Properties

Label 3060.2.g.g.2449.4
Level $3060$
Weight $2$
Character 3060.2449
Analytic conductor $24.434$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(2449,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,-24,0,0,0,0,0,12,0,0, 0,12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 14x^{7} + 42x^{6} + 2x^{5} + 10x^{4} + 54x^{3} + 121x^{2} + 44x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.4
Root \(-0.841453 + 0.841453i\) of defining polynomial
Character \(\chi\) \(=\) 3060.2449
Dual form 3060.2.g.g.2449.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.85384 + 1.25031i) q^{5} -1.12377i q^{7} +0.781901 q^{11} +6.90690i q^{13} -1.00000i q^{17} +4.99020 q^{19} -2.69860i q^{23} +(1.87347 - 4.63574i) q^{25} -4.48959 q^{29} +5.36581 q^{31} +(1.40506 + 2.08330i) q^{35} +1.87745i q^{37} -12.1973 q^{41} -4.10366i q^{43} +12.1029i q^{47} +5.73713 q^{49} -7.12377i q^{53} +(-1.44952 + 0.977616i) q^{55} +8.61213 q^{59} -13.0106 q^{61} +(-8.63574 - 12.8043i) q^{65} +8.61213i q^{67} -13.8138 q^{71} +7.29037i q^{73} -0.878680i q^{77} -12.7316 q^{79} +13.0601i q^{83} +(1.25031 + 1.85384i) q^{85} +10.7630 q^{89} +7.76179 q^{91} +(-9.25105 + 6.23928i) q^{95} +18.2279i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 12 q^{11} - 24 q^{19} + 12 q^{25} + 12 q^{29} + 12 q^{31} - 4 q^{35} - 28 q^{41} - 30 q^{49} + 26 q^{55} + 48 q^{59} - 28 q^{61} - 48 q^{65} - 44 q^{79} + 4 q^{85} + 36 q^{89} + 40 q^{91} - 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.85384 + 1.25031i −0.829064 + 0.559154i
\(6\) 0 0
\(7\) 1.12377i 0.424746i −0.977189 0.212373i \(-0.931881\pi\)
0.977189 0.212373i \(-0.0681192\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.781901 0.235752 0.117876 0.993028i \(-0.462391\pi\)
0.117876 + 0.993028i \(0.462391\pi\)
\(12\) 0 0
\(13\) 6.90690i 1.91563i 0.287386 + 0.957815i \(0.407214\pi\)
−0.287386 + 0.957815i \(0.592786\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 4.99020 1.14483 0.572415 0.819964i \(-0.306007\pi\)
0.572415 + 0.819964i \(0.306007\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.69860i 0.562697i −0.959606 0.281349i \(-0.909218\pi\)
0.959606 0.281349i \(-0.0907818\pi\)
\(24\) 0 0
\(25\) 1.87347 4.63574i 0.374693 0.927149i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.48959 −0.833695 −0.416848 0.908976i \(-0.636865\pi\)
−0.416848 + 0.908976i \(0.636865\pi\)
\(30\) 0 0
\(31\) 5.36581 0.963729 0.481864 0.876246i \(-0.339960\pi\)
0.481864 + 0.876246i \(0.339960\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.40506 + 2.08330i 0.237499 + 0.352142i
\(36\) 0 0
\(37\) 1.87745i 0.308651i 0.988020 + 0.154326i \(0.0493205\pi\)
−0.988020 + 0.154326i \(0.950679\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −12.1973 −1.90489 −0.952447 0.304704i \(-0.901442\pi\)
−0.952447 + 0.304704i \(0.901442\pi\)
\(42\) 0 0
\(43\) 4.10366i 0.625803i −0.949786 0.312901i \(-0.898699\pi\)
0.949786 0.312901i \(-0.101301\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.1029i 1.76540i 0.469940 + 0.882698i \(0.344275\pi\)
−0.469940 + 0.882698i \(0.655725\pi\)
\(48\) 0 0
\(49\) 5.73713 0.819591
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.12377i 0.978526i −0.872136 0.489263i \(-0.837266\pi\)
0.872136 0.489263i \(-0.162734\pi\)
\(54\) 0 0
\(55\) −1.44952 + 0.977616i −0.195453 + 0.131822i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.61213 1.12120 0.560602 0.828085i \(-0.310570\pi\)
0.560602 + 0.828085i \(0.310570\pi\)
\(60\) 0 0
\(61\) −13.0106 −1.66583 −0.832916 0.553399i \(-0.813330\pi\)
−0.832916 + 0.553399i \(0.813330\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.63574 12.8043i −1.07113 1.58818i
\(66\) 0 0
\(67\) 8.61213i 1.05214i 0.850441 + 0.526070i \(0.176335\pi\)
−0.850441 + 0.526070i \(0.823665\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −13.8138 −1.63940 −0.819698 0.572795i \(-0.805859\pi\)
−0.819698 + 0.572795i \(0.805859\pi\)
\(72\) 0 0
\(73\) 7.29037i 0.853273i 0.904423 + 0.426637i \(0.140302\pi\)
−0.904423 + 0.426637i \(0.859698\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.878680i 0.100135i
\(78\) 0 0
\(79\) −12.7316 −1.43242 −0.716210 0.697885i \(-0.754125\pi\)
