Properties

Label 340.2.g.a.169.5
Level $340$
Weight $2$
Character 340.169
Analytic conductor $2.715$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [340,2,Mod(169,340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("340.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 340 = 2^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 340.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.71491366872\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4441101041664.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 8x^{6} + 38x^{4} + 200x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.5
Root \(1.68014 + 1.47551i\) of defining polynomial
Character \(\chi\) \(=\) 340.169
Dual form 340.2.g.a.169.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.595188 q^{3} +(-1.68014 - 1.47551i) q^{5} -2.76510 q^{7} -2.64575 q^{9} -5.37934i q^{11} -4.95813i q^{13} +(-1.00000 - 0.878205i) q^{15} +(0.595188 + 4.07992i) q^{17} +5.29150 q^{19} -1.64575 q^{21} -4.93500 q^{23} +(0.645751 + 4.95813i) q^{25} -3.36028 q^{27} -2.42832i q^{31} -3.20172i q^{33} +(4.64575 + 4.07992i) q^{35} +5.53019 q^{37} -2.95102i q^{39} +2.95102i q^{41} -3.20172i q^{43} +(4.44524 + 3.90383i) q^{45} -6.71453i q^{47} +0.645751 q^{49} +(0.354249 + 2.42832i) q^{51} -8.15984i q^{53} +(-7.93725 + 9.03805i) q^{55} +3.14944 q^{57} -9.29150 q^{59} +13.7097i q^{61} +7.31575 q^{63} +(-7.31575 + 8.33035i) q^{65} +6.71453i q^{67} -2.93725 q^{69} -11.2814i q^{71} +15.6110 q^{73} +(0.384343 + 2.95102i) q^{75} +14.8744i q^{77} +2.42832i q^{79} +5.93725 q^{81} -14.8744i q^{83} +(5.01996 - 7.73305i) q^{85} +14.2288 q^{89} +13.7097i q^{91} -1.44531i q^{93} +(-8.89047 - 7.80766i) q^{95} -9.10132 q^{97} +14.2324i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{15} + 8 q^{21} - 16 q^{25} + 16 q^{35} - 16 q^{49} + 24 q^{51} - 32 q^{59} + 40 q^{69} - 16 q^{81} - 8 q^{85} + 8 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/340\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(171\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.595188 0.343632 0.171816 0.985129i \(-0.445037\pi\)
0.171816 + 0.985129i \(0.445037\pi\)
\(4\) 0 0
\(5\) −1.68014 1.47551i −0.751382 0.659867i
\(6\) 0 0
\(7\) −2.76510 −1.04511 −0.522554 0.852606i \(-0.675021\pi\)
−0.522554 + 0.852606i \(0.675021\pi\)
\(8\) 0 0
\(9\) −2.64575 −0.881917
\(10\) 0 0
\(11\) 5.37934i 1.62193i −0.585094 0.810965i \(-0.698942\pi\)
0.585094 0.810965i \(-0.301058\pi\)
\(12\) 0 0
\(13\) 4.95813i 1.37514i −0.726120 0.687568i \(-0.758678\pi\)
0.726120 0.687568i \(-0.241322\pi\)
\(14\) 0 0
\(15\) −1.00000 0.878205i −0.258199 0.226751i
\(16\) 0 0
\(17\) 0.595188 + 4.07992i 0.144354 + 0.989526i
\(18\) 0 0
\(19\) 5.29150 1.21395 0.606977 0.794719i \(-0.292382\pi\)
0.606977 + 0.794719i \(0.292382\pi\)
\(20\) 0 0
\(21\) −1.64575 −0.359132
\(22\) 0 0
\(23\) −4.93500 −1.02902 −0.514510 0.857485i \(-0.672026\pi\)
−0.514510 + 0.857485i \(0.672026\pi\)
\(24\) 0 0
\(25\) 0.645751 + 4.95813i 0.129150 + 0.991625i
\(26\) 0 0
\(27\) −3.36028 −0.646687
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 2.42832i 0.436139i −0.975933 0.218070i \(-0.930024\pi\)
0.975933 0.218070i \(-0.0699760\pi\)
\(32\) 0 0
\(33\) 3.20172i 0.557347i
\(34\) 0 0
\(35\) 4.64575 + 4.07992i 0.785275 + 0.689632i
\(36\) 0 0
\(37\) 5.53019 0.909158 0.454579 0.890707i \(-0.349790\pi\)
0.454579 + 0.890707i \(0.349790\pi\)
\(38\) 0 0
\(39\) 2.95102i 0.472541i
\(40\) 0 0
\(41\) 2.95102i 0.460871i 0.973088 + 0.230436i \(0.0740151\pi\)
−0.973088 + 0.230436i \(0.925985\pi\)
\(42\) 0 0
\(43\) 3.20172i 0.488257i −0.969743 0.244129i \(-0.921498\pi\)
0.969743 0.244129i \(-0.0785019\pi\)
\(44\) 0 0
\(45\) 4.44524 + 3.90383i 0.662657 + 0.581948i
\(46\) 0 0
\(47\) 6.71453i 0.979416i −0.871887 0.489708i \(-0.837103\pi\)
0.871887 0.489708i \(-0.162897\pi\)
\(48\) 0 0
\(49\) 0.645751 0.0922502
\(50\) 0 0
\(51\) 0.354249 + 2.42832i 0.0496047 + 0.340033i
\(52\) 0 0
\(53\) 8.15984i 1.12084i −0.828208 0.560420i \(-0.810640\pi\)
0.828208 0.560420i \(-0.189360\pi\)
\(54\) 0 0
\(55\) −7.93725 + 9.03805i −1.07026 + 1.21869i
\(56\) 0 0
\(57\) 3.14944 0.417153
\(58\) 0 0
\(59\) −9.29150 −1.20965 −0.604825 0.796358i \(-0.706757\pi\)
−0.604825 + 0.796358i \(0.706757\pi\)
\(60\) 0 0
\(61\) 13.7097i 1.75535i 0.479260 + 0.877673i \(0.340905\pi\)
−0.479260 + 0.877673i \(0.659095\pi\)
\(62\) 0 0
\(63\) 7.31575 0.921698
\(64\) 0 0
\(65\) −7.31575 + 8.33035i −0.907408 + 1.03325i
\(66\) 0 0
\(67\) 6.71453i 0.820311i 0.912016 + 0.410155i \(0.134526\pi\)
−0.912016 + 0.410155i \(0.865474\pi\)
\(68\) 0 0
