Properties

Label 3060.2.z.g.829.13
Level $3060$
Weight $2$
Character 3060.829
Analytic conductor $24.434$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(829,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.13
Character \(\chi\) \(=\) 3060.829
Dual form 3060.2.z.g.2809.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.880193 + 2.05554i) q^{5} +(-1.19618 - 1.19618i) q^{7} +(-0.103233 + 0.103233i) q^{11} +0.176789i q^{13} +(-4.11792 + 0.206669i) q^{17} -1.74915i q^{19} +(1.53429 + 1.53429i) q^{23} +(-3.45052 + 3.61855i) q^{25} +(6.66831 + 6.66831i) q^{29} +(-5.47293 - 5.47293i) q^{31} +(1.40593 - 3.51166i) q^{35} +(-5.73720 + 5.73720i) q^{37} +(-0.296143 + 0.296143i) q^{41} -4.71656 q^{43} -6.04051i q^{47} -4.13832i q^{49} -7.52346 q^{53} +(-0.303064 - 0.121335i) q^{55} +12.8952i q^{59} +(-6.00478 + 6.00478i) q^{61} +(-0.363397 + 0.155608i) q^{65} +11.1502i q^{67} +(2.57123 + 2.57123i) q^{71} +(-0.427746 + 0.427746i) q^{73} +0.246969 q^{77} +(2.74478 - 2.74478i) q^{79} -10.2946 q^{83} +(-4.04938 - 8.28266i) q^{85} -11.1039 q^{89} +(0.211470 - 0.211470i) q^{91} +(3.59546 - 1.53959i) q^{95} +(9.87044 - 9.87044i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 4 q^{5} + 8 q^{11} - 24 q^{29} - 16 q^{31} - 8 q^{35} + 8 q^{41} + 28 q^{55} + 16 q^{61} - 56 q^{71} + 16 q^{79} - 40 q^{85} - 32 q^{89} + 64 q^{91} - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.880193 + 2.05554i 0.393634 + 0.919267i
\(6\) 0 0
\(7\) −1.19618 1.19618i −0.452112 0.452112i 0.443943 0.896055i \(-0.353579\pi\)
−0.896055 + 0.443943i \(0.853579\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.103233 + 0.103233i −0.0311259 + 0.0311259i −0.722498 0.691373i \(-0.757006\pi\)
0.691373 + 0.722498i \(0.257006\pi\)
\(12\) 0 0
\(13\) 0.176789i 0.0490323i 0.999699 + 0.0245162i \(0.00780452\pi\)
−0.999699 + 0.0245162i \(0.992195\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.11792 + 0.206669i −0.998743 + 0.0501245i
\(18\) 0 0
\(19\) 1.74915i 0.401283i −0.979665 0.200641i \(-0.935697\pi\)
0.979665 0.200641i \(-0.0643026\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.53429 + 1.53429i 0.319921 + 0.319921i 0.848737 0.528816i \(-0.177364\pi\)
−0.528816 + 0.848737i \(0.677364\pi\)
\(24\) 0 0
\(25\) −3.45052 + 3.61855i −0.690104 + 0.723710i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.66831 + 6.66831i 1.23827 + 1.23827i 0.960706 + 0.277568i \(0.0895283\pi\)
0.277568 + 0.960706i \(0.410472\pi\)
\(30\) 0 0
\(31\) −5.47293 5.47293i −0.982967 0.982967i 0.0168908 0.999857i \(-0.494623\pi\)
−0.999857 + 0.0168908i \(0.994623\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.40593 3.51166i 0.237645 0.593579i
\(36\) 0 0
\(37\) −5.73720 + 5.73720i −0.943189 + 0.943189i −0.998471 0.0552817i \(-0.982394\pi\)
0.0552817 + 0.998471i \(0.482394\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.296143 + 0.296143i −0.0462498 + 0.0462498i −0.729853 0.683604i \(-0.760412\pi\)
0.683604 + 0.729853i \(0.260412\pi\)
\(42\) 0 0
\(43\) −4.71656 −0.719269 −0.359634 0.933093i \(-0.617099\pi\)
−0.359634 + 0.933093i \(0.617099\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.04051i 0.881098i −0.897728 0.440549i \(-0.854784\pi\)
0.897728 0.440549i \(-0.145216\pi\)
\(48\) 0 0
\(49\) 4.13832i 0.591189i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.52346 −1.03343 −0.516713 0.856158i \(-0.672845\pi\)
−0.516713 + 0.856158i \(0.672845\pi\)
\(54\) 0 0
\(55\) −0.303064 0.121335i −0.0408652 0.0163608i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.8952i 1.67881i 0.543504 + 0.839407i \(0.317097\pi\)
−0.543504 + 0.839407i \(0.682903\pi\)
\(60\) 0 0
\(61\) −6.00478 + 6.00478i −0.768834 + 0.768834i −0.977901 0.209067i \(-0.932957\pi\)
0.209067 + 0.977901i \(0.432957\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.363397 + 0.155608i −0.0450738 + 0.0193008i
\(66\) 0 0
\(67\) 11.1502i 1.36221i 0.732185 + 0.681106i \(0.238501\pi\)
−0.732185 + 0.681106i \(0.761499\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.57123 + 2.57123i 0.305149 + 0.305149i 0.843024 0.537875i \(-0.180773\pi\)
−0.537875 + 0.843024i \(0.680773\pi\)
\(72\) 0 0
\(73\) −0.427746 + 0.427746i −0.0500638 + 0.0500638i −0.731695 0.681632i \(-0.761271\pi\)
0.681632 + 0.731695i \(0.261271\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.246969 0.0281448
\(78\) 0 0
\(79\) 2.74478 2.74478i 0.308812 0.308812i −0.535637 0.844449i \(-0.679928\pi\)
0.844449 + 0.535637i \(0.179928\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.2946 −1.12997 −0.564987 0.825099i \(-0.691119\pi\)
