Properties

Label 3060.2.k.h.1189.7
Level $3060$
Weight $2$
Character 3060.1189
Analytic conductor $24.434$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1189,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4441101041664.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 8x^{6} + 38x^{4} + 200x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.7
Root \(-1.68014 - 1.47551i\) of defining polynomial
Character \(\chi\) \(=\) 3060.1189
Dual form 3060.2.k.h.1189.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.68014 - 1.47551i) q^{5} -2.76510 q^{7} -5.37934i q^{11} +4.95813i q^{13} +(-0.595188 + 4.07992i) q^{17} +5.29150 q^{19} +4.93500 q^{23} +(0.645751 - 4.95813i) q^{25} +2.42832i q^{31} +(-4.64575 + 4.07992i) q^{35} +5.53019 q^{37} +2.95102i q^{41} +3.20172i q^{43} -6.71453i q^{47} +0.645751 q^{49} -8.15984i q^{53} +(-7.93725 - 9.03805i) q^{55} +9.29150 q^{59} -13.7097i q^{61} +(7.31575 + 8.33035i) q^{65} -6.71453i q^{67} -11.2814i q^{71} +15.6110 q^{73} +14.8744i q^{77} -2.42832i q^{79} -14.8744i q^{83} +(5.01996 + 7.73305i) q^{85} -14.2288 q^{89} -13.7097i q^{91} +(8.89047 - 7.80766i) q^{95} -9.10132 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{25} - 16 q^{35} - 16 q^{49} + 32 q^{59} - 8 q^{85} - 8 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.68014 1.47551i 0.751382 0.659867i
\(6\) 0 0
\(7\) −2.76510 −1.04511 −0.522554 0.852606i \(-0.675021\pi\)
−0.522554 + 0.852606i \(0.675021\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.37934i 1.62193i −0.585094 0.810965i \(-0.698942\pi\)
0.585094 0.810965i \(-0.301058\pi\)
\(12\) 0 0
\(13\) 4.95813i 1.37514i 0.726120 + 0.687568i \(0.241322\pi\)
−0.726120 + 0.687568i \(0.758678\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.595188 + 4.07992i −0.144354 + 0.989526i
\(18\) 0 0
\(19\) 5.29150 1.21395 0.606977 0.794719i \(-0.292382\pi\)
0.606977 + 0.794719i \(0.292382\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.93500 1.02902 0.514510 0.857485i \(-0.327974\pi\)
0.514510 + 0.857485i \(0.327974\pi\)
\(24\) 0 0
\(25\) 0.645751 4.95813i 0.129150 0.991625i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 2.42832i 0.436139i 0.975933 + 0.218070i \(0.0699760\pi\)
−0.975933 + 0.218070i \(0.930024\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.64575 + 4.07992i −0.785275 + 0.689632i
\(36\) 0 0
\(37\) 5.53019 0.909158 0.454579 0.890707i \(-0.349790\pi\)
0.454579 + 0.890707i \(0.349790\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.95102i 0.460871i 0.973088 + 0.230436i \(0.0740151\pi\)
−0.973088 + 0.230436i \(0.925985\pi\)
\(42\) 0 0
\(43\) 3.20172i 0.488257i 0.969743 + 0.244129i \(0.0785019\pi\)
−0.969743 + 0.244129i \(0.921498\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.71453i 0.979416i −0.871887 0.489708i \(-0.837103\pi\)
0.871887 0.489708i \(-0.162897\pi\)
\(48\) 0 0
\(49\) 0.645751 0.0922502
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.15984i 1.12084i −0.828208 0.560420i \(-0.810640\pi\)
0.828208 0.560420i \(-0.189360\pi\)
\(54\) 0 0
\(55\) −7.93725 9.03805i −1.07026 1.21869i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.29150 1.20965 0.604825 0.796358i \(-0.293243\pi\)
0.604825 + 0.796358i \(0.293243\pi\)
\(60\) 0 0
\(61\) 13.7097i 1.75535i −0.479260 0.877673i \(-0.659095\pi\)
0.479260 0.877673i \(-0.340905\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.31575 + 8.33035i 0.907408 + 1.03325i
\(66\) 0 0
\(67\) 6.71453i 0.820311i −0.912016 0.410155i \(-0.865474\pi\)
0.912016 0.410155i \(-0.134526\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.2814i 1.33885i −0.742879 0.669426i \(-0.766540\pi\)
0.742879 0.669426i \(-0.233460\pi\)
\(72\) 0 0
\(73\) 15.6110 1.82713 0.913567 0.406688i \(-0.133316\pi\)
0.913567 + 0.406688i \(0.133316\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.8744i 1.69509i
\(78\) 0 0
\(79\) 2.42832i 0.273207i −0.990626 0.136604i \(-0.956381\pi\)
0.990626 0.136604i \(-0.0436187\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.8744i 1.63267i −0.577575 0.816337i \(-0.696001\pi\)
0.577575 0.816337i \(-0.303999\pi\)
\(84\) 0 0