\(69\) −2.93725 −0.353604
\(70\) 0 0
\(71\) 11.2814i 1.33885i −0.742879 0.669426i \(-0.766540\pi\)
0.742879 0.669426i \(-0.233460\pi\)
\(72\) 0 0
\(73\) 15.6110 1.82713 0.913567 0.406688i \(-0.133316\pi\)
0.913567 + 0.406688i \(0.133316\pi\)
\(74\) 0 0
\(75\) 0.384343 + 2.95102i 0.0443802 + 0.340754i
\(76\) 0 0
\(77\) 14.8744i 1.69509i
\(78\) 0 0
\(79\) 2.42832i 0.273207i 0.990626 + 0.136604i \(0.0436187\pi\)
−0.990626 + 0.136604i \(0.956381\pi\)
\(80\) 0 0
\(81\) 5.93725 0.659695
\(82\) 0 0
\(83\) 14.8744i 1.63267i −0.577575 0.816337i \(-0.696001\pi\)
0.577575 0.816337i \(-0.303999\pi\)
\(84\) 0 0
\(85\) 5.01996 7.73305i 0.544491 0.838767i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.2288 1.50825 0.754123 0.656734i \(-0.228062\pi\)
0.754123 + 0.656734i \(0.228062\pi\)
\(90\) 0 0
\(91\) 13.7097i 1.43717i
\(92\) 0 0
\(93\) 1.44531i 0.149871i
\(94\) 0 0
\(95\) −8.89047 7.80766i −0.912143 0.801049i
\(96\) 0 0
\(97\) −9.10132 −0.924099 −0.462049 0.886854i \(-0.652886\pi\)
−0.462049 + 0.886854i \(0.652886\pi\)
\(98\) 0 0
\(99\) 14.2324i 1.43041i
\(100\) 0 0
\(101\) −4.35425 −0.433264 −0.216632 0.976253i \(-0.569507\pi\)
−0.216632 + 0.976253i \(0.569507\pi\)
\(102\) 0 0
\(103\) 4.95813i 0.488539i −0.969707 0.244269i \(-0.921452\pi\)
0.969707 0.244269i \(-0.0785481\pi\)
\(104\) 0 0
\(105\) 2.76510 + 2.42832i 0.269846 + 0.236980i
\(106\) 0 0
\(107\) 9.69651 0.937397 0.468698 0.883358i \(-0.344723\pi\)
0.468698 + 0.883358i \(0.344723\pi\)
\(108\) 0 0
\(109\) 8.85305i 0.847968i 0.905670 + 0.423984i \(0.139369\pi\)
−0.905670 + 0.423984i \(0.860631\pi\)
\(110\) 0 0
\(111\) 3.29150 0.312416
\(112\) 0 0
\(113\) 5.74103 0.540071 0.270036 0.962850i \(-0.412965\pi\)
0.270036 + 0.962850i \(0.412965\pi\)
\(114\) 0 0
\(115\) 8.29150 + 7.28164i 0.773187 + 0.679016i
\(116\) 0 0
\(117\) 13.1180i 1.21276i
\(118\) 0 0
\(119\) −1.64575 11.2814i −0.150866 1.03416i
\(120\) 0 0
\(121\) −17.9373 −1.63066
\(122\) 0 0
\(123\) 1.75641i 0.158370i
\(124\) 0 0
\(125\) 6.23080 9.28316i 0.557300 0.830311i
\(126\) 0 0
\(127\) 13.1180i 1.16403i −0.813178 0.582016i \(-0.802264\pi\)
0.813178 0.582016i \(-0.197736\pi\)
\(128\) 0 0
\(129\) 1.90562i 0.167781i
\(130\) 0 0
\(131\) 8.33035i 0.727826i −0.931433 0.363913i \(-0.881441\pi\)
0.931433 0.363913i \(-0.118559\pi\)
\(132\) 0 0
\(133\) −14.6315 −1.26871
\(134\) 0 0
\(135\) 5.64575 + 4.95813i 0.485909 + 0.426727i
\(136\) 0 0
\(137\) 1.44531i 0.123481i 0.998092 + 0.0617404i \(0.0196651\pi\)
−0.998092 + 0.0617404i \(0.980335\pi\)
\(138\) 0 0
\(139\) 6.42473i 0.544938i −0.962164 0.272469i \(-0.912160\pi\)
0.962164 0.272469i \(-0.0878403\pi\)
\(140\) 0 0
\(141\) 3.99641i 0.336558i
\(142\) 0 0
\(143\) −26.6714 −2.23038
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.384343 0.0317001
\(148\) 0 0
\(149\) −6.58301 −0.539301 −0.269650 0.962958i \(-0.586908\pi\)
−0.269650 + 0.962958i \(0.586908\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) −1.57472 10.7945i −0.127309 0.872680i
\(154\) 0 0
\(155\) −3.58301 + 4.07992i −0.287794 + 0.327707i
\(156\) 0 0
\(157\) 11.6727i 0.931580i −0.884895 0.465790i \(-0.845770\pi\)
0.884895 0.465790i \(-0.154230\pi\)
\(158\) 0 0
\(159\) 4.85664i 0.385157i
\(160\) 0 0
\(161\) 13.6458 1.07544
\(162\) 0 0
\(163\) 13.8255 1.08289 0.541447 0.840735i \(-0.317877\pi\)
0.541447 + 0.840735i \(0.317877\pi\)
\(164\) 0 0
\(165\) −4.72416 + 5.37934i −0.367775 + 0.418781i
\(166\) 0 0
\(167\) −16.9749 −1.31356 −0.656779 0.754083i \(-0.728082\pi\)
−0.656779 + 0.754083i \(0.728082\pi\)
\(168\) 0 0
\(169\) −11.5830 −0.891000
\(170\) 0 0
\(171\) −14.0000 −1.07061
\(172\) 0 0
\(173\) 2.38075 0.181005 0.0905026 0.995896i \(-0.471153\pi\)
0.0905026 + 0.995896i \(0.471153\pi\)
\(174\) 0 0
\(175\) −1.78556 13.7097i −0.134976 1.03635i
\(176\) 0 0
\(177\) −5.53019 −0.415675
\(178\) 0 0
\(179\) 3.29150 0.246018 0.123009 0.992406i \(-0.460746\pi\)
0.123009 + 0.992406i \(0.460746\pi\)
\(180\) 0 0
\(181\) 22.5627i 1.67708i −0.544844 0.838538i \(-0.683411\pi\)
0.544844 0.838538i \(-0.316589\pi\)
\(182\) 0 0
\(183\) 8.15984i 0.603193i
\(184\) 0 0
\(185\) −9.29150 8.15984i −0.683125 0.599923i
\(186\) 0 0
\(187\) 21.9473 3.20172i 1.60494 0.234133i
\(188\) 0 0
\(189\) 9.29150 0.675857
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) −12.0399 −0.866652 −0.433326 0.901237i \(-0.642660\pi\)
−0.433326 + 0.901237i \(0.642660\pi\)
\(194\) 0 0
\(195\) −4.35425 + 4.95813i −0.311814 + 0.355059i
\(196\) 0 0
\(197\) −21.3521 −1.52127 −0.760636 0.649178i \(-0.775113\pi\)
−0.760636 + 0.649178i \(0.775113\pi\)
\(198\) 0 0