−0.564987 + 0.825099i \(0.691119\pi\)
\(84\) 0 0
\(85\) −4.04938 8.28266i −0.439217 0.898381i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.1039 −1.17701 −0.588505 0.808494i \(-0.700283\pi\)
−0.588505 + 0.808494i \(0.700283\pi\)
\(90\) 0 0
\(91\) 0.211470 0.211470i 0.0221681 0.0221681i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.59546 1.53959i 0.368886 0.157959i
\(96\) 0 0
\(97\) 9.87044 9.87044i 1.00219 1.00219i 0.00219390 0.999998i \(-0.499302\pi\)
0.999998 0.00219390i \(-0.000698340\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.41755 −0.837578 −0.418789 0.908084i \(-0.637545\pi\)
−0.418789 + 0.908084i \(0.637545\pi\)
\(102\) 0 0
\(103\) 12.2496i 1.20699i −0.797367 0.603495i \(-0.793774\pi\)
0.797367 0.603495i \(-0.206226\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.29983 2.29983i 0.222333 0.222333i −0.587147 0.809480i \(-0.699749\pi\)
0.809480 + 0.587147i \(0.199749\pi\)
\(108\) 0 0
\(109\) 3.45370 3.45370i 0.330804 0.330804i −0.522088 0.852892i \(-0.674847\pi\)
0.852892 + 0.522088i \(0.174847\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.92805 8.92805i −0.839880 0.839880i 0.148963 0.988843i \(-0.452407\pi\)
−0.988843 + 0.148963i \(0.952407\pi\)
\(114\) 0 0
\(115\) −1.80333 + 4.50426i −0.168161 + 0.420024i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.17298 + 4.67855i 0.474206 + 0.428882i
\(120\) 0 0
\(121\) 10.9787i 0.998062i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.4752 3.90768i −0.936931 0.349514i
\(126\) 0 0
\(127\) 0.423483 0.0375780 0.0187890 0.999823i \(-0.494019\pi\)
0.0187890 + 0.999823i \(0.494019\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.199067 0.199067i −0.0173926 0.0173926i 0.698357 0.715750i \(-0.253915\pi\)
−0.715750 + 0.698357i \(0.753915\pi\)
\(132\) 0 0
\(133\) −2.09229 + 2.09229i −0.181425 + 0.181425i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.7514i 1.60204i 0.598636 + 0.801021i \(0.295710\pi\)
−0.598636 + 0.801021i \(0.704290\pi\)
\(138\) 0 0
\(139\) −11.2085 11.2085i −0.950696 0.950696i 0.0481445 0.998840i \(-0.484669\pi\)
−0.998840 + 0.0481445i \(0.984669\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.0182504 0.0182504i −0.00152617 0.00152617i
\(144\) 0 0
\(145\) −7.83761 + 19.5764i −0.650878 + 1.62573i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.1247 −0.911374 −0.455687 0.890140i \(-0.650606\pi\)
−0.455687 + 0.890140i \(0.650606\pi\)
\(150\) 0 0
\(151\) 8.37121i 0.681240i −0.940201 0.340620i \(-0.889363\pi\)
0.940201 0.340620i \(-0.110637\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.43261 16.0671i 0.516680 1.29054i
\(156\) 0 0
\(157\) 2.35837i 0.188218i −0.995562 0.0941092i \(-0.970000\pi\)
0.995562 0.0941092i \(-0.0300003\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.67055i 0.289280i
\(162\) 0 0
\(163\) −2.01291 2.01291i −0.157663 0.157663i 0.623867 0.781530i \(-0.285561\pi\)
−0.781530 + 0.623867i \(0.785561\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.69058 + 5.69058i −0.440351 + 0.440351i −0.892130 0.451779i \(-0.850789\pi\)
0.451779 + 0.892130i \(0.350789\pi\)
\(168\) 0 0
\(169\) 12.9687 0.997596
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.67771 + 8.67771i −0.659754 + 0.659754i −0.955322 0.295568i \(-0.904491\pi\)
0.295568 + 0.955322i \(0.404491\pi\)
\(174\) 0 0
\(175\) 8.45586 0.200990i 0.639203 0.0151934i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.01151i 0.524065i 0.965059 + 0.262032i \(0.0843927\pi\)
−0.965059 + 0.262032i \(0.915607\pi\)
\(180\) 0 0
\(181\) −7.00501 + 7.00501i −0.520678 + 0.520678i −0.917776 0.397098i \(-0.870017\pi\)
0.397098 + 0.917776i \(0.370017\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −16.8429 6.74322i −1.23831 0.495771i
\(186\) 0 0
\(187\) 0.403770 0.446440i 0.0295266 0.0326469i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.6361 0.841957 0.420979 0.907071i \(-0.361687\pi\)
0.420979 + 0.907071i \(0.361687\pi\)
\(192\) 0 0
\(193\) −4.30087 4.30087i −0.309584 0.309584i 0.535164 0.844748i \(-0.320250\pi\)
−0.844748 + 0.535164i \(0.820250\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.87864 9.87864i −0.703824 0.703824i 0.261405 0.965229i \(-0.415814\pi\)
−0.965229 + 0.261405i \(0.915814\pi\)
\(198\) 0 0
\(199\) −6.81270 6.81270i −0.482940 0.482940i 0.423130 0.906069i \(-0.360932\pi\)
−0.906069 + 0.423130i \(0.860932\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.9530i 1.11968i
\(204\) 0 0
\(205\) −0.869398 0.348072i −0.0607214 0.0243104i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.180570 + 0.180570i 0.0124903 + 0.0124903i
