.115933\pi\)
−0.934404 + 0.356216i \(0.884067\pi\)
\(648\) 0 0
\(649\) −15.5829 + 15.5829i −0.611682 + 0.611682i
\(650\) 0 0
\(651\) −5.21357 + 5.21357i −0.204336 + 0.204336i
\(652\) 0 0
\(653\) −11.8153 + 11.8153i −0.462370 + 0.462370i −0.899432 0.437062i \(-0.856019\pi\)
0.437062 + 0.899432i \(0.356019\pi\)
\(654\) 0 0
\(655\) 3.05466 + 22.3140i 0.119356 + 0.871880i
\(656\) 0 0
\(657\) −0.994674 + 0.994674i −0.0388059 + 0.0388059i
\(658\) 0 0
\(659\) 15.5043 0.603960 0.301980 0.953314i \(-0.402352\pi\)
0.301980 + 0.953314i \(0.402352\pi\)
\(660\) 0 0
\(661\) 24.3150i 0.945743i 0.881131 + 0.472872i \(0.156783\pi\)
−0.881131 + 0.472872i \(0.843217\pi\)
\(662\) 0 0
\(663\) 11.1246 3.16723i 0.432043 0.123005i
\(664\) 0 0
\(665\) −35.2757 + 4.82905i −1.36793 + 0.187263i
\(666\) 0 0
\(667\) 87.6019i 3.39196i
\(668\) 0 0
\(669\) −3.34545 3.34545i −0.129343 0.129343i
\(670\) 0 0
\(671\) 9.23981i 0.356699i
\(672\) 0 0
\(673\) −27.9718 + 27.9718i −1.07823 + 1.07823i −0.0815665 + 0.996668i \(0.525992\pi\)
−0.996668 + 0.0815665i \(0.974008\pi\)
\(674\) 0 0
\(675\) −4.35564 2.45527i −0.167649 0.0945036i
\(676\) 0 0
\(677\) −16.7842 16.7842i −0.645069 0.645069i 0.306728 0.951797i \(-0.400766\pi\)
−0.951797 + 0.306728i \(0.900766\pi\)
\(678\) 0 0
\(679\) 51.5059 1.97661
\(680\) 0 0
\(681\) 8.50442 0.325890
\(682\) 0 0
\(683\) −26.0516 26.0516i −0.996838 0.996838i 0.00315743 0.999995i \(-0.498995\pi\)
−0.999995 + 0.00315743i \(0.998995\pi\)
\(684\) 0 0
\(685\) 9.61259 + 7.29767i 0.367278 + 0.278830i
\(686\) 0 0
\(687\) 3.26628 3.26628i 0.124616 0.124616i
\(688\) 0 0
\(689\) 4.32611i 0.164812i
\(690\) 0 0
\(691\) −4.56148 4.56148i −0.173527 0.173527i 0.615000 0.788527i \(-0.289156\pi\)
−0.788527 + 0.615000i \(0.789156\pi\)
\(692\) 0 0
\(693\) 20.3805i 0.774192i
\(694\) 0 0
\(695\) −2.31338 16.8990i −0.0877514 0.641015i
\(696\) 0 0
\(697\) 4.34603 + 15.2650i 0.164618 + 0.578204i
\(698\) 0 0
\(699\) 9.15509i 0.346277i
\(700\) 0 0
\(701\) −18.3026 −0.691280 −0.345640 0.938367i \(-0.612338\pi\)
−0.345640 + 0.938367i \(0.612338\pi\)
\(702\) 0 0
\(703\) −20.1370 + 20.1370i −0.759483 + 0.759483i
\(704\) 0 0
\(705\) 3.18122 + 23.2385i 0.119812 + 0.875212i
\(706\) 0 0
\(707\) −33.0889 + 33.0889i −1.24443 + 1.24443i
\(708\) 0 0
\(709\) 17.8191 17.8191i 0.669209 0.669209i −0.288324 0.957533i \(-0.593098\pi\)
0.957533 + 0.288324i \(0.0930981\pi\)
\(710\) 0 0
\(711\) 8.31627 8.31627i 0.311885 0.311885i
\(712\) 0 0
\(713\) 19.7582i 0.739951i
\(714\) 0 0
\(715\) 5.13124 + 37.4832i 0.191898 + 1.40179i
\(716\) 0 0
\(717\) −5.52940 5.52940i −0.206499 0.206499i
\(718\) 0 0
\(719\) −9.05095 + 9.05095i −0.337544 + 0.337544i −0.855442 0.517899i \(-0.826714\pi\)
0.517899 + 0.855442i \(0.326714\pi\)