\(199\) 2.42832i 0.172139i 0.996289 + 0.0860695i \(0.0274307\pi\)
−0.996289 + 0.0860695i \(0.972569\pi\)
\(200\) 0 0
\(201\) 3.99641i 0.281885i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.35425 4.95813i 0.304114 0.346290i
\(206\) 0 0
\(207\) 13.0568 0.907510
\(208\) 0 0
\(209\) 28.4648i 1.96895i
\(210\) 0 0
\(211\) 20.1344i 1.38611i 0.720884 + 0.693055i \(0.243736\pi\)
−0.720884 + 0.693055i \(0.756264\pi\)
\(212\) 0 0
\(213\) 6.71453i 0.460072i
\(214\) 0 0
\(215\) −4.72416 + 5.37934i −0.322185 + 0.366868i
\(216\) 0 0
\(217\) 6.71453i 0.455812i
\(218\) 0 0
\(219\) 9.29150 0.627862
\(220\) 0 0
\(221\) 20.2288 2.95102i 1.36073 0.198507i
\(222\) 0 0
\(223\) 21.2778i 1.42487i 0.701739 + 0.712434i \(0.252407\pi\)
−0.701739 + 0.712434i \(0.747593\pi\)
\(224\) 0 0
\(225\) −1.70850 13.1180i −0.113900 0.874531i
\(226\) 0 0
\(227\) −19.7774 −1.31267 −0.656335 0.754470i \(-0.727894\pi\)
−0.656335 + 0.754470i \(0.727894\pi\)
\(228\) 0 0
\(229\) 3.64575 0.240918 0.120459 0.992718i \(-0.461563\pi\)
0.120459 + 0.992718i \(0.461563\pi\)
\(230\) 0 0
\(231\) 8.85305i 0.582488i
\(232\) 0 0
\(233\) 12.2508 0.802574 0.401287 0.915952i \(-0.368563\pi\)
0.401287 + 0.915952i \(0.368563\pi\)
\(234\) 0 0
\(235\) −9.90735 + 11.2814i −0.646284 + 0.735915i
\(236\) 0 0
\(237\) 1.44531i 0.0938827i
\(238\) 0 0
\(239\) 9.87451 0.638729 0.319364 0.947632i \(-0.396531\pi\)
0.319364 + 0.947632i \(0.396531\pi\)
\(240\) 0 0
\(241\) 13.7097i 0.883119i −0.897232 0.441559i \(-0.854425\pi\)
0.897232 0.441559i \(-0.145575\pi\)
\(242\) 0 0
\(243\) 13.6146 0.873379
\(244\) 0 0
\(245\) −1.08495 0.952811i −0.0693151 0.0608729i
\(246\) 0 0
\(247\) 26.2359i 1.66935i
\(248\) 0 0
\(249\) 8.85305i 0.561039i
\(250\) 0 0
\(251\) −19.1660 −1.20975 −0.604874 0.796321i \(-0.706777\pi\)
−0.604874 + 0.796321i \(0.706777\pi\)
\(252\) 0 0
\(253\) 26.5470i 1.66900i
\(254\) 0 0
\(255\) 2.98782 4.60262i 0.187104 0.288227i
\(256\) 0 0
\(257\) 14.8744i 0.927838i 0.885878 + 0.463919i \(0.153557\pi\)
−0.885878 + 0.463919i \(0.846443\pi\)
\(258\) 0 0
\(259\) −15.2915 −0.950168
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.60515i 0.592279i 0.955145 + 0.296139i \(0.0956993\pi\)
−0.955145 + 0.296139i \(0.904301\pi\)
\(264\) 0 0
\(265\) −12.0399 + 13.7097i −0.739606 + 0.842179i
\(266\) 0 0
\(267\) 8.46878 0.518281
\(268\) 0 0
\(269\) 14.7551i 0.899633i 0.893121 + 0.449817i \(0.148511\pi\)
−0.893121 + 0.449817i \(0.851489\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 8.15984i 0.493856i
\(274\) 0 0
\(275\) 26.6714 3.47371i 1.60835 0.209473i
\(276\) 0 0
\(277\) 17.2231 1.03484 0.517418 0.855733i \(-0.326893\pi\)
0.517418 + 0.855733i \(0.326893\pi\)
\(278\) 0 0
\(279\) 6.42473i 0.384638i
\(280\) 0 0
\(281\) −13.1660 −0.785418 −0.392709 0.919663i \(-0.628462\pi\)
−0.392709 + 0.919663i \(0.628462\pi\)
\(282\) 0 0
\(283\) 8.29529 0.493104 0.246552 0.969130i \(-0.420702\pi\)
0.246552 + 0.969130i \(0.420702\pi\)
\(284\) 0 0
\(285\) −5.29150 4.64702i −0.313442 0.275266i
\(286\) 0 0
\(287\) 8.15984i 0.481660i
\(288\) 0 0
\(289\) −16.2915 + 4.85664i −0.958324 + 0.285685i
\(290\) 0 0
\(291\) −5.41699 −0.317550
\(292\) 0 0
\(293\) 13.4291i 0.784535i −0.919851 0.392267i \(-0.871691\pi\)
0.919851 0.392267i \(-0.128309\pi\)
\(294\) 0 0
\(295\) 15.6110 + 13.7097i 0.908910 + 0.798209i
\(296\) 0 0
\(297\) 18.0761i 1.04888i
\(298\) 0 0
\(299\) 24.4684i 1.41504i
\(300\) 0 0
\(301\) 8.85305i 0.510281i
\(302\) 0 0
\(303\) −2.59160 −0.148883
\(304\) 0 0
\(305\) 20.2288 23.0342i 1.15830 1.31894i
\(306\) 0 0
\(307\) 17.7650i 1.01390i −0.861975 0.506951i \(-0.830773\pi\)
0.861975 0.506951i \(-0.169227\pi\)
\(308\) 0 0
\(309\) 2.95102i 0.167877i
\(310\) 0 0
\(311\) 11.2814i 0.639708i −0.947467 0.319854i \(-0.896366\pi\)
0.947467 0.319854i \(-0.103634\pi\)
\(312\) 0 0
\(313\) −22.7533 −1.28609 −0.643046 0.765827i \(-0.722330\pi\)
−0.643046 + 0.765827i \(0.722330\pi\)
\(314\) 0 0
\(315\) −12.2915 10.7945i −0.692548 0.608199i
\(316\) 0 0
\(317\) 15.1894 0.853119 0.426559 0.904460i \(-0.359725\pi\)
0.426559 + 0.904460i \(0.359725\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 5.77124 0.322119
\(322\) 0 0
\(323\) 3.14944 + 21.5889i 0.175239 + 1.20124i
\(324\) 0 0
\(325\) 24.5830 3.20172i 1.36362 0.177599i
\(326\) 0 0
\(327\) 5.26923i 0.291389i
\(328\) 0 0
\(329\) 18.5663i 1.02359i
\(330\) 0 0
\(331\) 29.2915 1.61001 0.805003 0.593270i \(-0.202163\pi\)
0.805003 + 0.593270i \(0.202163\pi\)
\(332\) 0 0
\(333\) −14.6315 −0.801802
\(334\) 0 0
\(335\) 9.90735 11.2814i 0.541296 0.616367i
\(336\) 0 0
\(337\) 1.61206 0.0878148 0.0439074 0.999036i \(-0.486019\pi\)