\(210\) 0 0
\(211\) −6.43332 + 6.43332i −0.442888 + 0.442888i −0.892981 0.450093i \(-0.851391\pi\)
0.450093 + 0.892981i \(0.351391\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.15148 9.69510i −0.283129 0.661200i
\(216\) 0 0
\(217\) 13.0932i 0.888823i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.0365367 0.728002i −0.00245772 0.0489707i
\(222\) 0 0
\(223\) 11.9249 0.798552 0.399276 0.916831i \(-0.369261\pi\)
0.399276 + 0.916831i \(0.369261\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.09203 + 5.09203i 0.337970 + 0.337970i 0.855603 0.517633i \(-0.173187\pi\)
−0.517633 + 0.855603i \(0.673187\pi\)
\(228\) 0 0
\(229\) 4.72050i 0.311939i 0.987762 + 0.155970i \(0.0498502\pi\)
−0.987762 + 0.155970i \(0.950150\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.8073 + 11.8073i −0.773522 + 0.773522i −0.978720 0.205199i \(-0.934216\pi\)
0.205199 + 0.978720i \(0.434216\pi\)
\(234\) 0 0
\(235\) 12.4165 5.31681i 0.809965 0.346830i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.2088 −0.789719 −0.394860 0.918741i \(-0.629207\pi\)
−0.394860 + 0.918741i \(0.629207\pi\)
\(240\) 0 0
\(241\) 19.8743 + 19.8743i 1.28022 + 1.28022i 0.940544 + 0.339672i \(0.110316\pi\)
0.339672 + 0.940544i \(0.389684\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.50650 3.64252i 0.543461 0.232712i
\(246\) 0 0
\(247\) 0.309230 0.0196758
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.5298 −0.917112 −0.458556 0.888666i \(-0.651633\pi\)
−0.458556 + 0.888666i \(0.651633\pi\)
\(252\) 0 0
\(253\) −0.316777 −0.0199156
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.4730 −1.27707 −0.638537 0.769591i \(-0.720460\pi\)
−0.638537 + 0.769591i \(0.720460\pi\)
\(258\) 0 0
\(259\) 13.7254 0.852855
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.3812 1.25676 0.628380 0.777907i \(-0.283718\pi\)
0.628380 + 0.777907i \(0.283718\pi\)
\(264\) 0 0
\(265\) −6.62209 15.4648i −0.406792 0.949995i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.8943 + 10.8943i 0.664237 + 0.664237i 0.956376 0.292139i \(-0.0943670\pi\)
−0.292139 + 0.956376i \(0.594367\pi\)
\(270\) 0 0
\(271\) 13.2692 0.806046 0.403023 0.915190i \(-0.367959\pi\)
0.403023 + 0.915190i \(0.367959\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.0173459 0.729760i −0.00104599 0.0440062i
\(276\) 0 0
\(277\) −5.10335 + 5.10335i −0.306630 + 0.306630i −0.843601 0.536971i \(-0.819569\pi\)
0.536971 + 0.843601i \(0.319569\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.6602i 1.70972i −0.518856 0.854862i \(-0.673642\pi\)
0.518856 0.854862i \(-0.326358\pi\)
\(282\) 0 0
\(283\) −10.9346 10.9346i −0.649994 0.649994i 0.302997 0.952991i \(-0.402013\pi\)
−0.952991 + 0.302997i \(0.902013\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.708479 0.0418202
\(288\) 0 0
\(289\) 16.9146 1.70209i 0.994975 0.100123i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.5786i 0.618007i −0.951061 0.309003i \(-0.900005\pi\)
0.951061 0.309003i \(-0.0999955\pi\)
\(294\) 0 0
\(295\) −26.5067 + 11.3503i −1.54328 + 0.660838i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.271244 + 0.271244i −0.0156865 + 0.0156865i
\(300\) 0 0
\(301\) 5.64184 + 5.64184i 0.325190 + 0.325190i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.6285 7.05773i −1.00940 0.404125i
\(306\) 0 0
\(307\) 33.2947i 1.90023i 0.311906 + 0.950113i \(0.399033\pi\)
−0.311906 + 0.950113i \(0.600967\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.15895 + 4.15895i 0.235832 + 0.235832i 0.815122 0.579290i \(-0.196670\pi\)
−0.579290 + 0.815122i \(0.696670\pi\)
\(312\) 0 0
\(313\) −6.04575 6.04575i −0.341726 0.341726i 0.515290 0.857016i \(-0.327684\pi\)
−0.857016 + 0.515290i \(0.827684\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.01519 3.01519i −0.169350 0.169350i 0.617344 0.786694i \(-0.288209\pi\)
−0.786694 + 0.617344i \(0.788209\pi\)
\(318\) 0 0
\(319\) −1.37678 −0.0770847
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.361495 + 7.20287i 0.0201141 + 0.400778i
\(324\) 0 0
\(325\) −0.639718 0.610013i −0.0354852 0.0338374i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.22551 + 7.22551i −0.398356 + 0.398356i
\(330\) 0 0
\(331\) 1.89956i 0.104409i −0.998636 0.0522046i \(-0.983375\pi\)
0.998636 0.0522046i \(-0.0166248\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −22.9197 + 9.81430i −1.25224 + 0.536213i
\(336\) 0 0
\(337\) 10.3241 10.3241i 0.562391 0.562391i −0.367595 0.929986i \(-0.619819\pi\)
0.929986 + 0.367595i \(0.119819\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.12997 0.0611914