\(720\) 0 0
\(721\) 8.41399 + 8.41399i 0.313353 + 0.313353i
\(722\) 0 0
\(723\) 9.46069 0.351847
\(724\) 0 0
\(725\) −42.1360 23.7520i −1.56489 0.882129i
\(726\) 0 0
\(727\) 12.9739i 0.481177i −0.970627 0.240588i \(-0.922660\pi\)
0.970627 0.240588i \(-0.0773404\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 8.10212 + 4.51108i 0.299668 + 0.166848i
\(732\) 0 0
\(733\) −30.8931 −1.14106 −0.570531 0.821276i \(-0.693263\pi\)
−0.570531 + 0.821276i \(0.693263\pi\)
\(734\) 0 0
\(735\) −1.34021 9.79007i −0.0494343 0.361112i
\(736\) 0 0
\(737\) −5.89726 + 5.89726i −0.217228 + 0.217228i
\(738\) 0 0
\(739\) 26.3986i 0.971087i 0.874213 + 0.485543i \(0.161378\pi\)
−0.874213 + 0.485543i \(0.838622\pi\)
\(740\) 0 0
\(741\) −9.34707 9.34707i −0.343373 0.343373i
\(742\) 0 0
\(743\) −7.13107 7.13107i −0.261614 0.261614i 0.564096 0.825709i \(-0.309225\pi\)
−0.825709 + 0.564096i \(0.809225\pi\)
\(744\) 0 0
\(745\) −0.390495 + 0.514365i −0.0143066 + 0.0188449i
\(746\) 0 0
\(747\) 3.99974i 0.146343i
\(748\) 0 0
\(749\) 41.9356 1.53230
\(750\) 0 0
\(751\) −4.06370 + 4.06370i −0.148287 + 0.148287i −0.777352 0.629066i \(-0.783438\pi\)
0.629066 + 0.777352i \(0.283438\pi\)
\(752\) 0 0
\(753\) 3.34889 + 3.34889i 0.122040 + 0.122040i
\(754\) 0 0
\(755\) 0.621534 + 0.471855i 0.0226199 + 0.0171726i
\(756\) 0 0
\(757\) 8.51336 0.309423 0.154712 0.987960i \(-0.450555\pi\)
0.154712 + 0.987960i \(0.450555\pi\)
\(758\) 0 0
\(759\) 38.6187 + 38.6187i 1.40177 + 1.40177i
\(760\) 0 0
\(761\) 54.1864 1.96426 0.982128 0.188216i \(-0.0602706\pi\)
0.982128 + 0.188216i \(0.0602706\pi\)
\(762\) 0 0
\(763\) 39.7821 1.44021
\(764\) 0 0
\(765\) −3.70385 8.44283i −0.133913 0.305251i
\(766\) 0 0
\(767\) 10.2506 0.370126
\(768\) 0 0
\(769\) 21.0180 0.757927 0.378964 0.925412i \(-0.376281\pi\)
0.378964 + 0.925412i \(0.376281\pi\)
\(770\) 0 0
\(771\) 1.66873 + 1.66873i 0.0600980 + 0.0600980i
\(772\) 0 0
\(773\) 44.8315 1.61248 0.806239 0.591590i \(-0.201499\pi\)
0.806239 + 0.591590i \(0.201499\pi\)
\(774\) 0 0
\(775\) 9.50358 + 5.35716i 0.341379 + 0.192435i
\(776\) 0 0
\(777\) −14.4412 14.4412i −0.518077 0.518077i
\(778\) 0 0
\(779\) 12.8259 12.8259i 0.459537 0.459537i
\(780\) 0 0
\(781\) −54.9315 −1.96560
\(782\) 0 0
\(783\) 9.67388i 0.345716i
\(784\) 0 0
\(785\) −22.5421 17.1135i −0.804563 0.610806i
\(786\) 0 0
\(787\) 16.9154 + 16.9154i 0.602970 + 0.602970i 0.941100 0.338130i \(-0.109794\pi\)
−0.338130 + 0.941100i \(0.609794\pi\)
\(788\) 0 0
\(789\) −13.2352 13.2352i −0.471187 0.471187i
\(790\) 0 0
\(791\) 35.0386i 1.24583i
\(792\) 0 0
\(793\) 3.03901 3.03901i 0.107918 0.107918i
\(794\) 0 0
\(795\) 3.41639 0.467685i 0.121167 0.0165871i
\(796\) 0 0