−0.716210 + 0.697885i \(0.754125\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.0601i 1.43353i 0.697312 + 0.716767i \(0.254379\pi\)
−0.697312 + 0.716767i \(0.745621\pi\)
\(84\) 0 0
\(85\) 1.25031 + 1.85384i 0.135615 + 0.201077i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.7630 1.14088 0.570439 0.821340i \(-0.306773\pi\)
0.570439 + 0.821340i \(0.306773\pi\)
\(90\) 0 0
\(91\) 7.76179 0.813657
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.25105 + 6.23928i −0.949137 + 0.640137i
\(96\) 0 0
\(97\) 18.2279i 1.85077i 0.379031 + 0.925384i \(0.376257\pi\)
−0.379031 + 0.925384i \(0.623743\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.24877 −0.522272 −0.261136 0.965302i \(-0.584097\pi\)
−0.261136 + 0.965302i \(0.584097\pi\)
\(102\) 0 0
\(103\) 4.10366i 0.404346i 0.979350 + 0.202173i \(0.0648003\pi\)
−0.979350 + 0.202173i \(0.935200\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.25307i 0.217812i 0.994052 + 0.108906i \(0.0347348\pi\)
−0.994052 + 0.108906i \(0.965265\pi\)
\(108\) 0 0
\(109\) 11.9804 1.14751 0.573757 0.819026i \(-0.305485\pi\)
0.573757 + 0.819026i \(0.305485\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.28057i 0.778971i 0.921033 + 0.389485i \(0.127347\pi\)
−0.921033 + 0.389485i \(0.872653\pi\)
\(114\) 0 0
\(115\) 3.37408 + 5.00278i 0.314635 + 0.466512i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.12377 −0.103016
\(120\) 0 0
\(121\) −10.3886 −0.944421
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.32299 + 10.9363i 0.207774 + 0.978177i
\(126\) 0 0
\(127\) 13.6385i 1.21022i −0.796140 0.605112i \(-0.793128\pi\)
0.796140 0.605112i \(-0.206872\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 22.5007 1.96589 0.982946 0.183895i \(-0.0588705\pi\)
0.982946 + 0.183895i \(0.0588705\pi\)
\(132\) 0 0
\(133\) 5.60785i 0.486263i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.29282i 0.793940i 0.917832 + 0.396970i \(0.129938\pi\)
−0.917832 + 0.396970i \(0.870062\pi\)
\(138\) 0 0
\(139\) −14.2500 −1.20867 −0.604335 0.796731i \(-0.706561\pi\)
−0.604335 + 0.796731i \(0.706561\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.40051i 0.451614i
\(144\) 0 0
\(145\) 8.32299 5.61336i 0.691187 0.466164i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.36827 −0.603632 −0.301816 0.953366i \(-0.597593\pi\)
−0.301816 + 0.953366i \(0.597593\pi\)
\(150\) 0 0
\(151\) −6.34116 −0.516036 −0.258018 0.966140i \(-0.583069\pi\)
−0.258018 + 0.966140i \(0.583069\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.94738 + 6.70891i −0.798992 + 0.538873i
\(156\) 0 0
\(157\) 9.95523i 0.794514i 0.917707 + 0.397257i \(0.130038\pi\)
−0.917707 + 0.397257i \(0.869962\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.03262 −0.239004
\(162\) 0 0
\(163\) 13.4192i 1.05107i 0.850771 + 0.525537i \(0.176135\pi\)
−0.850771 + 0.525537i \(0.823865\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.35218i 0.491547i 0.969327 + 0.245773i \(0.0790419\pi\)
−0.969327 + 0.245773i \(0.920958\pi\)
\(168\) 0 0
\(169\) −34.7053 −2.66964
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.30385i 0.0991300i −0.998771 0.0495650i \(-0.984217\pi\)
0.998771 0.0495650i \(-0.0157835\pi\)
\(174\) 0 0
\(175\) −5.20953 2.10535i −0.393803 0.159150i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.60280 0.493516 0.246758 0.969077i \(-0.420635\pi\)
0.246758 + 0.969077i \(0.420635\pi\)
\(180\) 0 0
\(181\) 4.95412 0.368237 0.184118 0.982904i \(-0.441057\pi\)
0.184118 + 0.982904i \(0.441057\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.34739 3.48050i −0.172584 0.255892i
\(186\) 0 0
\(187\) 0.781901i 0.0571783i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.0987 −1.38193 −0.690966 0.722888i \(-0.742814\pi\)
−0.690966 + 0.722888i \(0.742814\pi\)
\(192\) 0 0
\(193\) 16.3984i 1.18038i −0.807263 0.590192i \(-0.799052\pi\)
0.807263 0.590192i \(-0.200948\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.2335i 1.29908i 0.760327 + 0.649540i \(0.225039\pi\)
−0.760327 + 0.649540i \(0.774961\pi\)
\(198\) 0 0
\(199\) −25.7329 −1.82415 −0.912077 0.410019i \(-0.865522\pi\)
−0.912077 + 0.410019i \(0.865522\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.04528i 0.354109i