\(342\) 0 0
\(343\) −13.3234 + 13.3234i −0.719396 + 0.719396i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.1896 + 22.1896i 1.19120 + 1.19120i 0.976730 + 0.214470i \(0.0688025\pi\)
0.214470 + 0.976730i \(0.431197\pi\)
\(348\) 0 0
\(349\) 6.27989i 0.336155i −0.985774 0.168077i \(-0.946244\pi\)
0.985774 0.168077i \(-0.0537558\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.89369i 0.313689i −0.987623 0.156845i \(-0.949868\pi\)
0.987623 0.156845i \(-0.0501322\pi\)
\(354\) 0 0
\(355\) −3.02210 + 7.54846i −0.160397 + 0.400631i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.5830i 0.664106i 0.943261 + 0.332053i \(0.107741\pi\)
−0.943261 + 0.332053i \(0.892259\pi\)
\(360\) 0 0
\(361\) 15.9405 0.838972
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.25575 0.502752i −0.0657289 0.0263152i
\(366\) 0 0
\(367\) 8.19212 + 8.19212i 0.427625 + 0.427625i 0.887819 0.460193i \(-0.152220\pi\)
−0.460193 + 0.887819i \(0.652220\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.99939 + 8.99939i 0.467225 + 0.467225i
\(372\) 0 0
\(373\) 24.2522i 1.25573i 0.778322 + 0.627865i \(0.216071\pi\)
−0.778322 + 0.627865i \(0.783929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.17888 + 1.17888i −0.0607155 + 0.0607155i
\(378\) 0 0
\(379\) 3.63829 + 3.63829i 0.186887 + 0.186887i 0.794349 0.607462i \(-0.207812\pi\)
−0.607462 + 0.794349i \(0.707812\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.1330 0.671064 0.335532 0.942029i \(-0.391084\pi\)
0.335532 + 0.942029i \(0.391084\pi\)
\(384\) 0 0
\(385\) 0.217381 + 0.507656i 0.0110787 + 0.0258726i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 23.3568i 1.18424i 0.805850 + 0.592120i \(0.201709\pi\)
−0.805850 + 0.592120i \(0.798291\pi\)
\(390\) 0 0
\(391\) −6.63516 6.00098i −0.335554 0.303483i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.05795 + 3.22608i 0.405439 + 0.162322i
\(396\) 0 0
\(397\) 16.9194 + 16.9194i 0.849159 + 0.849159i 0.990028 0.140869i \(-0.0449897\pi\)
−0.140869 + 0.990028i \(0.544990\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.79279 5.79279i 0.289278 0.289278i −0.547517 0.836795i \(-0.684427\pi\)
0.836795 + 0.547517i \(0.184427\pi\)
\(402\) 0 0
\(403\) 0.967551 0.967551i 0.0481971 0.0481971i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.18453i 0.0587151i
\(408\) 0 0
\(409\) −30.5267 −1.50945 −0.754725 0.656041i \(-0.772230\pi\)
−0.754725 + 0.656041i \(0.772230\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 15.4250 15.4250i 0.759012 0.759012i
\(414\) 0 0
\(415\) −9.06120 21.1609i −0.444797 1.03875i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.8969 21.8969i 1.06973 1.06973i 0.0723530 0.997379i \(-0.476949\pi\)
0.997379 0.0723530i \(-0.0230508\pi\)
\(420\) 0 0
\(421\) −34.2282 −1.66818 −0.834089 0.551630i \(-0.814006\pi\)
−0.834089 + 0.551630i \(0.814006\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.4611 15.6140i 0.652961 0.757391i
\(426\) 0 0
\(427\) 14.3656 0.695199
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.8061 + 20.8061i −1.00219 + 1.00219i −0.00219615 + 0.999998i \(0.500699\pi\)
−0.999998 + 0.00219615i \(0.999301\pi\)
\(432\) 0 0
\(433\) −3.84853 −0.184949 −0.0924744 0.995715i \(-0.529478\pi\)
−0.0924744 + 0.995715i \(0.529478\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.68370 2.68370i 0.128379 0.128379i
\(438\) 0 0
\(439\) −22.1944 22.1944i −1.05928 1.05928i −0.998128 0.0611539i \(-0.980522\pi\)
−0.0611539 0.998128i \(-0.519478\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.8469i 0.610375i 0.952292 + 0.305187i \(0.0987191\pi\)
−0.952292 + 0.305187i \(0.901281\pi\)
\(444\) 0 0
\(445\) −9.77356 22.8245i −0.463311 1.08199i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.27581 + 5.27581i −0.248981 + 0.248981i −0.820552 0.571571i \(-0.806334\pi\)
0.571571 + 0.820552i \(0.306334\pi\)
\(450\) 0 0
\(451\) 0.0611434i 0.00287913i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.620821 + 0.248552i 0.0291046 + 0.0116523i
\(456\) 0 0
\(457\) 13.4961 0.631321 0.315660 0.948872i \(-0.397774\pi\)
0.315660 + 0.948872i \(0.397774\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.36859i 0.389764i 0.980827 + 0.194882i \(0.0624324\pi\)
−0.980827 + 0.194882i \(0.937568\pi\)
\(462\) 0 0
\(463\) 25.2792i 1.17483i −0.809287 0.587413i \(-0.800146\pi\)
0.809287 0.587413i \(-0.199854\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.3353 1.68140 0.840698 0.541505i \(-0.182145\pi\)
0.840698 + 0.541505i \(0.182145\pi\)
\(468\) 0 0