0.0439074 + 0.999036i \(0.486019\pi\)
\(338\) 0 0
\(339\) 3.41699 0.185586
\(340\) 0 0
\(341\) −13.0627 −0.707387
\(342\) 0 0
\(343\) 17.5701 0.948696
\(344\) 0 0
\(345\) 4.93500 + 4.33394i 0.265692 + 0.233332i
\(346\) 0 0
\(347\) 15.0159 0.806093 0.403047 0.915179i \(-0.367951\pi\)
0.403047 + 0.915179i \(0.367951\pi\)
\(348\) 0 0
\(349\) 13.8745 0.742685 0.371343 0.928496i \(-0.378898\pi\)
0.371343 + 0.928496i \(0.378898\pi\)
\(350\) 0 0
\(351\) 16.6607i 0.889283i
\(352\) 0 0
\(353\) 13.4291i 0.714757i 0.933960 + 0.357379i \(0.116329\pi\)
−0.933960 + 0.357379i \(0.883671\pi\)
\(354\) 0 0
\(355\) −16.6458 + 18.9543i −0.883465 + 1.00599i
\(356\) 0 0
\(357\) −0.979531 6.71453i −0.0518423 0.355371i
\(358\) 0 0
\(359\) 2.12549 0.112179 0.0560896 0.998426i \(-0.482137\pi\)
0.0560896 + 0.998426i \(0.482137\pi\)
\(360\) 0 0
\(361\) 9.00000 0.473684
\(362\) 0 0
\(363\) −10.6760 −0.560347
\(364\) 0 0
\(365\) −26.2288 23.0342i −1.37288 1.20567i
\(366\) 0 0
\(367\) −2.76510 −0.144337 −0.0721684 0.997392i \(-0.522992\pi\)
−0.0721684 + 0.997392i \(0.522992\pi\)
\(368\) 0 0
\(369\) 7.80766i 0.406450i
\(370\) 0 0
\(371\) 22.5627i 1.17140i
\(372\) 0 0
\(373\) 17.7650i 0.919836i 0.887961 + 0.459918i \(0.152121\pi\)
−0.887961 + 0.459918i \(0.847879\pi\)
\(374\) 0 0
\(375\) 3.70850 5.52523i 0.191506 0.285321i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 29.8477i 1.53317i 0.642141 + 0.766587i \(0.278046\pi\)
−0.642141 + 0.766587i \(0.721954\pi\)
\(380\) 0 0
\(381\) 7.80766i 0.399998i
\(382\) 0 0
\(383\) 31.1941i 1.59394i 0.604018 + 0.796971i \(0.293566\pi\)
−0.604018 + 0.796971i \(0.706434\pi\)
\(384\) 0 0
\(385\) 21.9473 24.9911i 1.11854 1.27366i
\(386\) 0 0
\(387\) 8.47094i 0.430602i
\(388\) 0 0
\(389\) −25.6458 −1.30029 −0.650146 0.759810i \(-0.725292\pi\)
−0.650146 + 0.759810i \(0.725292\pi\)
\(390\) 0 0
\(391\) −2.93725 20.1344i −0.148543 1.01824i
\(392\) 0 0
\(393\) 4.95813i 0.250104i
\(394\) 0 0
\(395\) 3.58301 4.07992i 0.180281 0.205283i
\(396\) 0 0
\(397\) 2.93859 0.147484 0.0737419 0.997277i \(-0.476506\pi\)
0.0737419 + 0.997277i \(0.476506\pi\)
\(398\) 0 0
\(399\) −8.70850 −0.435970
\(400\) 0 0
\(401\) 1.04539i 0.0522045i 0.999659 + 0.0261022i \(0.00830954\pi\)
−0.999659 + 0.0261022i \(0.991690\pi\)
\(402\) 0 0
\(403\) −12.0399 −0.599751
\(404\) 0 0
\(405\) −9.97543 8.76047i −0.495683 0.435311i
\(406\) 0 0
\(407\) 29.7488i 1.47459i
\(408\) 0 0
\(409\) 28.5830 1.41334 0.706669 0.707544i \(-0.250197\pi\)
0.706669 + 0.707544i \(0.250197\pi\)
\(410\) 0 0
\(411\) 0.860229i 0.0424320i
\(412\) 0 0
\(413\) 25.6919 1.26422
\(414\) 0 0
\(415\) −21.9473 + 24.9911i −1.07735 + 1.22676i
\(416\) 0 0
\(417\) 3.82392i 0.187258i
\(418\) 0 0
\(419\) 7.28496i 0.355894i −0.984040 0.177947i \(-0.943055\pi\)
0.984040 0.177947i \(-0.0569455\pi\)
\(420\) 0 0
\(421\) 3.52026 0.171567 0.0857835 0.996314i \(-0.472661\pi\)
0.0857835 + 0.996314i \(0.472661\pi\)
\(422\) 0 0
\(423\) 17.7650i 0.863763i
\(424\) 0 0
\(425\) −19.8444 + 5.58563i −0.962595 + 0.270943i
\(426\) 0 0
\(427\) 37.9086i 1.83453i
\(428\) 0 0
\(429\) −15.8745 −0.766428
\(430\) 0 0
\(431\) 7.28496i 0.350904i −0.984488 0.175452i \(-0.943861\pi\)
0.984488 0.175452i \(-0.0561387\pi\)
\(432\) 0 0
\(433\) 2.06751i 0.0993583i −0.998765 0.0496791i \(-0.984180\pi\)
0.998765 0.0496791i \(-0.0158199\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −26.1136 −1.24918
\(438\) 0 0
\(439\) 16.1380i 0.770225i −0.922870 0.385113i \(-0.874163\pi\)
0.922870 0.385113i \(-0.125837\pi\)
\(440\) 0 0
\(441\) −1.70850 −0.0813570
\(442\) 0 0
\(443\) 1.44531i 0.0686686i −0.999410 0.0343343i \(-0.989069\pi\)
0.999410 0.0343343i \(-0.0109311\pi\)
\(444\) 0 0
\(445\) −23.9063 20.9946i −1.13327 0.995242i
\(446\) 0 0
\(447\) −3.91813 −0.185321
\(448\) 0 0
\(449\) 18.5663i 0.876199i 0.898926 + 0.438100i \(0.144348\pi\)
−0.898926 + 0.438100i \(0.855652\pi\)
\(450\) 0 0
\(451\) 15.8745 0.747501
\(452\) 0 0
\(453\) 5.95188 0.279644
\(454\) 0 0
\(455\) 20.2288 23.0342i 0.948339 1.07986i
\(456\) 0 0
\(457\) 27.6812i 1.29487i −0.762119 0.647437i \(-0.775841\pi\)
0.762119 0.647437i \(-0.224159\pi\)
\(458\) 0 0
\(459\) −2.00000 13.7097i −0.0933520 0.639913i
\(460\) 0 0
\(461\) −20.7085 −0.964491 −0.482245 0.876036i \(-0.660179\pi\)
−0.482245 + 0.876036i \(0.660179\pi\)
\(462\) 0 0
\(463\) 31.1941i 1.44971i 0.688901 + 0.724855i \(0.258093\pi\)
−0.688901 + 0.724855i \(0.741907\pi\)
\(464\) 0 0
\(465\) −2.13256 + 2.42832i −0.0988952 + 0.112611i
\(466\) 0 0
\(467\) 9.60515i 0.444473i 0.974993 + 0.222237i \(0.0713357\pi\)
−0.974993 + 0.222237i \(0.928664\pi\)