\(85\) 5.01996 + 7.73305i 0.544491 + 0.838767i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.2288 −1.50825 −0.754123 0.656734i \(-0.771938\pi\)
−0.754123 + 0.656734i \(0.771938\pi\)
\(90\) 0 0
\(91\) 13.7097i 1.43717i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.89047 7.80766i 0.912143 0.801049i
\(96\) 0 0
\(97\) −9.10132 −0.924099 −0.462049 0.886854i \(-0.652886\pi\)
−0.462049 + 0.886854i \(0.652886\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.35425 0.433264 0.216632 0.976253i \(-0.430493\pi\)
0.216632 + 0.976253i \(0.430493\pi\)
\(102\) 0 0
\(103\) 4.95813i 0.488539i 0.969707 + 0.244269i \(0.0785481\pi\)
−0.969707 + 0.244269i \(0.921452\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.69651 −0.937397 −0.468698 0.883358i \(-0.655277\pi\)
−0.468698 + 0.883358i \(0.655277\pi\)
\(108\) 0 0
\(109\) 8.85305i 0.847968i −0.905670 0.423984i \(-0.860631\pi\)
0.905670 0.423984i \(-0.139369\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.74103 −0.540071 −0.270036 0.962850i \(-0.587035\pi\)
−0.270036 + 0.962850i \(0.587035\pi\)
\(114\) 0 0
\(115\) 8.29150 7.28164i 0.773187 0.679016i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.64575 11.2814i 0.150866 1.03416i
\(120\) 0 0
\(121\) −17.9373 −1.63066
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.23080 9.28316i −0.557300 0.830311i
\(126\) 0 0
\(127\) 13.1180i 1.16403i 0.813178 + 0.582016i \(0.197736\pi\)
−0.813178 + 0.582016i \(0.802264\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.33035i 0.727826i −0.931433 0.363913i \(-0.881441\pi\)
0.931433 0.363913i \(-0.118559\pi\)
\(132\) 0 0
\(133\) −14.6315 −1.26871
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.44531i 0.123481i 0.998092 + 0.0617404i \(0.0196651\pi\)
−0.998092 + 0.0617404i \(0.980335\pi\)
\(138\) 0 0
\(139\) 6.42473i 0.544938i 0.962164 + 0.272469i \(0.0878403\pi\)
−0.962164 + 0.272469i \(0.912160\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 26.6714 2.23038
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.58301 0.539301 0.269650 0.962958i \(-0.413092\pi\)
0.269650 + 0.962958i \(0.413092\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.58301 + 4.07992i 0.287794 + 0.327707i
\(156\) 0 0
\(157\) 11.6727i 0.931580i 0.884895 + 0.465790i \(0.154230\pi\)
−0.884895 + 0.465790i \(0.845770\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −13.6458 −1.07544
\(162\) 0 0
\(163\) 13.8255 1.08289 0.541447 0.840735i \(-0.317877\pi\)
0.541447 + 0.840735i \(0.317877\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.9749 1.31356 0.656779 0.754083i \(-0.271918\pi\)
0.656779 + 0.754083i \(0.271918\pi\)
\(168\) 0 0
\(169\) −11.5830 −0.891000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.38075 −0.181005 −0.0905026 0.995896i \(-0.528847\pi\)
−0.0905026 + 0.995896i \(0.528847\pi\)
\(174\) 0 0
\(175\) −1.78556 + 13.7097i −0.134976 + 1.03635i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.29150 −0.246018 −0.123009 0.992406i \(-0.539254\pi\)
−0.123009 + 0.992406i \(0.539254\pi\)
\(180\) 0 0
\(181\) 22.5627i 1.67708i 0.544844 + 0.838538i \(0.316589\pi\)
−0.544844 + 0.838538i \(0.683411\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.29150 8.15984i 0.683125 0.599923i
\(186\) 0 0
\(187\) 21.9473 + 3.20172i 1.60494 + 0.234133i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 0 0
\(193\) −12.0399 −0.866652 −0.433326 0.901237i \(-0.642660\pi\)
−0.433326 + 0.901237i \(0.642660\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.3521 1.52127 0.760636 0.649178i \(-0.224887\pi\)
0.760636 + 0.649178i \(0.224887\pi\)
\(198\) 0 0
\(199\) 2.42832i 0.172139i −0.996289 0.0860695i \(-0.972569\pi\)
0.996289 0.0860695i \(-0.0274307\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.35425 + 4.95813i 0.304114 + 0.346290i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 28.4648i 1.96895i
\(210\) 0 0
\(211\) 20.1344i 1.38611i −0.720884 0.693055i \(-0.756264\pi\)
0.720884 0.693055i \(-0.243736\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.72416 + 5.37934i 0.322185 + 0.366868i
\(216\) 0 0