\(469\) 13.3376 13.3376i 0.615873 0.615873i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.486904 0.486904i 0.0223879 0.0223879i
\(474\) 0 0
\(475\) 6.32939 + 6.03548i 0.290412 + 0.276927i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.44239 9.44239i −0.431434 0.431434i 0.457682 0.889116i \(-0.348680\pi\)
−0.889116 + 0.457682i \(0.848680\pi\)
\(480\) 0 0
\(481\) −1.01427 1.01427i −0.0462468 0.0462468i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.9770 + 11.6012i 1.31578 + 0.526785i
\(486\) 0 0
\(487\) 25.9251 + 25.9251i 1.17478 + 1.17478i 0.981056 + 0.193722i \(0.0620560\pi\)
0.193722 + 0.981056i \(0.437944\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.0838i 0.500206i −0.968219 0.250103i \(-0.919536\pi\)
0.968219 0.250103i \(-0.0804644\pi\)
\(492\) 0 0
\(493\) −28.8377 26.0814i −1.29879 1.17465i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.15130i 0.275923i
\(498\) 0 0
\(499\) 6.42411 6.42411i 0.287583 0.287583i −0.548541 0.836124i \(-0.684817\pi\)
0.836124 + 0.548541i \(0.184817\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.6348 20.6348i −0.920060 0.920060i 0.0769732 0.997033i \(-0.475474\pi\)
−0.997033 + 0.0769732i \(0.975474\pi\)
\(504\) 0 0
\(505\) −7.40907 17.3027i −0.329699 0.769958i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.15274 0.139743 0.0698714 0.997556i \(-0.477741\pi\)
0.0698714 + 0.997556i \(0.477741\pi\)
\(510\) 0 0
\(511\) 1.02332 0.0452690
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25.1796 10.7820i 1.10955 0.475112i
\(516\) 0 0
\(517\) 0.623578 + 0.623578i 0.0274249 + 0.0274249i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.5124 17.5124i 0.767231 0.767231i −0.210387 0.977618i \(-0.567472\pi\)
0.977618 + 0.210387i \(0.0674724\pi\)
\(522\) 0 0
\(523\) 26.1056i 1.14152i 0.821117 + 0.570760i \(0.193351\pi\)
−0.821117 + 0.570760i \(0.806649\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 23.6682 + 21.4060i 1.03100 + 0.932460i
\(528\) 0 0
\(529\) 18.2919i 0.795301i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.0523547 0.0523547i −0.00226773 0.00226773i
\(534\) 0 0
\(535\) 6.75169 + 2.70311i 0.291901 + 0.116866i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.427211 + 0.427211i 0.0184013 + 0.0184013i
\(540\) 0 0
\(541\) −13.6036 13.6036i −0.584862 0.584862i 0.351373 0.936236i \(-0.385715\pi\)
−0.936236 + 0.351373i \(0.885715\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.1391 + 4.05931i 0.434313 + 0.173882i
\(546\) 0 0
\(547\) 9.31869 9.31869i 0.398439 0.398439i −0.479243 0.877682i \(-0.659089\pi\)
0.877682 + 0.479243i \(0.159089\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.6639 11.6639i 0.496898 0.496898i
\(552\) 0 0
\(553\) −6.56648 −0.279235
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.1155i 1.91161i 0.294009 + 0.955803i \(0.405010\pi\)
−0.294009 + 0.955803i \(0.594990\pi\)
\(558\) 0 0
\(559\) 0.833834i 0.0352674i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.89079 0.206122 0.103061 0.994675i \(-0.467136\pi\)
0.103061 + 0.994675i \(0.467136\pi\)
\(564\) 0 0
\(565\) 10.4936 26.2104i 0.441469 1.10268i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0025i 0.628939i 0.949268 + 0.314469i \(0.101827\pi\)
−0.949268 + 0.314469i \(0.898173\pi\)
\(570\) 0 0
\(571\) 26.1952 26.1952i 1.09623 1.09623i 0.101387 0.994847i \(-0.467672\pi\)
0.994847 0.101387i \(-0.0323279\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −10.8460 + 0.257801i −0.452308 + 0.0107510i
\(576\) 0 0
\(577\) 29.9615i 1.24731i 0.781698 + 0.623657i \(0.214354\pi\)
−0.781698 + 0.623657i \(0.785646\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.3141 + 12.3141i 0.510876 + 0.510876i
\(582\) 0 0
\(583\) 0.776668 0.776668i 0.0321663 0.0321663i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.2420 1.61969 0.809846 0.586642i \(-0.199551\pi\)
0.809846 + 0.586642i \(0.199551\pi\)
\(588\) 0 0
\(589\) −9.57297 + 9.57297i −0.394448 + 0.394448i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.78605 0.319735 0.159867 0.987138i \(-0.448893\pi\)
0.159867 + 0.987138i \(0.448893\pi\)
\(594\) 0 0
\(595\) −5.06375 + 14.7513i −0.207594 + 0.604745i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.5486 0.471862 0.235931 0.971770i \(-0.424186\pi\)
0.235931 + 0.971770i \(0.424186\pi\)
\(600\) 0 0
\(601\) −2.93848 + 2.93848i −0.119863 + 0.119863i −0.764494 0.644631i \(-0.777011\pi\)
0.644631 + 0.764494i \(0.277011\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.5672 + 9.66336i −0.917486 + 0.392871i
\(606\) 0 0
\(607\) 17.4679 17.4679i 0.709000 0.709000i −0.257325 0.966325i \(-0.582841\pi\)