\(204\) 0 0
\(205\) 22.6118 15.2503i 1.57928 1.06513i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.90184 0.269896
\(210\) 0 0
\(211\) 3.18988 0.219600 0.109800 0.993954i \(-0.464979\pi\)
0.109800 + 0.993954i \(0.464979\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.13084 + 7.60755i 0.349920 + 0.518830i
\(216\) 0 0
\(217\) 6.02996i 0.409340i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.90690 0.464608
\(222\) 0 0
\(223\) 18.6466i 1.24867i −0.781156 0.624336i \(-0.785370\pi\)
0.781156 0.624336i \(-0.214630\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.27935i 0.350402i −0.984533 0.175201i \(-0.943942\pi\)
0.984533 0.175201i \(-0.0560576\pi\)
\(228\) 0 0
\(229\) −16.9871 −1.12254 −0.561271 0.827632i \(-0.689687\pi\)
−0.561271 + 0.827632i \(0.689687\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.52567i 0.558535i −0.960213 0.279267i \(-0.909908\pi\)
0.960213 0.279267i \(-0.0900916\pi\)
\(234\) 0 0
\(235\) −15.1324 22.4370i −0.987129 1.46363i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.95412 −0.449825 −0.224912 0.974379i \(-0.572210\pi\)
−0.224912 + 0.974379i \(0.572210\pi\)
\(240\) 0 0
\(241\) 7.25811 0.467536 0.233768 0.972292i \(-0.424894\pi\)
0.233768 + 0.972292i \(0.424894\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.6357 + 7.17318i −0.679493 + 0.458277i
\(246\) 0 0
\(247\) 34.4668i 2.19307i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.63419 −0.544985 −0.272493 0.962158i \(-0.587848\pi\)
−0.272493 + 0.962158i \(0.587848\pi\)
\(252\) 0 0
\(253\) 2.11004i 0.132657i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.542976i 0.0338699i −0.999857 0.0169350i \(-0.994609\pi\)
0.999857 0.0169350i \(-0.00539082\pi\)
\(258\) 0 0
\(259\) 2.10983 0.131099
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.74985i 0.169563i 0.996400 + 0.0847815i \(0.0270192\pi\)
−0.996400 + 0.0847815i \(0.972981\pi\)
\(264\) 0 0
\(265\) 8.90690 + 13.2064i 0.547147 + 0.811260i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.8531 0.722694 0.361347 0.932431i \(-0.382317\pi\)
0.361347 + 0.932431i \(0.382317\pi\)
\(270\) 0 0
\(271\) 4.52267 0.274732 0.137366 0.990520i \(-0.456136\pi\)
0.137366 + 0.990520i \(0.456136\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.46487 3.62469i 0.0883347 0.218577i
\(276\) 0 0
\(277\) 12.7316i 0.764969i 0.923962 + 0.382485i \(0.124932\pi\)
−0.923962 + 0.382485i \(0.875068\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.08217 0.303177 0.151589 0.988444i \(-0.451561\pi\)
0.151589 + 0.988444i \(0.451561\pi\)
\(282\) 0 0
\(283\) 10.2759i 0.610838i −0.952218 0.305419i \(-0.901203\pi\)
0.952218 0.305419i \(-0.0987965\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.7070i 0.809097i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.7290i 0.918899i −0.888204 0.459450i \(-0.848047\pi\)
0.888204 0.459450i \(-0.151953\pi\)
\(294\) 0 0
\(295\) −15.9655 + 10.7678i −0.929550 + 0.626926i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.6390 1.07792
\(300\) 0 0
\(301\) −4.61159 −0.265807
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.1195 16.2672i 1.38108 0.931457i
\(306\) 0 0
\(307\) 10.5871i 0.604237i 0.953270 + 0.302118i \(0.0976938\pi\)
−0.953270 + 0.302118i \(0.902306\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.65741 0.320802 0.160401 0.987052i \(-0.448721\pi\)
0.160401 + 0.987052i \(0.448721\pi\)
\(312\) 0 0
\(313\) 3.80752i 0.215214i −0.994194 0.107607i \(-0.965681\pi\)
0.994194 0.107607i \(-0.0343188\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.5226i 1.26500i 0.774562 + 0.632498i \(0.217970\pi\)
−0.774562 + 0.632498i \(0.782030\pi\)
\(318\) 0 0
\(319\) −3.51041 −0.196545
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.99020i 0.277662i
\(324\) 0 0
\(325\) 32.0186 + 12.9398i 1.77607 + 0.717774i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13.6010 0.749846
\(330\) 0 0
\(331\) 19.6337 1.07917 0.539584 0.841932i \(-0.318582\pi\)
0.539584 + 0.841932i \(0.318582\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.7678 15.9655i −0.588308 0.872291i
\(336\) 0 0
\(337\) 18.5014i 1.00783i −0.863752 0.503917i \(-0.831892\pi\)