\(217\) 6.71453i 0.455812i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −20.2288 2.95102i −1.36073 0.198507i
\(222\) 0 0
\(223\) 21.2778i 1.42487i −0.701739 0.712434i \(-0.747593\pi\)
0.701739 0.712434i \(-0.252407\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.7774 1.31267 0.656335 0.754470i \(-0.272106\pi\)
0.656335 + 0.754470i \(0.272106\pi\)
\(228\) 0 0
\(229\) 3.64575 0.240918 0.120459 0.992718i \(-0.461563\pi\)
0.120459 + 0.992718i \(0.461563\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.2508 −0.802574 −0.401287 0.915952i \(-0.631437\pi\)
−0.401287 + 0.915952i \(0.631437\pi\)
\(234\) 0 0
\(235\) −9.90735 11.2814i −0.646284 0.735915i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.87451 −0.638729 −0.319364 0.947632i \(-0.603469\pi\)
−0.319364 + 0.947632i \(0.603469\pi\)
\(240\) 0 0
\(241\) 13.7097i 0.883119i 0.897232 + 0.441559i \(0.145575\pi\)
−0.897232 + 0.441559i \(0.854425\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.08495 0.952811i 0.0693151 0.0608729i
\(246\) 0 0
\(247\) 26.2359i 1.66935i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.1660 1.20975 0.604874 0.796321i \(-0.293223\pi\)
0.604874 + 0.796321i \(0.293223\pi\)
\(252\) 0 0
\(253\) 26.5470i 1.66900i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.8744i 0.927838i 0.885878 + 0.463919i \(0.153557\pi\)
−0.885878 + 0.463919i \(0.846443\pi\)
\(258\) 0 0
\(259\) −15.2915 −0.950168
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.60515i 0.592279i 0.955145 + 0.296139i \(0.0956993\pi\)
−0.955145 + 0.296139i \(0.904301\pi\)
\(264\) 0 0
\(265\) −12.0399 13.7097i −0.739606 0.842179i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.7551i 0.899633i 0.893121 + 0.449817i \(0.148511\pi\)
−0.893121 + 0.449817i \(0.851489\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −26.6714 3.47371i −1.60835 0.209473i
\(276\) 0 0
\(277\) 17.2231 1.03484 0.517418 0.855733i \(-0.326893\pi\)
0.517418 + 0.855733i \(0.326893\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.1660 0.785418 0.392709 0.919663i \(-0.371538\pi\)
0.392709 + 0.919663i \(0.371538\pi\)
\(282\) 0 0
\(283\) 8.29529 0.493104 0.246552 0.969130i \(-0.420702\pi\)
0.246552 + 0.969130i \(0.420702\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.15984i 0.481660i
\(288\) 0 0
\(289\) −16.2915 4.85664i −0.958324 0.285685i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.4291i 0.784535i −0.919851 0.392267i \(-0.871691\pi\)
0.919851 0.392267i \(-0.128309\pi\)
\(294\) 0 0
\(295\) 15.6110 13.7097i 0.908910 0.798209i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 24.4684i 1.41504i
\(300\) 0 0
\(301\) 8.85305i 0.510281i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.2288 23.0342i −1.15830 1.31894i
\(306\) 0 0
\(307\) 17.7650i 1.01390i 0.861975 + 0.506951i \(0.169227\pi\)
−0.861975 + 0.506951i \(0.830773\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.2814i 0.639708i −0.947467 0.319854i \(-0.896366\pi\)
0.947467 0.319854i \(-0.103634\pi\)
\(312\) 0 0
\(313\) −22.7533 −1.28609 −0.643046 0.765827i \(-0.722330\pi\)
−0.643046 + 0.765827i \(0.722330\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.1894 −0.853119 −0.426559 0.904460i \(-0.640275\pi\)
−0.426559 + 0.904460i \(0.640275\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.14944 + 21.5889i −0.175239 + 1.20124i
\(324\) 0 0
\(325\) 24.5830 + 3.20172i 1.36362 + 0.177599i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.5663i 1.02359i
\(330\) 0 0
\(331\) 29.2915 1.61001 0.805003 0.593270i \(-0.202163\pi\)
0.805003 + 0.593270i \(0.202163\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.90735 11.2814i −0.541296 0.616367i
\(336\) 0 0
\(337\) 1.61206 0.0878148 0.0439074 0.999036i \(-0.486019\pi\)
0.0439074 + 0.999036i \(0.486019\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.0627 0.707387
\(342\) 0 0
\(343\) 17.5701 0.948696
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.0159 −0.806093 −0.403047 0.915179i \(-0.632049\pi\)
−0.403047 + 0.915179i \(0.632049\pi\)
\(348\) 0 0
\(349\) 13.8745 0.742685 0.371343 0.928496i \(-0.378898\pi\)