\(468\) 0 0
\(469\) 18.5663i 0.857313i
\(470\) 0 0
\(471\) 6.94743i 0.320121i
\(472\) 0 0
\(473\) −17.2231 −0.791919
\(474\) 0 0
\(475\) 3.41699 + 26.2359i 0.156782 + 1.20379i
\(476\) 0 0
\(477\) 21.5889i 0.988488i
\(478\) 0 0
\(479\) 35.7497i 1.63345i −0.577029 0.816723i \(-0.695788\pi\)
0.577029 0.816723i \(-0.304212\pi\)
\(480\) 0 0
\(481\) 27.4194i 1.25022i
\(482\) 0 0
\(483\) 8.12179 0.369554
\(484\) 0 0
\(485\) 15.2915 + 13.4291i 0.694351 + 0.609783i
\(486\) 0 0
\(487\) −2.76510 −0.125298 −0.0626492 0.998036i \(-0.519955\pi\)
−0.0626492 + 0.998036i \(0.519955\pi\)
\(488\) 0 0
\(489\) 8.22876 0.372117
\(490\) 0 0
\(491\) 21.8745 0.987183 0.493591 0.869694i \(-0.335684\pi\)
0.493591 + 0.869694i \(0.335684\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 21.0000 23.9124i 0.943880 1.07478i
\(496\) 0 0
\(497\) 31.1941i 1.39924i
\(498\) 0 0
\(499\) 7.28496i 0.326120i −0.986616 0.163060i \(-0.947864\pi\)
0.986616 0.163060i \(-0.0521363\pi\)
\(500\) 0 0
\(501\) −10.1033 −0.451381
\(502\) 0 0
\(503\) −12.6351 −0.563371 −0.281686 0.959507i \(-0.590894\pi\)
−0.281686 + 0.959507i \(0.590894\pi\)
\(504\) 0 0
\(505\) 7.31575 + 6.42473i 0.325547 + 0.285897i
\(506\) 0 0
\(507\) −6.89407 −0.306176
\(508\) 0 0
\(509\) 34.4575 1.52730 0.763651 0.645629i \(-0.223405\pi\)
0.763651 + 0.645629i \(0.223405\pi\)
\(510\) 0 0
\(511\) −43.1660 −1.90955
\(512\) 0 0
\(513\) −17.7809 −0.785048
\(514\) 0 0
\(515\) −7.31575 + 8.33035i −0.322371 + 0.367079i
\(516\) 0 0
\(517\) −36.1197 −1.58854
\(518\) 0 0
\(519\) 1.41699 0.0621992
\(520\) 0 0
\(521\) 26.3740i 1.15547i 0.816226 + 0.577733i \(0.196062\pi\)
−0.816226 + 0.577733i \(0.803938\pi\)
\(522\) 0 0
\(523\) 6.71453i 0.293606i −0.989166 0.146803i \(-0.953102\pi\)
0.989166 0.146803i \(-0.0468984\pi\)
\(524\) 0 0
\(525\) −1.06275 8.15984i −0.0463820 0.356125i
\(526\) 0 0
\(527\) 9.90735 1.44531i 0.431571 0.0629585i
\(528\) 0 0
\(529\) 1.35425 0.0588804
\(530\) 0 0
\(531\) 24.5830 1.06681
\(532\) 0 0
\(533\) 14.6315 0.633761
\(534\) 0 0
\(535\) −16.2915 14.3073i −0.704343 0.618557i
\(536\) 0 0
\(537\) 1.95906 0.0845398
\(538\) 0 0
\(539\) 3.47371i 0.149623i
\(540\) 0 0
\(541\) 37.1327i 1.59646i 0.602354 + 0.798229i \(0.294229\pi\)
−0.602354 + 0.798229i \(0.705771\pi\)
\(542\) 0 0
\(543\) 13.4291i 0.576297i
\(544\) 0 0
\(545\) 13.0627 14.8744i 0.559547 0.637148i
\(546\) 0 0
\(547\) 10.8869 0.465489 0.232745 0.972538i \(-0.425229\pi\)
0.232745 + 0.972538i \(0.425229\pi\)
\(548\) 0 0
\(549\) 36.2724i 1.54807i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 6.71453i 0.285531i
\(554\) 0 0
\(555\) −5.53019 4.85664i −0.234744 0.206153i
\(556\) 0 0
\(557\) 14.8744i 0.630248i 0.949051 + 0.315124i \(0.102046\pi\)
−0.949051 + 0.315124i \(0.897954\pi\)
\(558\) 0 0
\(559\) −15.8745 −0.671420
\(560\) 0 0
\(561\) 13.0627 1.90562i 0.551510 0.0804555i
\(562\) 0 0
\(563\) 14.8744i 0.626880i −0.949608 0.313440i \(-0.898519\pi\)
0.949608 0.313440i \(-0.101481\pi\)
\(564\) 0 0
\(565\) −9.64575 8.47094i −0.405800 0.356375i
\(566\) 0 0
\(567\) −16.4171 −0.689452
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 47.5538i 1.99006i −0.0995540 0.995032i \(-0.531742\pi\)
0.0995540 0.995032i \(-0.468258\pi\)
\(572\) 0 0
\(573\) 3.57113 0.149186
\(574\) 0 0
\(575\) −3.18678 24.4684i −0.132898 1.02040i
\(576\) 0 0
\(577\) 11.3616i 0.472988i −0.971633 0.236494i \(-0.924002\pi\)
0.971633 0.236494i \(-0.0759983\pi\)
\(578\) 0 0
\(579\) −7.16601 −0.297809
\(580\) 0 0
\(581\) 41.1291i 1.70632i
\(582\) 0 0
\(583\) −43.8945 −1.81793
\(584\) 0 0
\(585\) 19.3557 22.0400i 0.800258 0.911244i
\(586\) 0 0
\(587\) 14.8744i 0.613931i 0.951721 + 0.306966i \(0.0993137\pi\)
−0.951721 + 0.306966i \(0.900686\pi\)
\(588\) 0 0
\(589\) 12.8495i 0.529453i
\(590\) 0 0
\(591\) −12.7085 −0.522758
\(592\) 0 0
\(593\) 24.4795i 1.00525i −0.864504 0.502627i \(-0.832367\pi\)
0.864504 0.502627i \(-0.167633\pi\)
\(594\) 0 0
\(595\) −13.8807 + 21.3826i −0.569051 + 0.876602i
\(596\) 0 0
\(597\) 1.44531i 0.0591525i
\(598\) 0 0
\(599\) −12.5830 −0.514128 −0.257064 0.966394i \(-0.582755\pi\)
−0.257064 + 0.966394i \(0.582755\pi\)
\(600\) 0 0
\(601\) 41.1291i 1.67769i −0.544371 0.838845i \(-0.683232\pi\)
0.544371 0.838845i \(-0.316768\pi\)
\(602\) 0 0
\(603\) 17.7650i 0.723446i
\(604\) 0 0
\(605\) 30.1371 + 26.4666i 1.22525 + 1.07602i
\(606\) 0 0
\(607\) 9.27482 0.376453 0.188227 0.982126i \(-0.439726\pi\)
0.188227 + 0.982126i \(0.439726\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −33.2915 −1.34683
\(612\) 0 0
\(613\) 19.8325i 0.801027i 0.916291 + 0.400514i \(0.131168\pi\)