0.863752 0.503917i \(-0.168108\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.19554 0.227201
\(342\) 0 0
\(343\) 14.3137i 0.772865i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.69431i 0.198321i −0.995071 0.0991604i \(-0.968384\pi\)
0.995071 0.0991604i \(-0.0316157\pi\)
\(348\) 0 0
\(349\) 11.3234 0.606128 0.303064 0.952970i \(-0.401990\pi\)
0.303064 + 0.952970i \(0.401990\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.04282i 0.268402i 0.990954 + 0.134201i \(0.0428469\pi\)
−0.990954 + 0.134201i \(0.957153\pi\)
\(354\) 0 0
\(355\) 25.6086 17.2715i 1.35916 0.916675i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.5901 0.664479 0.332240 0.943195i \(-0.392196\pi\)
0.332240 + 0.943195i \(0.392196\pi\)
\(360\) 0 0
\(361\) 5.90210 0.310637
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.11520 13.5152i −0.477111 0.707418i
\(366\) 0 0
\(367\) 13.5231i 0.705899i 0.935642 + 0.352949i \(0.114821\pi\)
−0.935642 + 0.352949i \(0.885179\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.00551 −0.415625
\(372\) 0 0
\(373\) 14.2475i 0.737710i −0.929487 0.368855i \(-0.879750\pi\)
0.929487 0.368855i \(-0.120250\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 31.0091i 1.59705i
\(378\) 0 0
\(379\) −29.2881 −1.50443 −0.752214 0.658919i \(-0.771014\pi\)
−0.752214 + 0.658919i \(0.771014\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 35.8201i 1.83032i 0.403090 + 0.915160i \(0.367936\pi\)
−0.403090 + 0.915160i \(0.632064\pi\)
\(384\) 0 0
\(385\) 1.09862 + 1.62893i 0.0559908 + 0.0830182i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.83463 −0.346529 −0.173265 0.984875i \(-0.555432\pi\)
−0.173265 + 0.984875i \(0.555432\pi\)
\(390\) 0 0
\(391\) −2.69860 −0.136474
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 23.6024 15.9184i 1.18757 0.800944i
\(396\) 0 0
\(397\) 1.66675i 0.0836518i −0.999125 0.0418259i \(-0.986683\pi\)
0.999125 0.0418259i \(-0.0133175\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.4681 0.772440 0.386220 0.922407i \(-0.373781\pi\)
0.386220 + 0.922407i \(0.373781\pi\)
\(402\) 0 0
\(403\) 37.0611i 1.84615i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.46798i 0.0727652i
\(408\) 0 0
\(409\) 10.7451 0.531311 0.265656 0.964068i \(-0.414412\pi\)
0.265656 + 0.964068i \(0.414412\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.67809i 0.476227i
\(414\) 0 0
\(415\) −16.3292 24.2114i −0.801567 1.18849i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.0041 −0.586437 −0.293219 0.956045i \(-0.594726\pi\)
−0.293219 + 0.956045i \(0.594726\pi\)
\(420\) 0 0
\(421\) 34.8222 1.69713 0.848564 0.529092i \(-0.177467\pi\)
0.848564 + 0.529092i \(0.177467\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.63574 1.87347i −0.224867 0.0908765i
\(426\) 0 0
\(427\) 14.6209i 0.707556i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.43069 −0.117082 −0.0585411 0.998285i \(-0.518645\pi\)
−0.0585411 + 0.998285i \(0.518645\pi\)
\(432\) 0 0
\(433\) 26.7271i 1.28442i −0.766528 0.642211i \(-0.778017\pi\)
0.766528 0.642211i \(-0.221983\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.4666i 0.644193i
\(438\) 0 0
\(439\) 12.2029 0.582412 0.291206 0.956660i \(-0.405943\pi\)
0.291206 + 0.956660i \(0.405943\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.6225i 1.64496i 0.568791 + 0.822482i \(0.307411\pi\)
−0.568791 + 0.822482i \(0.692589\pi\)
\(444\) 0 0
\(445\) −19.9529 + 13.4571i −0.945860 + 0.637926i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.34666 −0.110746 −0.0553729 0.998466i \(-0.517635\pi\)
−0.0553729 + 0.998466i \(0.517635\pi\)
\(450\) 0 0
\(451\) −9.53706 −0.449083
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.3891 + 9.70462i −0.674573 + 0.454960i
\(456\) 0 0
\(457\) 4.07616i 0.190675i 0.995445 + 0.0953373i \(0.0303930\pi\)
−0.995445 + 0.0953373i \(0.969607\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.38909 0.111271 0.0556356 0.998451i \(-0.482281\pi\)
0.0556356 + 0.998451i \(0.482281\pi\)
\(462\) 0 0
\(463\) 32.6445i 1.51712i 0.651603 + 0.758560i \(0.274097\pi\)
−0.651603 + 0.758560i \(0.725903\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.93390i 0.274588i 0.990530 + 0.137294i \(0.0438405\pi\)
