L(s) = 1 | + (0.880 + 2.05i)5-s + (−1.19 − 1.19i)7-s + (−0.103 + 0.103i)11-s + 0.176i·13-s + (−4.11 + 0.206i)17-s − 1.74i·19-s + (1.53 + 1.53i)23-s + (−3.45 + 3.61i)25-s + (6.66 + 6.66i)29-s + (−5.47 − 5.47i)31-s + (1.40 − 3.51i)35-s + (−5.73 + 5.73i)37-s + (−0.296 + 0.296i)41-s − 4.71·43-s − 6.04i·47-s + ⋯ |
L(s) = 1 | + (0.393 + 0.919i)5-s + (−0.452 − 0.452i)7-s + (−0.0311 + 0.0311i)11-s + 0.0490i·13-s + (−0.998 + 0.0501i)17-s − 0.401i·19-s + (0.319 + 0.319i)23-s + (−0.690 + 0.723i)25-s + (1.23 + 1.23i)29-s + (−0.982 − 0.982i)31-s + (0.237 − 0.593i)35-s + (−0.943 + 0.943i)37-s + (−0.0462 + 0.0462i)41-s − 0.719·43-s − 0.881i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.206i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.978 - 0.206i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5187428613\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5187428613\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.880 - 2.05i)T \) |
| 17 | \( 1 + (4.11 - 0.206i)T \) |
good | 7 | \( 1 + (1.19 + 1.19i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.103 - 0.103i)T - 11iT^{2} \) |
| 13 | \( 1 - 0.176iT - 13T^{2} \) |
| 19 | \( 1 + 1.74iT - 19T^{2} \) |
| 23 | \( 1 + (-1.53 - 1.53i)T + 23iT^{2} \) |
| 29 | \( 1 + (-6.66 - 6.66i)T + 29iT^{2} \) |
| 31 | \( 1 + (5.47 + 5.47i)T + 31iT^{2} \) |
| 37 | \( 1 + (5.73 - 5.73i)T - 37iT^{2} \) |
| 41 | \( 1 + (0.296 - 0.296i)T - 41iT^{2} \) |
| 43 | \( 1 + 4.71T + 43T^{2} \) |
| 47 | \( 1 + 6.04iT - 47T^{2} \) |
| 53 | \( 1 + 7.52T + 53T^{2} \) |
| 59 | \( 1 - 12.8iT - 59T^{2} \) |
| 61 | \( 1 + (6.00 - 6.00i)T - 61iT^{2} \) |
| 67 | \( 1 - 11.1iT - 67T^{2} \) |
| 71 | \( 1 + (-2.57 - 2.57i)T + 71iT^{2} \) |
| 73 | \( 1 + (0.427 - 0.427i)T - 73iT^{2} \) |
| 79 | \( 1 + (-2.74 + 2.74i)T - 79iT^{2} \) |
| 83 | \( 1 + 10.2T + 83T^{2} \) |
| 89 | \( 1 + 11.1T + 89T^{2} \) |
| 97 | \( 1 + (-9.87 + 9.87i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.041320320785186548301302830609, −8.421779332208781240696843605988, −7.14655869669163343939225640508, −7.00879820998326652820566554331, −6.17656952247140251804309419505, −5.29650874001894349410071097860, −4.33149872134385165611705789425, −3.38108453080053084699922290526, −2.66821843195266711941418055672, −1.55166004286287741725029555624,
0.15195490957721253396558921979, 1.57548742271961830777510159759, 2.51427665173662681674501965660, 3.59343779551508860338813917185, 4.62815574853594160655371914361, 5.19434390828227743431381524681, 6.16528600509789673110531142039, 6.62440385306263666279768387246, 7.78951286585120322772273020981, 8.456806236672871267409081818326