\(797\) −7.89001 −0.279478 −0.139739 0.990188i \(-0.544626\pi\)
−0.139739 + 0.990188i \(0.544626\pi\)
\(798\) 0 0
\(799\) −21.0390 + 37.7871i −0.744305 + 1.33681i
\(800\) 0 0
\(801\) 13.9632i 0.493366i
\(802\) 0 0
\(803\) 8.48389i 0.299390i
\(804\) 0 0
\(805\) −54.4988 41.3743i −1.92083 1.45825i
\(806\) 0 0
\(807\) −6.28460 −0.221228
\(808\) 0 0
\(809\) −34.2754 34.2754i −1.20506 1.20506i −0.972608 0.232452i \(-0.925325\pi\)
−0.232452 0.972608i \(-0.574675\pi\)
\(810\) 0 0
\(811\) 6.17565 6.17565i 0.216856 0.216856i −0.590316 0.807172i \(-0.700997\pi\)
0.807172 + 0.590316i \(0.200997\pi\)
\(812\) 0 0
\(813\) 2.51203 + 2.51203i 0.0881008 + 0.0881008i
\(814\) 0 0
\(815\) −4.35851 31.8385i −0.152672 1.11525i
\(816\) 0 0
\(817\) 10.5978i 0.370771i
\(818\) 0 0
\(819\) 6.70323 6.70323i 0.234230 0.234230i
\(820\) 0 0
\(821\) 16.7192 16.7192i 0.583505 0.583505i −0.352360 0.935865i \(-0.614621\pi\)
0.935865 + 0.352360i \(0.114621\pi\)
\(822\) 0 0
\(823\) −18.3320 + 18.3320i −0.639013 + 0.639013i −0.950312 0.311299i \(-0.899236\pi\)
0.311299 + 0.950312i \(0.399236\pi\)
\(824\) 0 0
\(825\) 29.0463 8.10443i 1.01126 0.282160i
\(826\) 0 0
\(827\) −25.2223 + 25.2223i −0.877065 + 0.877065i −0.993230 0.116165i \(-0.962940\pi\)
0.116165 + 0.993230i \(0.462940\pi\)
\(828\) 0 0
\(829\) −6.97218 −0.242154 −0.121077 0.992643i \(-0.538635\pi\)
−0.121077 + 0.992643i \(0.538635\pi\)
\(830\) 0 0
\(831\) 11.7181i 0.406498i
\(832\) 0 0
\(833\) 8.86344 15.9192i 0.307100 0.551567i
\(834\) 0 0
\(835\) 13.2321 1.81140i 0.457915 0.0626861i
\(836\) 0 0
\(837\) 2.18190i 0.0754175i
\(838\) 0 0
\(839\) 34.0874 + 34.0874i 1.17683 + 1.17683i 0.980548 + 0.196278i \(0.0628854\pi\)
0.196278 + 0.980548i \(0.437115\pi\)
\(840\) 0 0
\(841\) 64.5840i 2.22704i
\(842\) 0 0
\(843\) 7.56681 7.56681i 0.260615 0.260615i
\(844\) 0 0
\(845\) −6.93634 + 9.13665i −0.238618 + 0.314310i
\(846\) 0 0
\(847\) −60.6319 60.6319i −2.08334 2.08334i
\(848\) 0 0
\(849\) −15.1245 −0.519070
\(850\) 0 0
\(851\) −54.7289 −1.87608
\(852\) 0 0
\(853\) −14.3998 14.3998i −0.493041 0.493041i 0.416222 0.909263i \(-0.363354\pi\)
−0.909263 + 0.416222i \(0.863354\pi\)
\(854\) 0 0
\(855\) −6.37102 + 8.39200i −0.217884 + 0.287000i
\(856\) 0 0
\(857\) 1.90013 1.90013i 0.0649072 0.0649072i −0.673908 0.738815i \(-0.735386\pi\)
0.738815 + 0.673908i \(0.235386\pi\)
\(858\) 0 0
\(859\) 13.2517i 0.452143i −0.974111 0.226072i \(-0.927412\pi\)
0.974111 0.226072i \(-0.0725883\pi\)
\(860\) 0 0
\(861\) 9.19809 + 9.19809i 0.313470 + 0.313470i
\(862\) 0 0
\(863\) 37.8899i 1.28979i 0.764273 + 0.644893i \(0.223098\pi\)
−0.764273 + 0.644893i \(0.776902\pi\)
\(864\) 0 0
\(865\) 2.53546 0.347091i 0.0862084 0.0118015i
\(866\) 0 0
\(867\) 3.88662 16.5497i 0.131997 0.562059i