−0.990530 + 0.137294i \(0.956159\pi\)
\(468\) 0 0
\(469\) 9.67809 0.446892
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.20866i 0.147534i
\(474\) 0 0
\(475\) 9.34897 23.1333i 0.428960 1.06143i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.98199 −0.273324 −0.136662 0.990618i \(-0.543637\pi\)
−0.136662 + 0.990618i \(0.543637\pi\)
\(480\) 0 0
\(481\) −12.9674 −0.591262
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.7905 33.7917i −1.03486 1.53440i
\(486\) 0 0
\(487\) 12.6033i 0.571110i 0.958362 + 0.285555i \(0.0921780\pi\)
−0.958362 + 0.285555i \(0.907822\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.1398 0.728381 0.364190 0.931324i \(-0.381346\pi\)
0.364190 + 0.931324i \(0.381346\pi\)
\(492\) 0 0
\(493\) 4.48959i 0.202201i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.5236i 0.696328i
\(498\) 0 0
\(499\) −9.02160 −0.403862 −0.201931 0.979400i \(-0.564722\pi\)
−0.201931 + 0.979400i \(0.564722\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.646591i 0.0288301i 0.999896 + 0.0144150i \(0.00458861\pi\)
−0.999896 + 0.0144150i \(0.995411\pi\)
\(504\) 0 0
\(505\) 9.73040 6.56258i 0.432997 0.292031i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22.4014 −0.992926 −0.496463 0.868058i \(-0.665368\pi\)
−0.496463 + 0.868058i \(0.665368\pi\)
\(510\) 0 0
\(511\) 8.19273 0.362425
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.13084 7.60755i −0.226092 0.335229i
\(516\) 0 0
\(517\) 9.46331i 0.416196i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −11.8531 −0.519292 −0.259646 0.965704i \(-0.583606\pi\)
−0.259646 + 0.965704i \(0.583606\pi\)
\(522\) 0 0
\(523\) 35.2253i 1.54029i −0.637866 0.770147i \(-0.720183\pi\)
0.637866 0.770147i \(-0.279817\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.36581i 0.233739i
\(528\) 0 0
\(529\) 15.7175 0.683372
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 84.2454i 3.64907i
\(534\) 0 0
\(535\) −2.81702 4.17683i −0.121791 0.180580i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.48587 0.193220
\(540\) 0 0
\(541\) 0.765471 0.0329101 0.0164551 0.999865i \(-0.494762\pi\)
0.0164551 + 0.999865i \(0.494762\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −22.2098 + 14.9792i −0.951362 + 0.641637i
\(546\) 0 0
\(547\) 3.36521i 0.143886i −0.997409 0.0719431i \(-0.977080\pi\)
0.997409 0.0719431i \(-0.0229200\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −22.4039 −0.954440
\(552\) 0 0
\(553\) 14.3075i 0.608415i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.62270i 0.407727i −0.978999 0.203863i \(-0.934650\pi\)
0.978999 0.203863i \(-0.0653498\pi\)
\(558\) 0 0
\(559\) 28.3436 1.19881
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 38.9023i 1.63953i −0.572697 0.819767i \(-0.694103\pi\)
0.572697 0.819767i \(-0.305897\pi\)
\(564\) 0 0
\(565\) −10.3533 15.3509i −0.435565 0.645816i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.9914 0.670395 0.335197 0.942148i \(-0.391197\pi\)
0.335197 + 0.942148i \(0.391197\pi\)
\(570\) 0 0
\(571\) 5.08906 0.212971 0.106485 0.994314i \(-0.466040\pi\)
0.106485 + 0.994314i \(0.466040\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.5100 5.05574i −0.521704 0.210839i
\(576\) 0 0
\(577\) 14.0056i 0.583059i −0.956562 0.291530i \(-0.905836\pi\)
0.956562 0.291530i \(-0.0941642\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14.6766 0.608889
\(582\) 0 0
\(583\) 5.57009i 0.230689i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.7769i 1.22902i −0.788908 0.614512i \(-0.789353\pi\)
0.788908 0.614512i \(-0.210647\pi\)
\(588\) 0 0
\(589\) 26.7765 1.10331
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 32.2587i 1.32471i 0.749191 + 0.662354i \(0.230442\pi\)
−0.749191 + 0.662354i \(0.769558\pi\)
\(594\) 0 0
\(595\) 2.08330 1.40506i 0.0854069 0.0576019i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.07116 0.288920 0.144460 0.989511i \(-0.453856\pi\)
0.144460 + 0.989511i \(0.453856\pi\)
\(600\) 0 0
\(601\) −30.9910 −1.26415 −0.632074 0.774908i \(-0.717796\pi\)
−0.632074 + 0.774908i \(0.717796\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.2589 12.9890i 0.782985 0.528077i