0.371343 + 0.928496i \(0.378898\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.4291i 0.714757i 0.933960 + 0.357379i \(0.116329\pi\)
−0.933960 + 0.357379i \(0.883671\pi\)
\(354\) 0 0
\(355\) −16.6458 18.9543i −0.883465 1.00599i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.12549 −0.112179 −0.0560896 0.998426i \(-0.517863\pi\)
−0.0560896 + 0.998426i \(0.517863\pi\)
\(360\) 0 0
\(361\) 9.00000 0.473684
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.2288 23.0342i 1.37288 1.20567i
\(366\) 0 0
\(367\) −2.76510 −0.144337 −0.0721684 0.997392i \(-0.522992\pi\)
−0.0721684 + 0.997392i \(0.522992\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 22.5627i 1.17140i
\(372\) 0 0
\(373\) 17.7650i 0.919836i −0.887961 0.459918i \(-0.847879\pi\)
0.887961 0.459918i \(-0.152121\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 29.8477i 1.53317i −0.642141 0.766587i \(-0.721954\pi\)
0.642141 0.766587i \(-0.278046\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31.1941i 1.59394i 0.604018 + 0.796971i \(0.293566\pi\)
−0.604018 + 0.796971i \(0.706434\pi\)
\(384\) 0 0
\(385\) 21.9473 + 24.9911i 1.11854 + 1.27366i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.6458 1.30029 0.650146 0.759810i \(-0.274708\pi\)
0.650146 + 0.759810i \(0.274708\pi\)
\(390\) 0 0
\(391\) −2.93725 + 20.1344i −0.148543 + 1.01824i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.58301 4.07992i −0.180281 0.205283i
\(396\) 0 0
\(397\) 2.93859 0.147484 0.0737419 0.997277i \(-0.476506\pi\)
0.0737419 + 0.997277i \(0.476506\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.04539i 0.0522045i 0.999659 + 0.0261022i \(0.00830954\pi\)
−0.999659 + 0.0261022i \(0.991690\pi\)
\(402\) 0 0
\(403\) −12.0399 −0.599751
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 29.7488i 1.47459i
\(408\) 0 0
\(409\) 28.5830 1.41334 0.706669 0.707544i \(-0.250197\pi\)
0.706669 + 0.707544i \(0.250197\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −25.6919 −1.26422
\(414\) 0 0
\(415\) −21.9473 24.9911i −1.07735 1.22676i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.28496i 0.355894i −0.984040 0.177947i \(-0.943055\pi\)
0.984040 0.177947i \(-0.0569455\pi\)
\(420\) 0 0
\(421\) 3.52026 0.171567 0.0857835 0.996314i \(-0.472661\pi\)
0.0857835 + 0.996314i \(0.472661\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 19.8444 + 5.58563i 0.962595 + 0.270943i
\(426\) 0 0
\(427\) 37.9086i 1.83453i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.28496i 0.350904i −0.984488 0.175452i \(-0.943861\pi\)
0.984488 0.175452i \(-0.0561387\pi\)
\(432\) 0 0
\(433\) 2.06751i 0.0993583i 0.998765 + 0.0496791i \(0.0158199\pi\)
−0.998765 + 0.0496791i \(0.984180\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.1136 1.24918
\(438\) 0 0
\(439\) 16.1380i 0.770225i 0.922870 + 0.385113i \(0.125837\pi\)
−0.922870 + 0.385113i \(0.874163\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.44531i 0.0686686i −0.999410 0.0343343i \(-0.989069\pi\)
0.999410 0.0343343i \(-0.0109311\pi\)
\(444\) 0 0
\(445\) −23.9063 + 20.9946i −1.13327 + 0.995242i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.5663i 0.876199i 0.898926 + 0.438100i \(0.144348\pi\)
−0.898926 + 0.438100i \(0.855652\pi\)
\(450\) 0 0
\(451\) 15.8745 0.747501
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −20.2288 23.0342i −0.948339 1.07986i
\(456\) 0 0
\(457\) 27.6812i 1.29487i 0.762119 + 0.647437i \(0.224159\pi\)
−0.762119 + 0.647437i \(0.775841\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.7085 0.964491 0.482245 0.876036i \(-0.339821\pi\)
0.482245 + 0.876036i \(0.339821\pi\)
\(462\) 0 0
\(463\) 31.1941i 1.44971i −0.688901 0.724855i \(-0.741907\pi\)
0.688901 0.724855i \(-0.258093\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.60515i 0.444473i 0.974993 + 0.222237i \(0.0713357\pi\)
−0.974993 + 0.222237i \(0.928664\pi\)
\(468\) 0 0
\(469\) 18.5663i 0.857313i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17.2231 0.791919
\(474\) 0 0
\(475\) 3.41699 26.2359i 0.156782 1.20379i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.7497i 1.63345i −0.577029 0.816723i \(-0.695788\pi\)
0.577029 0.816723i \(-0.304212\pi\)
\(480\) 0 0