−0.916291 + 0.400514i \(0.868832\pi\)
\(614\) 0 0
\(615\) 2.59160 2.95102i 0.104503 0.118996i
\(616\) 0 0
\(617\) 47.6018 1.91638 0.958188 0.286138i \(-0.0923717\pi\)
0.958188 + 0.286138i \(0.0923717\pi\)
\(618\) 0 0
\(619\) 25.8513i 1.03905i −0.854455 0.519525i \(-0.826109\pi\)
0.854455 0.519525i \(-0.173891\pi\)
\(620\) 0 0
\(621\) 16.5830 0.665453
\(622\) 0 0
\(623\) −39.3439 −1.57628
\(624\) 0 0
\(625\) −24.1660 + 6.40343i −0.966640 + 0.256137i
\(626\) 0 0
\(627\) 16.9419i 0.676594i
\(628\) 0 0
\(629\) 3.29150 + 22.5627i 0.131241 + 0.899635i
\(630\) 0 0
\(631\) −41.2915 −1.64379 −0.821894 0.569640i \(-0.807083\pi\)
−0.821894 + 0.569640i \(0.807083\pi\)
\(632\) 0 0
\(633\) 11.9838i 0.476312i
\(634\) 0 0
\(635\) −19.3557 + 22.0400i −0.768106 + 0.874632i
\(636\) 0 0
\(637\) 3.20172i 0.126857i
\(638\) 0 0
\(639\) 29.8477i 1.18076i
\(640\) 0 0
\(641\) 24.4684i 0.966442i 0.875498 + 0.483221i \(0.160533\pi\)
−0.875498 + 0.483221i \(0.839467\pi\)
\(642\) 0 0
\(643\) −7.66275 −0.302189 −0.151095 0.988519i \(-0.548280\pi\)
−0.151095 + 0.988519i \(0.548280\pi\)
\(644\) 0 0
\(645\) −2.81176 + 3.20172i −0.110713 + 0.126067i
\(646\) 0 0
\(647\) 23.0342i 0.905568i 0.891620 + 0.452784i \(0.149569\pi\)
−0.891620 + 0.452784i \(0.850431\pi\)
\(648\) 0 0
\(649\) 49.9821i 1.96197i
\(650\) 0 0
\(651\) 3.99641i 0.156632i
\(652\) 0 0
\(653\) 41.8608 1.63814 0.819069 0.573695i \(-0.194490\pi\)
0.819069 + 0.573695i \(0.194490\pi\)
\(654\) 0 0
\(655\) −12.2915 + 13.9962i −0.480269 + 0.546876i
\(656\) 0 0
\(657\) −41.3029 −1.61138
\(658\) 0 0
\(659\) 28.4575 1.10855 0.554274 0.832334i \(-0.312996\pi\)
0.554274 + 0.832334i \(0.312996\pi\)
\(660\) 0 0
\(661\) 45.1660 1.75675 0.878377 0.477968i \(-0.158627\pi\)
0.878377 + 0.477968i \(0.158627\pi\)
\(662\) 0 0
\(663\) 12.0399 1.75641i 0.467591 0.0682133i
\(664\) 0 0
\(665\) 24.5830 + 21.5889i 0.953288 + 0.837182i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 12.6643i 0.489630i
\(670\) 0 0
\(671\) 73.7490 2.84705
\(672\) 0 0
\(673\) 0.979531 0.0377582 0.0188791 0.999822i \(-0.493990\pi\)
0.0188791 + 0.999822i \(0.493990\pi\)
\(674\) 0 0
\(675\) −2.16991 16.6607i −0.0835198 0.641271i
\(676\) 0 0
\(677\) 27.8618 1.07082 0.535408 0.844594i \(-0.320158\pi\)
0.535408 + 0.844594i \(0.320158\pi\)
\(678\) 0 0
\(679\) 25.1660 0.965783
\(680\) 0 0
\(681\) −11.7712 −0.451075
\(682\) 0 0
\(683\) 26.2871 1.00585 0.502924 0.864331i \(-0.332258\pi\)
0.502924 + 0.864331i \(0.332258\pi\)
\(684\) 0 0
\(685\) 2.13256 2.42832i 0.0814810 0.0927813i
\(686\) 0 0
\(687\) 2.16991 0.0827871
\(688\) 0 0
\(689\) −40.4575 −1.54131
\(690\) 0 0
\(691\) 16.1380i 0.613919i 0.951723 + 0.306959i \(0.0993116\pi\)
−0.951723 + 0.306959i \(0.900688\pi\)
\(692\) 0 0
\(693\) 39.3539i 1.49493i
\(694\) 0 0
\(695\) −9.47974 + 10.7945i −0.359587 + 0.409457i
\(696\) 0 0
\(697\) −12.0399 + 1.75641i −0.456044 + 0.0665287i
\(698\) 0 0
\(699\) 7.29150 0.275790
\(700\) 0 0
\(701\) 7.06275 0.266756 0.133378 0.991065i \(-0.457418\pi\)
0.133378 + 0.991065i \(0.457418\pi\)
\(702\) 0 0
\(703\) 29.2630 1.10368
\(704\) 0 0
\(705\) −5.89674 + 6.71453i −0.222084 + 0.252884i
\(706\) 0 0
\(707\) 12.0399 0.452807
\(708\) 0 0
\(709\) 12.8495i 0.482572i 0.970454 + 0.241286i \(0.0775691\pi\)
−0.970454 + 0.241286i \(0.922431\pi\)
\(710\) 0 0
\(711\) 6.42473i 0.240946i
\(712\) 0 0
\(713\) 11.9838i 0.448795i
\(714\) 0 0
\(715\) 44.8118 + 39.3539i 1.67586 + 1.47175i
\(716\) 0 0
\(717\) 5.87719 0.219488
\(718\) 0 0
\(719\) 23.0854i 0.860941i 0.902605 + 0.430471i \(0.141652\pi\)
−0.902605 + 0.430471i \(0.858348\pi\)
\(720\) 0 0
\(721\) 13.7097i 0.510575i
\(722\) 0 0
\(723\) 8.15984i 0.303468i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 44.6231i 1.65498i −0.561480 0.827490i \(-0.689768\pi\)
0.561480 0.827490i \(-0.310232\pi\)
\(728\) 0 0
\(729\) −9.70850 −0.359574
\(730\) 0 0
\(731\) 13.0627 1.90562i 0.483143 0.0704820i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −0.645751 0.567102i −0.0238189 0.0209179i
\(736\) 0 0
\(737\) 36.1197 1.33049
\(738\) 0 0
\(739\) −10.7085 −0.393918 −0.196959 0.980412i \(-0.563107\pi\)
−0.196959 + 0.980412i \(0.563107\pi\)
\(740\) 0 0
\(741\) 15.6153i 0.573643i
\(742\) 0 0
\(743\) 31.8173 1.16726 0.583631 0.812019i \(-0.301631\pi\)
0.583631 + 0.812019i \(0.301631\pi\)
\(744\) 0 0
\(745\) 11.0604 + 9.71328i 0.405221 + 0.355867i
\(746\) 0 0
\(747\) 39.3539i 1.43988i
\(748\) 0 0
\(749\) −26.8118 −0.979680
\(750\) 0 0
\(751\) 6.42473i 0.234442i 0.993106 + 0.117221i \(0.0373985\pi\)
−0.993106 + 0.117221i \(0.962601\pi\)
\(752\) 0 0
\(753\) −11.4074 −0.415708