\(606\) 0 0
\(607\) 19.5806i 0.794752i 0.917656 + 0.397376i \(0.130079\pi\)
−0.917656 + 0.397376i \(0.869921\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −83.5939 −3.38185
\(612\) 0 0
\(613\) 36.2578i 1.46444i −0.681069 0.732219i \(-0.738485\pi\)
0.681069 0.732219i \(-0.261515\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.63153i 0.0656828i −0.999461 0.0328414i \(-0.989544\pi\)
0.999461 0.0328414i \(-0.0104556\pi\)
\(618\) 0 0
\(619\) 4.39843 0.176788 0.0883939 0.996086i \(-0.471827\pi\)
0.0883939 + 0.996086i \(0.471827\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0952i 0.484584i
\(624\) 0 0
\(625\) −17.9802 17.3698i −0.719210 0.694793i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.87745 0.0748590
\(630\) 0 0
\(631\) 32.3381 1.28736 0.643679 0.765295i \(-0.277407\pi\)
0.643679 + 0.765295i \(0.277407\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.0523 + 25.2837i 0.676702 + 1.00335i
\(636\) 0 0
\(637\) 39.6258i 1.57003i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 45.6200 1.80188 0.900941 0.433942i \(-0.142878\pi\)
0.900941 + 0.433942i \(0.142878\pi\)
\(642\) 0 0
\(643\) 23.3446i 0.920621i 0.887758 + 0.460310i \(0.152262\pi\)
−0.887758 + 0.460310i \(0.847738\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.6985i 1.12826i 0.825687 + 0.564128i \(0.190788\pi\)
−0.825687 + 0.564128i \(0.809212\pi\)
\(648\) 0 0
\(649\) 6.73384 0.264326
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 28.6270i 1.12026i −0.828404 0.560130i \(-0.810751\pi\)
0.828404 0.560130i \(-0.189249\pi\)
\(654\) 0 0
\(655\) −41.7127 + 28.1327i −1.62985 + 1.09924i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.91783 −0.191571 −0.0957856 0.995402i \(-0.530536\pi\)
−0.0957856 + 0.995402i \(0.530536\pi\)
\(660\) 0 0
\(661\) −17.6855 −0.687886 −0.343943 0.938991i \(-0.611763\pi\)
−0.343943 + 0.938991i \(0.611763\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.01154 + 10.3961i 0.271896 + 0.403143i
\(666\) 0 0
\(667\) 12.1156i 0.469118i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.1730 −0.392723
\(672\) 0 0
\(673\) 3.66435i 0.141250i 0.997503 + 0.0706252i \(0.0224994\pi\)
−0.997503 + 0.0706252i \(0.977501\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 50.8292i 1.95353i −0.214325 0.976763i \(-0.568755\pi\)
0.214325 0.976763i \(-0.431245\pi\)
\(678\) 0 0
\(679\) 20.4841 0.786107
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 44.8133i 1.71473i −0.514707 0.857366i \(-0.672099\pi\)
0.514707 0.857366i \(-0.327901\pi\)
\(684\) 0 0
\(685\) −11.6189 17.2274i −0.443935 0.658227i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 49.2032 1.87449
\(690\) 0 0
\(691\) 17.9779 0.683913 0.341957 0.939716i \(-0.388910\pi\)
0.341957 + 0.939716i \(0.388910\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 26.4173 17.8169i 1.00206 0.675832i
\(696\) 0 0
\(697\) 12.1973i 0.462005i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.1980 1.21610 0.608051 0.793898i \(-0.291952\pi\)
0.608051 + 0.793898i \(0.291952\pi\)
\(702\) 0 0
\(703\) 9.36887i 0.353354i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.89843i 0.221833i
\(708\) 0 0
\(709\) 40.8651 1.53472 0.767361 0.641215i \(-0.221569\pi\)
0.767361 + 0.641215i \(0.221569\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.4802i 0.542288i
\(714\) 0 0
\(715\) −6.75230 10.0117i −0.252522 0.374416i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.4487 0.464258 0.232129 0.972685i \(-0.425431\pi\)
0.232129 + 0.972685i \(0.425431\pi\)
\(720\) 0 0
\(721\) 4.61159 0.171744
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8.41109 + 20.8126i −0.312380 + 0.772960i
\(726\) 0 0
\(727\) 13.5687i 0.503236i 0.967827 + 0.251618i \(0.0809626\pi\)
−0.967827 + 0.251618i \(0.919037\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.10366 −0.151779
\(732\) 0 0
\(733\) 19.1364i 0.706820i 0.935468 + 0.353410i \(0.114978\pi\)
−0.935468 + 0.353410i \(0.885022\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.73384i 0.248044i
\(738\) 0 0
\(739\) 15.2592 0.561319 0.280659 0.959807i \(-0.409447\pi\)
0.280659 + 0.959807i \(0.409447\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.68967i 0.208734i −0.994539 0.104367i \(-0.966718\pi\)