\(868\) 0 0
\(869\) 70.9322i 2.40621i
\(870\) 0 0
\(871\) 3.87926 0.131444
\(872\) 0 0
\(873\) 10.7777 10.7777i 0.364770 0.364770i
\(874\) 0 0
\(875\) −34.6774 + 14.9955i −1.17231 + 0.506941i
\(876\) 0 0
\(877\) −6.90096 + 6.90096i −0.233029 + 0.233029i −0.813956 0.580927i \(-0.802690\pi\)
0.580927 + 0.813956i \(0.302690\pi\)
\(878\) 0 0
\(879\) −17.4893 + 17.4893i −0.589901 + 0.589901i
\(880\) 0 0
\(881\) 4.85040 4.85040i 0.163414 0.163414i −0.620663 0.784077i \(-0.713137\pi\)
0.784077 + 0.620663i \(0.213137\pi\)
\(882\) 0 0
\(883\) 37.4138i 1.25908i 0.776970 + 0.629538i \(0.216756\pi\)
−0.776970 + 0.629538i \(0.783244\pi\)
\(884\) 0 0
\(885\) −1.10816 8.09500i −0.0372504 0.272111i
\(886\) 0 0
\(887\) 13.1504 + 13.1504i 0.441546 + 0.441546i 0.892531 0.450985i \(-0.148927\pi\)
−0.450985 + 0.892531i \(0.648927\pi\)
\(888\) 0 0
\(889\) −36.8445 + 36.8445i −1.23573 + 1.23573i
\(890\) 0 0
\(891\) 4.26466 + 4.26466i 0.142872 + 0.142872i
\(892\) 0 0
\(893\) 49.4267 1.65400
\(894\) 0 0
\(895\) 39.5904 + 30.0562i 1.32336 + 1.00467i
\(896\) 0 0
\(897\) 25.4037i 0.848204i
\(898\) 0 0
\(899\) 21.1074i 0.703973i
\(900\) 0 0
\(901\) 5.55524 + 3.09303i 0.185072 + 0.103044i
\(902\) 0 0
\(903\) 7.60021 0.252919
\(904\) 0 0
\(905\) 11.7920 1.61426i 0.391979 0.0536597i
\(906\) 0 0
\(907\) 12.6188 12.6188i 0.419001 0.419001i −0.465859 0.884859i \(-0.654254\pi\)
0.884859 + 0.465859i \(0.154254\pi\)
\(908\) 0 0
\(909\) 13.8478i 0.459303i
\(910\) 0 0
\(911\) 4.01480 + 4.01480i 0.133016 + 0.133016i 0.770480 0.637464i \(-0.220017\pi\)
−0.637464 + 0.770480i \(0.720017\pi\)
\(912\) 0 0
\(913\) 17.0575 + 17.0575i 0.564522 + 0.564522i
\(914\) 0 0
\(915\) −2.72849 2.07141i −0.0902010 0.0684786i
\(916\) 0 0
\(917\) 34.0361i 1.12397i
\(918\) 0 0
\(919\) 13.4225 0.442768 0.221384 0.975187i \(-0.428943\pi\)
0.221384 + 0.975187i \(0.428943\pi\)
\(920\) 0 0
\(921\) −11.8425 + 11.8425i −0.390223 + 0.390223i
\(922\) 0 0
\(923\) 18.0672 + 18.0672i 0.594689 + 0.594689i
\(924\) 0 0
\(925\) −14.8390 + 26.3243i −0.487903 + 0.865536i
\(926\) 0 0
\(927\) 3.52129 0.115654
\(928\) 0 0
\(929\) 26.6853 + 26.6853i 0.875517 + 0.875517i 0.993067 0.117550i \(-0.0375041\pi\)
−0.117550 + 0.993067i \(0.537504\pi\)
\(930\) 0 0
\(931\) −20.8228 −0.682440
\(932\) 0 0
\(933\) 4.06063 0.132939
\(934\) 0 0
\(935\) 51.8015 + 20.2101i 1.69409 + 0.660942i
\(936\) 0 0
\(937\) −45.0578 −1.47198 −0.735988 0.676995i \(-0.763282\pi\)
−0.735988 + 0.676995i \(0.763282\pi\)
\(938\) 0 0
\(939\) −32.2666 −1.05298
\(940\) 0 0
\(941\) 35.4120 + 35.4120i 1.15440 + 1.15440i 0.985661 + 0.168738i \(0.0539693\pi\)
0.168738 + 0.985661i \(0.446031\pi\)
\(942\) 0 0
\(943\) 34.8586 1.13515
\(944\) 0 0
\(945\) −6.01830 4.56896i −0.195775 0.148628i