\(481\) 27.4194i 1.25022i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.2915 + 13.4291i −0.694351 + 0.609783i
\(486\) 0 0
\(487\) −2.76510 −0.125298 −0.0626492 0.998036i \(-0.519955\pi\)
−0.0626492 + 0.998036i \(0.519955\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −21.8745 −0.987183 −0.493591 0.869694i \(-0.664316\pi\)
−0.493591 + 0.869694i \(0.664316\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 31.1941i 1.39924i
\(498\) 0 0
\(499\) 7.28496i 0.326120i 0.986616 + 0.163060i \(0.0521363\pi\)
−0.986616 + 0.163060i \(0.947864\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.6351 0.563371 0.281686 0.959507i \(-0.409106\pi\)
0.281686 + 0.959507i \(0.409106\pi\)
\(504\) 0 0
\(505\) 7.31575 6.42473i 0.325547 0.285897i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −34.4575 −1.52730 −0.763651 0.645629i \(-0.776595\pi\)
−0.763651 + 0.645629i \(0.776595\pi\)
\(510\) 0 0
\(511\) −43.1660 −1.90955
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.31575 + 8.33035i 0.322371 + 0.367079i
\(516\) 0 0
\(517\) −36.1197 −1.58854
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.3740i 1.15547i 0.816226 + 0.577733i \(0.196062\pi\)
−0.816226 + 0.577733i \(0.803938\pi\)
\(522\) 0 0
\(523\) 6.71453i 0.293606i 0.989166 + 0.146803i \(0.0468984\pi\)
−0.989166 + 0.146803i \(0.953102\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.90735 1.44531i −0.431571 0.0629585i
\(528\) 0 0
\(529\) 1.35425 0.0588804
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14.6315 −0.633761
\(534\) 0 0
\(535\) −16.2915 + 14.3073i −0.704343 + 0.618557i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.47371i 0.149623i
\(540\) 0 0
\(541\) 37.1327i 1.59646i −0.602354 0.798229i \(-0.705771\pi\)
0.602354 0.798229i \(-0.294229\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.0627 14.8744i −0.559547 0.637148i
\(546\) 0 0
\(547\) 10.8869 0.465489 0.232745 0.972538i \(-0.425229\pi\)
0.232745 + 0.972538i \(0.425229\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 6.71453i 0.285531i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.8744i 0.630248i 0.949051 + 0.315124i \(0.102046\pi\)
−0.949051 + 0.315124i \(0.897954\pi\)
\(558\) 0 0
\(559\) −15.8745 −0.671420
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.8744i 0.626880i −0.949608 0.313440i \(-0.898519\pi\)
0.949608 0.313440i \(-0.101481\pi\)
\(564\) 0 0
\(565\) −9.64575 + 8.47094i −0.405800 + 0.356375i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 47.5538i 1.99006i 0.0995540 + 0.995032i \(0.468258\pi\)
−0.0995540 + 0.995032i \(0.531742\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.18678 24.4684i 0.132898 1.02040i
\(576\) 0 0
\(577\) 11.3616i 0.472988i 0.971633 + 0.236494i \(0.0759983\pi\)
−0.971633 + 0.236494i \(0.924002\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 41.1291i 1.70632i
\(582\) 0 0
\(583\) −43.8945 −1.81793
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.8744i 0.613931i 0.951721 + 0.306966i \(0.0993137\pi\)
−0.951721 + 0.306966i \(0.900686\pi\)
\(588\) 0 0
\(589\) 12.8495i 0.529453i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.4795i 1.00525i −0.864504 0.502627i \(-0.832367\pi\)
0.864504 0.502627i \(-0.167633\pi\)
\(594\) 0 0
\(595\) −13.8807 21.3826i −0.569051 0.876602i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.5830 0.514128 0.257064 0.966394i \(-0.417245\pi\)
0.257064 + 0.966394i \(0.417245\pi\)
\(600\) 0 0
\(601\) 41.1291i 1.67769i 0.544371 + 0.838845i \(0.316768\pi\)
−0.544371 + 0.838845i \(0.683232\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −30.1371 + 26.4666i −1.22525 + 1.07602i
\(606\) 0 0
\(607\) 9.27482 0.376453 0.188227 0.982126i \(-0.439726\pi\)
0.188227 + 0.982126i \(0.439726\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 33.2915 1.34683
\(612\) 0 0
\(613\) 19.8325i 0.801027i −0.916291 0.400514i \(-0.868832\pi\)
0.916291 0.400514i \(-0.131168\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −47.6018 −1.91638 −0.958188 0.286138i \(-0.907628\pi\)
−0.958188 + 0.286138i \(0.907628\pi\)
\(618\) 0 0
\(619\) 25.8513i 1.03905i 0.854455 + 0.519525i \(0.173891\pi\)