0.966325 + 0.257325i \(0.0828410\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.06789 0.0432023
\(612\) 0 0
\(613\) 13.8618i 0.559875i −0.960018 0.279937i \(-0.909686\pi\)
0.960018 0.279937i \(-0.0903137\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.2659 17.2659i 0.695098 0.695098i −0.268251 0.963349i \(-0.586446\pi\)
0.963349 + 0.268251i \(0.0864457\pi\)
\(618\) 0 0
\(619\) −0.532233 + 0.532233i −0.0213923 + 0.0213923i −0.717722 0.696330i \(-0.754815\pi\)
0.696330 + 0.717722i \(0.254815\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 13.2822 + 13.2822i 0.532141 + 0.532141i
\(624\) 0 0
\(625\) −1.18779 24.9718i −0.0475117 0.998871i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 22.4396 24.8110i 0.894727 0.989280i
\(630\) 0 0
\(631\) 14.1421i 0.562987i −0.959563 0.281493i \(-0.909170\pi\)
0.959563 0.281493i \(-0.0908297\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.372747 + 0.870488i 0.0147920 + 0.0345443i
\(636\) 0 0
\(637\) 0.731608 0.0289874
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.7475 10.7475i −0.424501 0.424501i 0.462249 0.886750i \(-0.347043\pi\)
−0.886750 + 0.462249i \(0.847043\pi\)
\(642\) 0 0
\(643\) 34.2913 34.2913i 1.35232 1.35232i 0.469256 0.883062i \(-0.344522\pi\)
0.883062 0.469256i \(-0.155478\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.6744i 0.970052i −0.874500 0.485026i \(-0.838810\pi\)
0.874500 0.485026i \(-0.161190\pi\)
\(648\) 0 0
\(649\) −1.33121 1.33121i −0.0522545 0.0522545i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.5203 + 20.5203i 0.803023 + 0.803023i 0.983567 0.180544i \(-0.0577857\pi\)
−0.180544 + 0.983567i \(0.557786\pi\)
\(654\) 0 0
\(655\) 0.233974 0.584409i 0.00914212 0.0228347i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.79365 −0.381507 −0.190753 0.981638i \(-0.561093\pi\)
−0.190753 + 0.981638i \(0.561093\pi\)
\(660\) 0 0
\(661\) 37.9631i 1.47659i −0.674477 0.738296i \(-0.735631\pi\)
0.674477 0.738296i \(-0.264369\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.14242 2.45918i −0.238193 0.0953629i
\(666\) 0 0
\(667\) 20.4622i 0.792299i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.23978i 0.0478612i
\(672\) 0 0
\(673\) 24.0348 + 24.0348i 0.926473 + 0.926473i 0.997476 0.0710032i \(-0.0226201\pi\)
−0.0710032 + 0.997476i \(0.522620\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.38222 + 5.38222i −0.206856 + 0.206856i −0.802930 0.596074i \(-0.796727\pi\)
0.596074 + 0.802930i \(0.296727\pi\)
\(678\) 0 0
\(679\) −23.6136 −0.906206
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.56311 4.56311i 0.174602 0.174602i −0.614396 0.788998i \(-0.710600\pi\)
0.788998 + 0.614396i \(0.210600\pi\)
\(684\) 0 0
\(685\) −38.5444 + 16.5049i −1.47270 + 0.630618i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.33006i 0.0506713i
\(690\) 0 0
\(691\) 15.4739 15.4739i 0.588654 0.588654i −0.348613 0.937267i \(-0.613347\pi\)
0.937267 + 0.348613i \(0.113347\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.1740 32.9053i 0.499717 1.24817i
\(696\) 0 0
\(697\) 1.15829 1.28070i 0.0438734 0.0485099i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.2466 0.878013 0.439007 0.898484i \(-0.355330\pi\)
0.439007 + 0.898484i \(0.355330\pi\)
\(702\) 0 0
\(703\) 10.0352 + 10.0352i 0.378486 + 0.378486i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10.0689 + 10.0689i 0.378679 + 0.378679i
\(708\) 0 0
\(709\) −4.35978 4.35978i −0.163735 0.163735i 0.620484 0.784219i \(-0.286936\pi\)
−0.784219 + 0.620484i \(0.786936\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.7941i 0.628943i
\(714\) 0 0
\(715\) 0.0214506 0.0535783i 0.000802207 0.00200372i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −34.6966 34.6966i −1.29396 1.29396i −0.932314 0.361649i \(-0.882214\pi\)
−0.361649 0.932314i \(-0.617786\pi\)
\(720\) 0 0
\(721\) −14.6527 + 14.6527i −0.545695 + 0.545695i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −47.1387 + 1.12045i −1.75069 + 0.0416126i
\(726\) 0 0
\(727\) 44.3742i 1.64575i 0.568224 + 0.822874i \(0.307631\pi\)
−0.568224 + 0.822874i \(0.692369\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 19.4224 0.974766i 0.718365 0.0360530i
\(732\) 0 0
\(733\) 41.2535 1.52373 0.761866 0.647735i \(-0.224284\pi\)
0.761866 + 0.647735i \(0.224284\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.15106 1.15106i −0.0424000 0.0424000i
\(738\) 0 0
\(739\) 47.9117i 1.76246i 0.472688 + 0.881230i \(0.343284\pi\)
−0.472688 + 0.881230i \(0.656716\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.1660 23.1660i 0.849880 0.849880i −0.140238 0.990118i \(-0.544787\pi\)