0.994539 0.104367i \(-0.0332816\pi\)
\(744\) 0 0
\(745\) 13.6596 9.21259i 0.500449 0.337523i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.53194 0.0925149
\(750\) 0 0
\(751\) −44.9416 −1.63994 −0.819972 0.572404i \(-0.806011\pi\)
−0.819972 + 0.572404i \(0.806011\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.7555 7.92839i 0.427827 0.288544i
\(756\) 0 0
\(757\) 3.21402i 0.116816i 0.998293 + 0.0584079i \(0.0186024\pi\)
−0.998293 + 0.0584079i \(0.981398\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.6110 1.79840 0.899199 0.437540i \(-0.144150\pi\)
0.899199 + 0.437540i \(0.144150\pi\)
\(762\) 0 0
\(763\) 13.4633i 0.487403i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 59.4832i 2.14781i
\(768\) 0 0
\(769\) −45.2790 −1.63280 −0.816401 0.577485i \(-0.804034\pi\)
−0.816401 + 0.577485i \(0.804034\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34.7968i 1.25155i 0.780002 + 0.625777i \(0.215218\pi\)
−0.780002 + 0.625777i \(0.784782\pi\)
\(774\) 0 0
\(775\) 10.0527 24.8745i 0.361103 0.893520i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −60.8668 −2.18078
\(780\) 0 0
\(781\) −10.8010 −0.386491
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.4471 18.4554i −0.444256 0.658703i
\(786\) 0 0
\(787\) 2.99106i 0.106620i 0.998578 + 0.0533098i \(0.0169771\pi\)
−0.998578 + 0.0533098i \(0.983023\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.30549 0.330865
\(792\) 0 0
\(793\) 89.8627i 3.19112i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.5293i 0.550077i −0.961433 0.275039i \(-0.911309\pi\)
0.961433 0.275039i \(-0.0886906\pi\)
\(798\) 0 0
\(799\) 12.1029 0.428171
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.70035i 0.201161i
\(804\) 0 0
\(805\) 5.62200 3.79170i 0.198149 0.133640i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.31416 0.186836 0.0934180 0.995627i \(-0.470221\pi\)
0.0934180 + 0.995627i \(0.470221\pi\)
\(810\) 0 0
\(811\) 38.6831 1.35835 0.679174 0.733978i \(-0.262338\pi\)
0.679174 + 0.733978i \(0.262338\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.7781 24.8771i −0.587712 0.871407i
\(816\) 0 0
\(817\) 20.4781i 0.716438i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 36.8426 1.28582 0.642909 0.765943i \(-0.277727\pi\)
0.642909 + 0.765943i \(0.277727\pi\)
\(822\) 0 0
\(823\) 7.36521i 0.256735i −0.991727 0.128368i \(-0.959026\pi\)
0.991727 0.128368i \(-0.0409737\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.4229i 1.12745i 0.825961 + 0.563727i \(0.190633\pi\)
−0.825961 + 0.563727i \(0.809367\pi\)
\(828\) 0 0
\(829\) 30.8905 1.07287 0.536435 0.843942i \(-0.319771\pi\)
0.536435 + 0.843942i \(0.319771\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.73713i 0.198780i
\(834\) 0 0
\(835\) −7.94218 11.7759i −0.274850 0.407523i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 16.5933 0.572863 0.286431 0.958101i \(-0.407531\pi\)
0.286431 + 0.958101i \(0.407531\pi\)
\(840\) 0 0
\(841\) −8.84361 −0.304952
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 64.3381 43.3922i 2.21330 1.49274i
\(846\) 0 0
\(847\) 11.6745i 0.401139i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.06650 0.173677
\(852\) 0 0
\(853\) 49.8460i 1.70669i −0.521344 0.853347i \(-0.674569\pi\)
0.521344 0.853347i \(-0.325431\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44.1973i 1.50975i 0.655867 + 0.754876i \(0.272303\pi\)
−0.655867 + 0.754876i \(0.727697\pi\)
\(858\) 0 0
\(859\) −11.0703 −0.377715 −0.188857 0.982005i \(-0.560478\pi\)
−0.188857 + 0.982005i \(0.560478\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.97166i 0.0671162i 0.999437 + 0.0335581i \(0.0106839\pi\)
−0.999437 + 0.0335581i \(0.989316\pi\)
\(864\) 0 0
\(865\) 1.63021 + 2.41713i 0.0554289 + 0.0821850i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9.95487 −0.337696
\(870\) 0 0
\(871\) −59.4832 −2.01551
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12.2900 2.61051i 0.415477 0.0882514i
\(876\) 0 0
\(877\) 18.6005i 0.628094i 0.949407 + 0.314047i \(0.101685\pi\)
−0.949407 + 0.314047i \(0.898315\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.9871 0.909220 0.454610 0.890691i \(-0.349779\pi\)