−0.854455 + 0.519525i \(0.826109\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 39.3439 1.57628
\(624\) 0 0
\(625\) −24.1660 6.40343i −0.966640 0.256137i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.29150 + 22.5627i −0.131241 + 0.899635i
\(630\) 0 0
\(631\) −41.2915 −1.64379 −0.821894 0.569640i \(-0.807083\pi\)
−0.821894 + 0.569640i \(0.807083\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.3557 + 22.0400i 0.768106 + 0.874632i
\(636\) 0 0
\(637\) 3.20172i 0.126857i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.4684i 0.966442i 0.875498 + 0.483221i \(0.160533\pi\)
−0.875498 + 0.483221i \(0.839467\pi\)
\(642\) 0 0
\(643\) −7.66275 −0.302189 −0.151095 0.988519i \(-0.548280\pi\)
−0.151095 + 0.988519i \(0.548280\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.0342i 0.905568i 0.891620 + 0.452784i \(0.149569\pi\)
−0.891620 + 0.452784i \(0.850431\pi\)
\(648\) 0 0
\(649\) 49.9821i 1.96197i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −41.8608 −1.63814 −0.819069 0.573695i \(-0.805510\pi\)
−0.819069 + 0.573695i \(0.805510\pi\)
\(654\) 0 0
\(655\) −12.2915 13.9962i −0.480269 0.546876i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −28.4575 −1.10855 −0.554274 0.832334i \(-0.687004\pi\)
−0.554274 + 0.832334i \(0.687004\pi\)
\(660\) 0 0
\(661\) 45.1660 1.75675 0.878377 0.477968i \(-0.158627\pi\)
0.878377 + 0.477968i \(0.158627\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.5830 + 21.5889i −0.953288 + 0.837182i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −73.7490 −2.84705
\(672\) 0 0
\(673\) 0.979531 0.0377582 0.0188791 0.999822i \(-0.493990\pi\)
0.0188791 + 0.999822i \(0.493990\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.8618 −1.07082 −0.535408 0.844594i \(-0.679842\pi\)
−0.535408 + 0.844594i \(0.679842\pi\)
\(678\) 0 0
\(679\) 25.1660 0.965783
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −26.2871 −1.00585 −0.502924 0.864331i \(-0.667742\pi\)
−0.502924 + 0.864331i \(0.667742\pi\)
\(684\) 0 0
\(685\) 2.13256 + 2.42832i 0.0814810 + 0.0927813i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 40.4575 1.54131
\(690\) 0 0
\(691\) 16.1380i 0.613919i −0.951723 0.306959i \(-0.900688\pi\)
0.951723 0.306959i \(-0.0993116\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.47974 + 10.7945i 0.359587 + 0.409457i
\(696\) 0 0
\(697\) −12.0399 1.75641i −0.456044 0.0665287i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.06275 −0.266756 −0.133378 0.991065i \(-0.542582\pi\)
−0.133378 + 0.991065i \(0.542582\pi\)
\(702\) 0 0
\(703\) 29.2630 1.10368
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.0399 −0.452807
\(708\) 0 0
\(709\) 12.8495i 0.482572i −0.970454 0.241286i \(-0.922431\pi\)
0.970454 0.241286i \(-0.0775691\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11.9838i 0.448795i
\(714\) 0 0
\(715\) 44.8118 39.3539i 1.67586 1.47175i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 23.0854i 0.860941i 0.902605 + 0.430471i \(0.141652\pi\)
−0.902605 + 0.430471i \(0.858348\pi\)
\(720\) 0 0
\(721\) 13.7097i 0.510575i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 44.6231i 1.65498i 0.561480 + 0.827490i \(0.310232\pi\)
−0.561480 + 0.827490i \(0.689768\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.0627 1.90562i −0.483143 0.0704820i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36.1197 −1.33049
\(738\) 0 0
\(739\) −10.7085 −0.393918 −0.196959 0.980412i \(-0.563107\pi\)
−0.196959 + 0.980412i \(0.563107\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31.8173 −1.16726 −0.583631 0.812019i \(-0.698369\pi\)
−0.583631 + 0.812019i \(0.698369\pi\)
\(744\) 0 0
\(745\) 11.0604 9.71328i 0.405221 0.355867i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 26.8118 0.979680
\(750\) 0 0
\(751\) 6.42473i 0.234442i −0.993106 0.117221i \(-0.962601\pi\)
0.993106 0.117221i \(-0.0373985\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.8014 14.7551i 0.611466 0.536992i
\(756\) 0 0
\(757\) 24.1684i 0.878416i 0.898385 + 0.439208i \(0.144741\pi\)