0.990118 + 0.140238i \(0.0447869\pi\)
\(744\) 0 0
\(745\) −9.79191 22.8674i −0.358748 0.837796i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.50201 −0.201039
\(750\) 0 0
\(751\) 1.19624 + 1.19624i 0.0436513 + 0.0436513i 0.728596 0.684944i \(-0.240173\pi\)
−0.684944 + 0.728596i \(0.740173\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17.2074 7.36828i 0.626241 0.268159i
\(756\) 0 0
\(757\) −35.9669 −1.30724 −0.653620 0.756823i \(-0.726750\pi\)
−0.653620 + 0.756823i \(0.726750\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31.3043 −1.13478 −0.567390 0.823449i \(-0.692047\pi\)
−0.567390 + 0.823449i \(0.692047\pi\)
\(762\) 0 0
\(763\) −8.26247 −0.299121
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.27973 −0.0823161
\(768\) 0 0
\(769\) 33.8570 1.22091 0.610457 0.792049i \(-0.290986\pi\)
0.610457 + 0.792049i \(0.290986\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.8896 0.391672 0.195836 0.980637i \(-0.437258\pi\)
0.195836 + 0.980637i \(0.437258\pi\)
\(774\) 0 0
\(775\) 38.6885 0.919597i 1.38973 0.0330329i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.517999 + 0.517999i 0.0185592 + 0.0185592i
\(780\) 0 0
\(781\) −0.530871 −0.0189961
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.84773 2.07582i 0.173023 0.0740891i
\(786\) 0 0
\(787\) 3.04641 3.04641i 0.108593 0.108593i −0.650723 0.759316i \(-0.725534\pi\)
0.759316 + 0.650723i \(0.225534\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21.3590i 0.759440i
\(792\) 0 0
\(793\) −1.06158 1.06158i −0.0376977 0.0376977i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.09190 −0.251208 −0.125604 0.992080i \(-0.540087\pi\)
−0.125604 + 0.992080i \(0.540087\pi\)
\(798\) 0 0
\(799\) 1.24838 + 24.8743i 0.0441646 + 0.879991i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.0883148i 0.00311656i
\(804\) 0 0
\(805\) 7.54499 3.23079i 0.265926 0.113871i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19.6646 19.6646i 0.691370 0.691370i −0.271163 0.962533i \(-0.587408\pi\)
0.962533 + 0.271163i \(0.0874083\pi\)
\(810\) 0 0
\(811\) 22.4158 + 22.4158i 0.787124 + 0.787124i 0.981022 0.193898i \(-0.0621129\pi\)
−0.193898 + 0.981022i \(0.562113\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.36587 5.90936i 0.0828729 0.206996i
\(816\) 0 0
\(817\) 8.24998i 0.288630i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.25498 + 3.25498i 0.113600 + 0.113600i 0.761622 0.648022i \(-0.224404\pi\)
−0.648022 + 0.761622i \(0.724404\pi\)
\(822\) 0 0
\(823\) −31.5835 31.5835i −1.10093 1.10093i −0.994299 0.106631i \(-0.965994\pi\)
−0.106631 0.994299i \(-0.534006\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.25340 + 9.25340i 0.321772 + 0.321772i 0.849447 0.527675i \(-0.176936\pi\)
−0.527675 + 0.849447i \(0.676936\pi\)
\(828\) 0 0
\(829\) −7.40453 −0.257170 −0.128585 0.991698i \(-0.541044\pi\)
−0.128585 + 0.991698i \(0.541044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.855262 + 17.0413i 0.0296331 + 0.590446i
\(834\) 0 0
\(835\) −16.7061 6.68844i −0.578137 0.231463i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22.7230 22.7230i 0.784486 0.784486i −0.196098 0.980584i \(-0.562827\pi\)
0.980584 + 0.196098i \(0.0628271\pi\)
\(840\) 0 0
\(841\) 59.9327i 2.06664i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.4150 + 26.6578i 0.392688 + 0.917057i
\(846\) 0 0
\(847\) 13.1325 13.1325i 0.451236 0.451236i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −17.6050 −0.603491
\(852\) 0 0
\(853\) 14.6526 14.6526i 0.501695 0.501695i −0.410269 0.911964i \(-0.634565\pi\)
0.911964 + 0.410269i \(0.134565\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.8195 + 27.8195i 0.950297 + 0.950297i 0.998822 0.0485252i \(-0.0154521\pi\)
−0.0485252 + 0.998822i \(0.515452\pi\)
\(858\) 0 0
\(859\) 26.7984i 0.914349i 0.889377 + 0.457175i \(0.151139\pi\)
−0.889377 + 0.457175i \(0.848861\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.8401i 0.505164i −0.967575 0.252582i \(-0.918720\pi\)
0.967575 0.252582i \(-0.0812798\pi\)
\(864\) 0 0
\(865\) −25.4755 10.1994i −0.866192 0.346789i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.566703i 0.0192241i
\(870\) 0 0
\(871\) −1.97122 −0.0667924
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7.85593 + 17.2045i 0.265579 + 0.581618i
\(876\) 0 0
\(877\) 4.22641 + 4.22641i 0.142716 + 0.142716i 0.774855 0.632139i \(-0.217823\pi\)
−0.632139 + 0.774855i \(0.717823\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.00976 7.00976i −0.236165 0.236165i 0.579095 0.815260i \(-0.303406\pi\)