0.454610 + 0.890691i \(0.349779\pi\)
\(882\) 0 0
\(883\) 32.5684i 1.09601i −0.836474 0.548007i \(-0.815387\pi\)
0.836474 0.548007i \(-0.184613\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.9614i 0.535932i 0.963428 + 0.267966i \(0.0863515\pi\)
−0.963428 + 0.267966i \(0.913649\pi\)
\(888\) 0 0
\(889\) −15.3266 −0.514038
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 60.3961i 2.02108i
\(894\) 0 0
\(895\) −12.2405 + 8.25552i −0.409156 + 0.275952i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −24.0903 −0.803456
\(900\) 0 0
\(901\) −7.12377 −0.237327
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.18416 + 6.19417i −0.305292 + 0.205901i
\(906\) 0 0
\(907\) 46.1926i 1.53380i 0.641767 + 0.766900i \(0.278202\pi\)
−0.641767 + 0.766900i \(0.721798\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.03435 −0.100533 −0.0502663 0.998736i \(-0.516007\pi\)
−0.0502663 + 0.998736i \(0.516007\pi\)
\(912\) 0 0
\(913\) 10.2117i 0.337959i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 25.2856i 0.835005i
\(918\) 0 0
\(919\) 32.7231 1.07943 0.539717 0.841847i \(-0.318531\pi\)
0.539717 + 0.841847i \(0.318531\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 95.4106i 3.14048i
\(924\) 0 0
\(925\) 8.70339 + 3.51735i 0.286166 + 0.115650i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −29.6401 −0.972460 −0.486230 0.873831i \(-0.661628\pi\)
−0.486230 + 0.873831i \(0.661628\pi\)
\(930\) 0 0
\(931\) 28.6294 0.938292
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.977616 + 1.44952i 0.0319715 + 0.0474044i
\(936\) 0 0
\(937\) 13.5349i 0.442165i 0.975255 + 0.221082i \(0.0709590\pi\)
−0.975255 + 0.221082i \(0.929041\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −55.0553 −1.79475 −0.897376 0.441267i \(-0.854529\pi\)
−0.897376 + 0.441267i \(0.854529\pi\)
\(942\) 0 0
\(943\) 32.9156i 1.07188i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.7344i 1.42118i −0.703608 0.710588i \(-0.748429\pi\)
0.703608 0.710588i \(-0.251571\pi\)
\(948\) 0 0
\(949\) −50.3539 −1.63456
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.4795i 0.695790i −0.937533 0.347895i \(-0.886897\pi\)
0.937533 0.347895i \(-0.113103\pi\)
\(954\) 0 0
\(955\) 35.4059 23.8792i 1.14571 0.772712i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.4430 0.337223
\(960\) 0 0
\(961\) −2.20804 −0.0712273
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 20.5031 + 30.4001i 0.660017 + 0.978614i
\(966\) 0 0
\(967\) 3.21334i 0.103334i −0.998664 0.0516671i \(-0.983547\pi\)
0.998664 0.0516671i \(-0.0164535\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.02628 0.225484 0.112742 0.993624i \(-0.464037\pi\)
0.112742 + 0.993624i \(0.464037\pi\)
\(972\) 0 0
\(973\) 16.0138i 0.513378i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.8209i 1.21000i 0.796226 + 0.604999i \(0.206827\pi\)
−0.796226 + 0.604999i \(0.793173\pi\)
\(978\) 0 0
\(979\) 8.41562 0.268964
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.1150i 0.896729i 0.893851 + 0.448365i \(0.147993\pi\)
−0.893851 + 0.448365i \(0.852007\pi\)
\(984\) 0 0
\(985\) −22.7974 33.8020i −0.726386 1.07702i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −11.0742 −0.352138
\(990\) 0 0
\(991\) 3.96666 0.126005 0.0630026 0.998013i \(-0.479932\pi\)
0.0630026 + 0.998013i \(0.479932\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 47.7047 32.1740i 1.51234 1.01998i
\(996\) 0 0
\(997\) 22.4622i 0.711384i −0.934603 0.355692i \(-0.884245\pi\)
0.934603 0.355692i \(-0.115755\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.g.g.2449.4 10
3.2 odd 2 1020.2.g.d.409.9 yes 10
5.4 even 2 inner 3060.2.g.g.2449.3 10
12.11 even 2 4080.2.m.r.2449.4 10
15.2 even 4 5100.2.a.bd.1.3 5
15.8 even 4 5100.2.a.bc.1.3 5
15.14 odd 2 1020.2.g.d.409.4 10
60.59 even 2 4080.2.m.r.2449.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.g.d.409.4 10 15.14 odd 2
1020.2.g.d.409.9 yes 10 3.2 odd 2
3060.2.g.g.2449.3 10 5.4 even 2 inner
3060.2.g.g.2449.4 10 1.1 even 1 trivial
4080.2.m.r.2449.4 10 12.11 even 2
4080.2.m.r.2449.9 10 60.59 even 2
5100.2.a.bc.1.3 5 15.8 even 4
5100.2.a.bd.1.3 5 15.2 even 4