\(754\) 0 0
\(755\) −16.8014 14.7551i −0.611466 0.536992i
\(756\) 0 0
\(757\) 24.1684i 0.878416i −0.898385 0.439208i \(-0.855259\pi\)
0.898385 0.439208i \(-0.144741\pi\)
\(758\) 0 0
\(759\) 15.8005i 0.573521i
\(760\) 0 0
\(761\) −26.2288 −0.950792 −0.475396 0.879772i \(-0.657695\pi\)
−0.475396 + 0.879772i \(0.657695\pi\)
\(762\) 0 0
\(763\) 24.4795i 0.886218i
\(764\) 0 0
\(765\) −13.2816 + 20.4597i −0.480196 + 0.739723i
\(766\) 0 0
\(767\) 46.0684i 1.66343i
\(768\) 0 0
\(769\) −2.93725 −0.105920 −0.0529600 0.998597i \(-0.516866\pi\)
−0.0529600 + 0.998597i \(0.516866\pi\)
\(770\) 0 0
\(771\) 8.85305i 0.318835i
\(772\) 0 0
\(773\) 1.44531i 0.0519841i −0.999662 0.0259920i \(-0.991726\pi\)
0.999662 0.0259920i \(-0.00827445\pi\)
\(774\) 0 0
\(775\) 12.0399 1.56809i 0.432486 0.0563275i
\(776\) 0 0
\(777\) −9.10132 −0.326508
\(778\) 0 0
\(779\) 15.6153i 0.559477i
\(780\) 0 0
\(781\) −60.6863 −2.17153
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −17.2231 + 19.6117i −0.614719 + 0.699972i
\(786\) 0 0
\(787\) −50.5777 −1.80290 −0.901451 0.432881i \(-0.857497\pi\)
−0.901451 + 0.432881i \(0.857497\pi\)
\(788\) 0 0
\(789\) 5.71687i 0.203526i
\(790\) 0 0
\(791\) −15.8745 −0.564433
\(792\) 0 0
\(793\) 67.9743 2.41384
\(794\) 0 0
\(795\) −7.16601 + 8.15984i −0.254152 + 0.289400i
\(796\) 0 0
\(797\) 16.3197i 0.578073i 0.957318 + 0.289036i \(0.0933349\pi\)
−0.957318 + 0.289036i \(0.906665\pi\)
\(798\) 0 0
\(799\) 27.3948 3.99641i 0.969157 0.141383i
\(800\) 0 0
\(801\) −37.6458 −1.33015
\(802\) 0 0
\(803\) 83.9770i 2.96348i
\(804\) 0 0
\(805\) −22.9268 20.1344i −0.808063 0.709645i
\(806\) 0 0
\(807\) 8.78205i 0.309143i
\(808\) 0 0
\(809\) 10.7587i 0.378255i 0.981953 + 0.189127i \(0.0605659\pi\)
−0.981953 + 0.189127i \(0.939434\pi\)
\(810\) 0 0
\(811\) 1.56809i 0.0550631i 0.999621 + 0.0275316i \(0.00876467\pi\)
−0.999621 + 0.0275316i \(0.991235\pi\)
\(812\) 0 0
\(813\) −4.76150 −0.166993
\(814\) 0 0
\(815\) −23.2288 20.3996i −0.813668 0.714567i
\(816\) 0 0
\(817\) 16.9419i 0.592722i
\(818\) 0 0
\(819\) 36.2724i 1.26746i
\(820\) 0 0
\(821\) 12.6643i 0.441987i 0.975275 + 0.220993i \(0.0709299\pi\)
−0.975275 + 0.220993i \(0.929070\pi\)
\(822\) 0 0
\(823\) 9.27482 0.323300 0.161650 0.986848i \(-0.448318\pi\)
0.161650 + 0.986848i \(0.448318\pi\)
\(824\) 0 0
\(825\) 15.8745 2.06751i 0.552679 0.0719815i
\(826\) 0 0
\(827\) −1.01688 −0.0353603 −0.0176801 0.999844i \(-0.505628\pi\)
−0.0176801 + 0.999844i \(0.505628\pi\)
\(828\) 0 0
\(829\) 7.41699 0.257603 0.128801 0.991670i \(-0.458887\pi\)
0.128801 + 0.991670i \(0.458887\pi\)
\(830\) 0 0
\(831\) 10.2510 0.355603
\(832\) 0 0
\(833\) 0.384343 + 2.63461i 0.0133167 + 0.0912840i
\(834\) 0 0
\(835\) 28.5203 + 25.0466i 0.986984 + 0.866774i
\(836\) 0 0
\(837\) 8.15984i 0.282045i
\(838\) 0 0
\(839\) 5.37934i 0.185715i −0.995679 0.0928576i \(-0.970400\pi\)
0.995679 0.0928576i \(-0.0296002\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) −7.83625 −0.269895
\(844\) 0 0
\(845\) 19.4611 + 17.0908i 0.669482 + 0.587942i
\(846\) 0 0
\(847\) 49.5982 1.70421
\(848\) 0 0
\(849\) 4.93725 0.169446
\(850\) 0 0
\(851\) −27.2915 −0.935541
\(852\) 0 0
\(853\) −18.5496 −0.635127 −0.317564 0.948237i \(-0.602865\pi\)
−0.317564 + 0.948237i \(0.602865\pi\)
\(854\) 0 0
\(855\) 23.5220 + 20.6571i 0.804435 + 0.706458i
\(856\) 0 0
\(857\) 27.0931 0.925483 0.462741 0.886493i \(-0.346866\pi\)
0.462741 + 0.886493i \(0.346866\pi\)
\(858\) 0 0
\(859\) −23.7490 −0.810306 −0.405153 0.914249i \(-0.632782\pi\)
−0.405153 + 0.914249i \(0.632782\pi\)
\(860\) 0 0
\(861\) 4.85664i 0.165514i
\(862\) 0 0
\(863\) 9.60515i 0.326963i 0.986546 + 0.163482i \(0.0522724\pi\)
−0.986546 + 0.163482i \(0.947728\pi\)
\(864\) 0 0
\(865\) −4.00000 3.51282i −0.136004 0.119439i
\(866\) 0 0
\(867\) −9.69651 + 2.89061i −0.329311 + 0.0981704i
\(868\) 0 0
\(869\) 13.0627 0.443123
\(870\) 0 0
\(871\) 33.2915 1.12804
\(872\) 0 0
\(873\) 24.0798 0.814979
\(874\) 0 0
\(875\) −17.2288 + 25.6688i −0.582438 + 0.867765i
\(876\) 0 0
\(877\) 22.7533 0.768324 0.384162 0.923266i \(-0.374490\pi\)
0.384162 + 0.923266i \(0.374490\pi\)
\(878\) 0 0
\(879\) 7.99282i 0.269591i
\(880\) 0 0
\(881\) 41.1291i 1.38567i −0.721095 0.692837i \(-0.756361\pi\)
0.721095 0.692837i \(-0.243639\pi\)
\(882\) 0 0
\(883\) 24.1684i 0.813332i −0.913577 0.406666i \(-0.866691\pi\)
0.913577 0.406666i \(-0.133309\pi\)
\(884\) 0 0
\(885\) 9.29150 + 8.15984i 0.312330 + 0.274290i
\(886\) 0 0
\(887\) −44.8367 −1.50547 −0.752735 0.658324i \(-0.771266\pi\)
−0.752735 + 0.658324i \(0.771266\pi\)
\(888\) 0 0
\(889\) 36.2724i 1.21654i