−0.815260 + 0.579095i \(0.803406\pi\)
\(882\) 0 0
\(883\) 26.1862i 0.881237i 0.897695 + 0.440618i \(0.145241\pi\)
−0.897695 + 0.440618i \(0.854759\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −22.6947 + 22.6947i −0.762014 + 0.762014i −0.976686 0.214673i \(-0.931132\pi\)
0.214673 + 0.976686i \(0.431132\pi\)
\(888\) 0 0
\(889\) −0.506560 0.506560i −0.0169895 0.0169895i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.5658 −0.353570
\(894\) 0 0
\(895\) −14.4125 + 6.17148i −0.481756 + 0.206290i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 72.9903i 2.43436i
\(900\) 0 0
\(901\) 30.9810 1.55486i 1.03213 0.0518000i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −20.5649 8.23335i −0.683599 0.273686i
\(906\) 0 0
\(907\) 22.9163 + 22.9163i 0.760923 + 0.760923i 0.976489 0.215566i \(-0.0691597\pi\)
−0.215566 + 0.976489i \(0.569160\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −18.3002 + 18.3002i −0.606314 + 0.606314i −0.941981 0.335667i \(-0.891038\pi\)
0.335667 + 0.941981i \(0.391038\pi\)
\(912\) 0 0
\(913\) 1.06274 1.06274i 0.0351714 0.0351714i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.476239i 0.0157268i
\(918\) 0 0
\(919\) 42.7392 1.40984 0.704919 0.709288i \(-0.250983\pi\)
0.704919 + 0.709288i \(0.250983\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.454565 + 0.454565i −0.0149622 + 0.0149622i
\(924\) 0 0
\(925\) −0.964001 40.5566i −0.0316962 1.33349i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.0696 + 17.0696i −0.560034 + 0.560034i −0.929317 0.369283i \(-0.879603\pi\)
0.369283 + 0.929317i \(0.379603\pi\)
\(930\) 0 0
\(931\) −7.23855 −0.237234
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.27307 + 0.437014i 0.0416339 + 0.0142919i
\(936\) 0 0
\(937\) 41.9491 1.37042 0.685209 0.728347i \(-0.259711\pi\)
0.685209 + 0.728347i \(0.259711\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.99112 + 7.99112i −0.260503 + 0.260503i −0.825258 0.564755i \(-0.808971\pi\)
0.564755 + 0.825258i \(0.308971\pi\)
\(942\) 0 0
\(943\) −0.908736 −0.0295925
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.9449 + 11.9449i −0.388158 + 0.388158i −0.874030 0.485872i \(-0.838502\pi\)
0.485872 + 0.874030i \(0.338502\pi\)
\(948\) 0 0
\(949\) −0.0756206 0.0756206i −0.00245475 0.00245475i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 47.4871i 1.53826i 0.639093 + 0.769129i \(0.279310\pi\)
−0.639093 + 0.769129i \(0.720690\pi\)
\(954\) 0 0
\(955\) 10.2420 + 23.9185i 0.331423 + 0.773984i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.4300 22.4300i 0.724303 0.724303i
\(960\) 0 0
\(961\) 28.9058i 0.932446i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.05504 12.6262i 0.162727 0.406453i
\(966\) 0 0
\(967\) −0.157252 −0.00505688 −0.00252844 0.999997i \(-0.500805\pi\)
−0.00252844 + 0.999997i \(0.500805\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.70175i 0.182978i −0.995806 0.0914889i \(-0.970837\pi\)
0.995806 0.0914889i \(-0.0291626\pi\)
\(972\) 0 0
\(973\) 26.8148i 0.859643i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.92404 0.157534 0.0787671 0.996893i \(-0.474902\pi\)
0.0787671 + 0.996893i \(0.474902\pi\)
\(978\) 0 0
\(979\) 1.14629 1.14629i 0.0366355 0.0366355i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −32.3248 + 32.3248i −1.03100 + 1.03100i −0.0314964 + 0.999504i \(0.510027\pi\)
−0.999504 + 0.0314964i \(0.989973\pi\)
\(984\) 0 0
\(985\) 11.6109 29.0011i 0.369953 0.924051i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.23655 7.23655i −0.230109 0.230109i
\(990\) 0 0
\(991\) 9.09429 + 9.09429i 0.288890 + 0.288890i 0.836641 0.547752i \(-0.184516\pi\)
−0.547752 + 0.836641i \(0.684516\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.00732 20.0003i 0.253849 0.634052i
\(996\) 0 0
\(997\) 11.9136 + 11.9136i 0.377307 + 0.377307i 0.870130 0.492823i \(-0.164035\pi\)
−0.492823 + 0.870130i \(0.664035\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.z.g.829.13 40
3.2 odd 2 1020.2.y.a.829.13 yes 40
5.4 even 2 inner 3060.2.z.g.829.18 40
15.14 odd 2 1020.2.y.a.829.8 yes 40
17.4 even 4 inner 3060.2.z.g.2809.18 40
51.38 odd 4 1020.2.y.a.769.8 40
85.4 even 4 inner 3060.2.z.g.2809.13 40
255.89 odd 4 1020.2.y.a.769.13 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.y.a.769.8 40 51.38 odd 4
1020.2.y.a.769.13 yes 40 255.89 odd 4
1020.2.y.a.829.8 yes 40 15.14 odd 2
1020.2.y.a.829.13 yes 40 3.2 odd 2
3060.2.z.g.829.13 40 1.1 even 1 trivial
3060.2.z.g.829.18 40 5.4 even 2 inner
3060.2.z.g.2809.13 40 85.4 even 4 inner
3060.2.z.g.2809.18 40 17.4 even 4 inner