−0.898385 + 0.439208i \(0.855259\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26.2288 0.950792 0.475396 0.879772i \(-0.342305\pi\)
0.475396 + 0.879772i \(0.342305\pi\)
\(762\) 0 0
\(763\) 24.4795i 0.886218i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 46.0684i 1.66343i
\(768\) 0 0
\(769\) −2.93725 −0.105920 −0.0529600 0.998597i \(-0.516866\pi\)
−0.0529600 + 0.998597i \(0.516866\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.44531i 0.0519841i −0.999662 0.0259920i \(-0.991726\pi\)
0.999662 0.0259920i \(-0.00827445\pi\)
\(774\) 0 0
\(775\) 12.0399 + 1.56809i 0.432486 + 0.0563275i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15.6153i 0.559477i
\(780\) 0 0
\(781\) −60.6863 −2.17153
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.2231 + 19.6117i 0.614719 + 0.699972i
\(786\) 0 0
\(787\) −50.5777 −1.80290 −0.901451 0.432881i \(-0.857497\pi\)
−0.901451 + 0.432881i \(0.857497\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.8745 0.564433
\(792\) 0 0
\(793\) 67.9743 2.41384
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.3197i 0.578073i 0.957318 + 0.289036i \(0.0933349\pi\)
−0.957318 + 0.289036i \(0.906665\pi\)
\(798\) 0 0
\(799\) 27.3948 + 3.99641i 0.969157 + 0.141383i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 83.9770i 2.96348i
\(804\) 0 0
\(805\) −22.9268 + 20.1344i −0.808063 + 0.709645i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.7587i 0.378255i 0.981953 + 0.189127i \(0.0605659\pi\)
−0.981953 + 0.189127i \(0.939434\pi\)
\(810\) 0 0
\(811\) 1.56809i 0.0550631i −0.999621 0.0275316i \(-0.991235\pi\)
0.999621 0.0275316i \(-0.00876467\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.2288 20.3996i 0.813668 0.714567i
\(816\) 0 0
\(817\) 16.9419i 0.592722i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.6643i 0.441987i 0.975275 + 0.220993i \(0.0709299\pi\)
−0.975275 + 0.220993i \(0.929070\pi\)
\(822\) 0 0
\(823\) 9.27482 0.323300 0.161650 0.986848i \(-0.448318\pi\)
0.161650 + 0.986848i \(0.448318\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.01688 0.0353603 0.0176801 0.999844i \(-0.494372\pi\)
0.0176801 + 0.999844i \(0.494372\pi\)
\(828\) 0 0
\(829\) 7.41699 0.257603 0.128801 0.991670i \(-0.458887\pi\)
0.128801 + 0.991670i \(0.458887\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.384343 + 2.63461i −0.0133167 + 0.0912840i
\(834\) 0 0
\(835\) 28.5203 25.0466i 0.986984 0.866774i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.37934i 0.185715i −0.995679 0.0928576i \(-0.970400\pi\)
0.995679 0.0928576i \(-0.0296002\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.4611 + 17.0908i −0.669482 + 0.587942i
\(846\) 0 0
\(847\) 49.5982 1.70421
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 27.2915 0.935541
\(852\) 0 0
\(853\) −18.5496 −0.635127 −0.317564 0.948237i \(-0.602865\pi\)
−0.317564 + 0.948237i \(0.602865\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −27.0931 −0.925483 −0.462741 0.886493i \(-0.653134\pi\)
−0.462741 + 0.886493i \(0.653134\pi\)
\(858\) 0 0
\(859\) −23.7490 −0.810306 −0.405153 0.914249i \(-0.632782\pi\)
−0.405153 + 0.914249i \(0.632782\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.60515i 0.326963i 0.986546 + 0.163482i \(0.0522724\pi\)
−0.986546 + 0.163482i \(0.947728\pi\)
\(864\) 0 0
\(865\) −4.00000 + 3.51282i −0.136004 + 0.119439i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13.0627 −0.443123
\(870\) 0 0
\(871\) 33.2915 1.12804
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 17.2288 + 25.6688i 0.582438 + 0.867765i
\(876\) 0 0
\(877\) 22.7533 0.768324 0.384162 0.923266i \(-0.374490\pi\)
0.384162 + 0.923266i \(0.374490\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.1291i 1.38567i −0.721095 0.692837i \(-0.756361\pi\)
0.721095 0.692837i \(-0.243639\pi\)
\(882\) 0 0
\(883\) 24.1684i 0.813332i 0.913577 + 0.406666i \(0.133309\pi\)
−0.913577 + 0.406666i \(0.866691\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 44.8367 1.50547 0.752735 0.658324i \(-0.228734\pi\)
0.752735 + 0.658324i \(0.228734\pi\)
\(888\) 0 0
\(889\) 36.2724i 1.21654i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 35.5300i 1.18897i
\(894\) 0 0