\(890\) 0 0
\(891\) 31.9385i 1.06998i
\(892\) 0 0
\(893\) 35.5300i 1.18897i
\(894\) 0 0
\(895\) −5.53019 4.85664i −0.184854 0.162340i
\(896\) 0 0
\(897\) 14.5633i 0.486254i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 33.2915 4.85664i 1.10910 0.161798i
\(902\) 0 0
\(903\) 5.26923i 0.175349i
\(904\) 0 0
\(905\) −33.2915 + 37.9086i −1.10665 + 1.26012i
\(906\) 0 0
\(907\) −50.5777 −1.67941 −0.839703 0.543046i \(-0.817271\pi\)
−0.839703 + 0.543046i \(0.817271\pi\)
\(908\) 0 0
\(909\) 11.5203 0.382103
\(910\) 0 0
\(911\) 5.37934i 0.178225i 0.996022 + 0.0891127i \(0.0284031\pi\)
−0.996022 + 0.0891127i \(0.971597\pi\)
\(912\) 0 0
\(913\) −80.0143 −2.64809
\(914\) 0 0
\(915\) 12.0399 13.7097i 0.398027 0.453228i
\(916\) 0 0
\(917\) 23.0342i 0.760657i
\(918\) 0 0
\(919\) 25.2915 0.834290 0.417145 0.908840i \(-0.363031\pi\)
0.417145 + 0.908840i \(0.363031\pi\)
\(920\) 0 0
\(921\) 10.5735i 0.348409i
\(922\) 0 0
\(923\) −55.9344 −1.84110
\(924\) 0 0
\(925\) 3.57113 + 27.4194i 0.117418 + 0.901544i
\(926\) 0 0
\(927\) 13.1180i 0.430851i
\(928\) 0 0
\(929\) 12.6643i 0.415502i −0.978182 0.207751i \(-0.933386\pi\)
0.978182 0.207751i \(-0.0666144\pi\)
\(930\) 0 0
\(931\) 3.41699 0.111987
\(932\) 0 0
\(933\) 6.71453i 0.219824i
\(934\) 0 0
\(935\) −41.5987 27.0040i −1.36042 0.883126i
\(936\) 0 0
\(937\) 11.0505i 0.361003i −0.983575 0.180501i \(-0.942228\pi\)
0.983575 0.180501i \(-0.0577720\pi\)
\(938\) 0 0
\(939\) −13.5425 −0.441942
\(940\) 0 0
\(941\) 14.5699i 0.474966i 0.971392 + 0.237483i \(0.0763224\pi\)
−0.971392 + 0.237483i \(0.923678\pi\)
\(942\) 0 0
\(943\) 14.5633i 0.474245i
\(944\) 0 0
\(945\) −15.6110 13.7097i −0.507827 0.445976i
\(946\) 0 0
\(947\) 3.95547 0.128536 0.0642678 0.997933i \(-0.479529\pi\)
0.0642678 + 0.997933i \(0.479529\pi\)
\(948\) 0 0
\(949\) 77.4015i 2.51256i
\(950\) 0 0
\(951\) 9.04052 0.293159
\(952\) 0 0
\(953\) 58.0522i 1.88050i −0.340492 0.940248i \(-0.610594\pi\)
0.340492 0.940248i \(-0.389406\pi\)
\(954\) 0 0
\(955\) −10.0808 8.85305i −0.326209 0.286478i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.99641i 0.129051i
\(960\) 0 0
\(961\) 25.1033 0.809783
\(962\) 0 0
\(963\) −25.6545 −0.826706
\(964\) 0 0
\(965\) 20.2288 + 17.7650i 0.651187 + 0.571875i
\(966\) 0 0
\(967\) 46.3795i 1.49147i 0.666245 + 0.745733i \(0.267900\pi\)
−0.666245 + 0.745733i \(0.732100\pi\)
\(968\) 0 0
\(969\) 1.87451 + 12.8495i 0.0602179 + 0.412784i
\(970\) 0 0
\(971\) −36.0000 −1.15529 −0.577647 0.816286i \(-0.696029\pi\)
−0.577647 + 0.816286i \(0.696029\pi\)
\(972\) 0 0
\(973\) 17.7650i 0.569519i
\(974\) 0 0
\(975\) 14.6315 1.90562i 0.468583 0.0610288i
\(976\) 0 0
\(977\) 21.5889i 0.690690i −0.938476 0.345345i \(-0.887762\pi\)
0.938476 0.345345i \(-0.112238\pi\)
\(978\) 0 0
\(979\) 76.5413i 2.44627i
\(980\) 0 0
\(981\) 23.4230i 0.747838i
\(982\) 0 0
\(983\) 47.0813 1.50166 0.750830 0.660495i \(-0.229654\pi\)
0.750830 + 0.660495i \(0.229654\pi\)
\(984\) 0 0
\(985\) 35.8745 + 31.5052i 1.14306 + 1.00384i
\(986\) 0 0
\(987\) 11.0505i 0.351740i
\(988\) 0 0
\(989\) 15.8005i 0.502426i
\(990\) 0 0
\(991\) 46.6936i 1.48327i 0.670804 + 0.741635i \(0.265949\pi\)
−0.670804 + 0.741635i \(0.734051\pi\)
\(992\) 0 0
\(993\) 17.4339 0.553250
\(994\) 0 0
\(995\) 3.58301 4.07992i 0.113589 0.129342i
\(996\) 0 0
\(997\) 27.3040 0.864725 0.432362 0.901700i \(-0.357680\pi\)
0.432362 + 0.901700i \(0.357680\pi\)
\(998\) 0 0
\(999\) −18.5830 −0.587940
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 340.2.g.a.169.5 yes 8
3.2 odd 2 3060.2.k.h.1189.8 8
4.3 odd 2 1360.2.o.e.849.3 8
5.2 odd 4 1700.2.c.e.101.3 8
5.3 odd 4 1700.2.c.e.101.5 8
5.4 even 2 inner 340.2.g.a.169.3 8
15.14 odd 2 3060.2.k.h.1189.2 8
17.16 even 2 inner 340.2.g.a.169.4 yes 8
20.19 odd 2 1360.2.o.e.849.5 8
51.50 odd 2 3060.2.k.h.1189.1 8
68.67 odd 2 1360.2.o.e.849.6 8
85.33 odd 4 1700.2.c.e.101.4 8
85.67 odd 4 1700.2.c.e.101.6 8
85.84 even 2 inner 340.2.g.a.169.6 yes 8
255.254 odd 2 3060.2.k.h.1189.7 8
340.339 odd 2 1360.2.o.e.849.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.g.a.169.3 8 5.4 even 2 inner
340.2.g.a.169.4 yes 8 17.16 even 2 inner
340.2.g.a.169.5 yes 8 1.1 even 1 trivial
340.2.g.a.169.6 yes 8 85.84 even 2 inner
1360.2.o.e.849.3 8 4.3 odd 2
1360.2.o.e.849.4 8 340.339 odd 2
1360.2.o.e.849.5 8 20.19 odd 2
1360.2.o.e.849.6 8 68.67 odd 2
1700.2.c.e.101.3 8 5.2 odd 4
1700.2.c.e.101.4 8 85.33 odd 4
1700.2.c.e.101.5 8 5.3 odd 4
1700.2.c.e.101.6 8 85.67 odd 4
3060.2.k.h.1189.1 8 51.50 odd 2
3060.2.k.h.1189.2 8 15.14 odd 2
3060.2.k.h.1189.7 8 255.254 odd 2
3060.2.k.h.1189.8 8 3.2 odd 2