\(946\) 0 0
\(947\) −15.5934 15.5934i −0.506718 0.506718i 0.406799 0.913518i \(-0.366645\pi\)
−0.913518 + 0.406799i \(0.866645\pi\)
\(948\) 0 0
\(949\) −2.79039 + 2.79039i −0.0905798 + 0.0905798i
\(950\) 0 0
\(951\) 18.1743 0.589342
\(952\) 0 0
\(953\) 36.0170i 1.16671i −0.812219 0.583353i \(-0.801741\pi\)
0.812219 0.583353i \(-0.198259\pi\)
\(954\) 0 0
\(955\) 14.0656 18.5273i 0.455151 0.599531i
\(956\) 0 0
\(957\) 41.2558 + 41.2558i 1.33361 + 1.33361i
\(958\) 0 0
\(959\) 12.8968 + 12.8968i 0.416460 + 0.416460i
\(960\) 0 0
\(961\) 26.2393i 0.846429i
\(962\) 0 0
\(963\) 8.77511 8.77511i 0.282774 0.282774i
\(964\) 0 0
\(965\) −5.08763 37.1646i −0.163777 1.19637i
\(966\) 0 0
\(967\) 19.0087 0.611279 0.305639 0.952147i \(-0.401130\pi\)
0.305639 + 0.952147i \(0.401130\pi\)
\(968\) 0 0
\(969\) −18.6856 + 5.31989i −0.600268 + 0.170900i
\(970\) 0 0
\(971\) 0.994297i 0.0319085i 0.999873 + 0.0159543i \(0.00507861\pi\)
−0.999873 + 0.0159543i \(0.994921\pi\)
\(972\) 0 0
\(973\) 25.7764i 0.826354i
\(974\) 0 0
\(975\) −12.2190 6.88785i −0.391321 0.220588i
\(976\) 0 0
\(977\) 23.6574 0.756868 0.378434 0.925628i \(-0.376463\pi\)
0.378434 + 0.925628i \(0.376463\pi\)
\(978\) 0 0
\(979\) 59.5484 + 59.5484i 1.90317 + 1.90317i
\(980\) 0 0
\(981\) 8.32449 8.32449i 0.265780 0.265780i
\(982\) 0 0
\(983\) −32.4392 32.4392i −1.03465 1.03465i −0.999378 0.0352715i \(-0.988770\pi\)
−0.0352715 0.999378i \(-0.511230\pi\)
\(984\) 0 0
\(985\) 6.22668 + 45.4852i 0.198399 + 1.44928i
\(986\) 0 0
\(987\) 35.4462i 1.12827i
\(988\) 0 0
\(989\) 14.4015 14.4015i 0.457941 0.457941i
\(990\) 0 0
\(991\) −36.2049 + 36.2049i −1.15009 + 1.15009i −0.163552 + 0.986535i \(0.552295\pi\)
−0.986535 + 0.163552i \(0.947705\pi\)
\(992\) 0 0
\(993\) −10.2817 + 10.2817i −0.326280 + 0.326280i
\(994\) 0 0
\(995\) 4.79050 + 34.9941i 0.151869 + 1.10939i
\(996\) 0 0
\(997\) −9.20588 + 9.20588i −0.291553 + 0.291553i −0.837694 0.546140i \(-0.816097\pi\)
0.546140 + 0.837694i \(0.316097\pi\)
\(998\) 0 0
\(999\) −6.04371 −0.191215
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1020.2.y.a.769.3 40
3.2 odd 2 3060.2.z.g.2809.15 40
5.4 even 2 inner 1020.2.y.a.769.18 yes 40
15.14 odd 2 3060.2.z.g.2809.17 40
17.13 even 4 inner 1020.2.y.a.829.18 yes 40
51.47 odd 4 3060.2.z.g.829.17 40
85.64 even 4 inner 1020.2.y.a.829.3 yes 40
255.149 odd 4 3060.2.z.g.829.15 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.y.a.769.3 40 1.1 even 1 trivial
1020.2.y.a.769.18 yes 40 5.4 even 2 inner
1020.2.y.a.829.3 yes 40 85.64 even 4 inner
1020.2.y.a.829.18 yes 40 17.13 even 4 inner
3060.2.z.g.829.15 40 255.149 odd 4
3060.2.z.g.829.17 40 51.47 odd 4
3060.2.z.g.2809.15 40 3.2 odd 2
3060.2.z.g.2809.17 40 15.14 odd 2