\(895\) −5.53019 + 4.85664i −0.184854 + 0.162340i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 33.2915 + 4.85664i 1.10910 + 0.161798i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33.2915 + 37.9086i 1.10665 + 1.26012i
\(906\) 0 0
\(907\) −50.5777 −1.67941 −0.839703 0.543046i \(-0.817271\pi\)
−0.839703 + 0.543046i \(0.817271\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.37934i 0.178225i 0.996022 + 0.0891127i \(0.0284031\pi\)
−0.996022 + 0.0891127i \(0.971597\pi\)
\(912\) 0 0
\(913\) −80.0143 −2.64809
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23.0342i 0.760657i
\(918\) 0 0
\(919\) 25.2915 0.834290 0.417145 0.908840i \(-0.363031\pi\)
0.417145 + 0.908840i \(0.363031\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 55.9344 1.84110
\(924\) 0 0
\(925\) 3.57113 27.4194i 0.117418 0.901544i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.6643i 0.415502i −0.978182 0.207751i \(-0.933386\pi\)
0.978182 0.207751i \(-0.0666144\pi\)
\(930\) 0 0
\(931\) 3.41699 0.111987
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 41.5987 27.0040i 1.36042 0.883126i
\(936\) 0 0
\(937\) 11.0505i 0.361003i 0.983575 + 0.180501i \(0.0577720\pi\)
−0.983575 + 0.180501i \(0.942228\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.5699i 0.474966i 0.971392 + 0.237483i \(0.0763224\pi\)
−0.971392 + 0.237483i \(0.923678\pi\)
\(942\) 0 0
\(943\) 14.5633i 0.474245i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.95547 −0.128536 −0.0642678 0.997933i \(-0.520471\pi\)
−0.0642678 + 0.997933i \(0.520471\pi\)
\(948\) 0 0
\(949\) 77.4015i 2.51256i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 58.0522i 1.88050i −0.340492 0.940248i \(-0.610594\pi\)
0.340492 0.940248i \(-0.389406\pi\)
\(954\) 0 0
\(955\) −10.0808 + 8.85305i −0.326209 + 0.286478i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.99641i 0.129051i
\(960\) 0 0
\(961\) 25.1033 0.809783
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −20.2288 + 17.7650i −0.651187 + 0.571875i
\(966\) 0 0
\(967\) 46.3795i 1.49147i −0.666245 0.745733i \(-0.732100\pi\)
0.666245 0.745733i \(-0.267900\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 17.7650i 0.569519i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.5889i 0.690690i −0.938476 0.345345i \(-0.887762\pi\)
0.938476 0.345345i \(-0.112238\pi\)
\(978\) 0 0
\(979\) 76.5413i 2.44627i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −47.0813 −1.50166 −0.750830 0.660495i \(-0.770346\pi\)
−0.750830 + 0.660495i \(0.770346\pi\)
\(984\) 0 0
\(985\) 35.8745 31.5052i 1.14306 1.00384i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.8005i 0.502426i
\(990\) 0 0
\(991\) 46.6936i 1.48327i −0.670804 0.741635i \(-0.734051\pi\)
0.670804 0.741635i \(-0.265949\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.58301 4.07992i −0.113589 0.129342i
\(996\) 0 0
\(997\) 27.3040 0.864725 0.432362 0.901700i \(-0.357680\pi\)
0.432362 + 0.901700i \(0.357680\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.k.h.1189.7 8
3.2 odd 2 340.2.g.a.169.6 yes 8
5.4 even 2 inner 3060.2.k.h.1189.1 8
12.11 even 2 1360.2.o.e.849.4 8
15.2 even 4 1700.2.c.e.101.4 8
15.8 even 4 1700.2.c.e.101.6 8
15.14 odd 2 340.2.g.a.169.4 yes 8
17.16 even 2 inner 3060.2.k.h.1189.2 8
51.50 odd 2 340.2.g.a.169.3 8
60.59 even 2 1360.2.o.e.849.6 8
85.84 even 2 inner 3060.2.k.h.1189.8 8
204.203 even 2 1360.2.o.e.849.5 8
255.152 even 4 1700.2.c.e.101.5 8
255.203 even 4 1700.2.c.e.101.3 8
255.254 odd 2 340.2.g.a.169.5 yes 8
1020.1019 even 2 1360.2.o.e.849.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.g.a.169.3 8 51.50 odd 2
340.2.g.a.169.4 yes 8 15.14 odd 2
340.2.g.a.169.5 yes 8 255.254 odd 2
340.2.g.a.169.6 yes 8 3.2 odd 2
1360.2.o.e.849.3 8 1020.1019 even 2
1360.2.o.e.849.4 8 12.11 even 2
1360.2.o.e.849.5 8 204.203 even 2
1360.2.o.e.849.6 8 60.59 even 2
1700.2.c.e.101.3 8 255.203 even 4
1700.2.c.e.101.4 8 15.2 even 4
1700.2.c.e.101.5 8 255.152 even 4
1700.2.c.e.101.6 8 15.8 even 4
3060.2.k.h.1189.1 8 5.4 even 2 inner
3060.2.k.h.1189.2 8 17.16 even 2 inner
3060.2.k.h.1189.7 8 1.1 even 1 trivial
3060.2.k.h.1189.8 8 85.84 even 2 inner