Properties

Label 1020.2.g.d.409.4
Level $1020$
Weight $2$
Character 1020.409
Analytic conductor $8.145$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1020,2,Mod(409,1020)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1020, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1020.409"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1020 = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1020.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,0,0,-10,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.14474100617\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 14x^{7} + 42x^{6} + 2x^{5} + 10x^{4} + 54x^{3} + 121x^{2} + 44x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 409.4
Root \(-0.841453 - 0.841453i\) of defining polynomial
Character \(\chi\) \(=\) 1020.409
Dual form 1020.2.g.d.409.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(1.85384 + 1.25031i) q^{5} +1.12377i q^{7} -1.00000 q^{9} -0.781901 q^{11} -6.90690i q^{13} +(1.25031 - 1.85384i) q^{15} -1.00000i q^{17} +4.99020 q^{19} +1.12377 q^{21} -2.69860i q^{23} +(1.87347 + 4.63574i) q^{25} +1.00000i q^{27} +4.48959 q^{29} +5.36581 q^{31} +0.781901i q^{33} +(-1.40506 + 2.08330i) q^{35} -1.87745i q^{37} -6.90690 q^{39} +12.1973 q^{41} +4.10366i q^{43} +(-1.85384 - 1.25031i) q^{45} +12.1029i q^{47} +5.73713 q^{49} -1.00000 q^{51} -7.12377i q^{53} +(-1.44952 - 0.977616i) q^{55} -4.99020i q^{57} -8.61213 q^{59} -13.0106 q^{61} -1.12377i q^{63} +(8.63574 - 12.8043i) q^{65} -8.61213i q^{67} -2.69860 q^{69} +13.8138 q^{71} -7.29037i q^{73} +(4.63574 - 1.87347i) q^{75} -0.878680i q^{77} -12.7316 q^{79} +1.00000 q^{81} +13.0601i q^{83} +(1.25031 - 1.85384i) q^{85} -4.48959i q^{87} -10.7630 q^{89} +7.76179 q^{91} -5.36581i q^{93} +(9.25105 + 6.23928i) q^{95} -18.2279i q^{97} +0.781901 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{9} + 12 q^{11} + 4 q^{15} - 24 q^{19} - 4 q^{21} + 12 q^{25} - 12 q^{29} + 12 q^{31} + 4 q^{35} + 28 q^{41} - 30 q^{49} - 10 q^{51} + 26 q^{55} - 48 q^{59} - 28 q^{61} + 48 q^{65} - 12 q^{69}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1020\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.85384 + 1.25031i 0.829064 + 0.559154i
\(6\) 0 0
\(7\) 1.12377i 0.424746i 0.977189 + 0.212373i \(0.0681192\pi\)
−0.977189 + 0.212373i \(0.931881\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −0.781901 −0.235752 −0.117876 0.993028i \(-0.537609\pi\)
−0.117876 + 0.993028i \(0.537609\pi\)
\(12\) 0 0
\(13\) 6.90690i 1.91563i −0.287386 0.957815i \(-0.592786\pi\)
0.287386 0.957815i \(-0.407214\pi\)
\(14\) 0 0
\(15\) 1.25031 1.85384i 0.322828 0.478660i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 4.99020 1.14483 0.572415 0.819964i \(-0.306007\pi\)
0.572415 + 0.819964i \(0.306007\pi\)
\(20\) 0 0
\(21\) 1.12377 0.245227
\(22\) 0 0
\(23\) 2.69860i 0.562697i −0.959606 0.281349i \(-0.909218\pi\)
0.959606 0.281349i \(-0.0907818\pi\)
\(24\) 0 0
\(25\) 1.87347 + 4.63574i 0.374693 + 0.927149i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 4.48959 0.833695 0.416848 0.908976i \(-0.363135\pi\)
0.416848 + 0.908976i \(0.363135\pi\)
\(30\) 0 0
\(31\) 5.36581 0.963729 0.481864 0.876246i \(-0.339960\pi\)
0.481864 + 0.876246i \(0.339960\pi\)
\(32\) 0 0
\(33\) 0.781901i 0.136112i
\(34\) 0 0
\(35\) −1.40506 + 2.08330i −0.237499 + 0.352142i
\(36\) 0 0
\(37\) 1.87745i 0.308651i −0.988020 0.154326i \(-0.950679\pi\)
0.988020 0.154326i \(-0.0493205\pi\)
\(38\) 0 0
\(39\) −6.90690 −1.10599
\(40\) 0 0
\(41\) 12.1973 1.90489 0.952447 0.304704i \(-0.0985577\pi\)
0.952447 + 0.304704i \(0.0985577\pi\)
\(42\) 0 0
\(43\) 4.10366i 0.625803i 0.949786 + 0.312901i \(0.101301\pi\)
−0.949786 + 0.312901i \(0.898699\pi\)
\(44\) 0 0
\(45\) −1.85384 1.25031i −0.276355 0.186385i
\(46\) 0 0
\(47\) 12.1029i 1.76540i 0.469940 + 0.882698i \(0.344275\pi\)
−0.469940 + 0.882698i \(0.655725\pi\)
\(48\) 0 0
\(49\) 5.73713 0.819591
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 7.12377i 0.978526i −0.872136 0.489263i \(-0.837266\pi\)
0.872136 0.489263i \(-0.162734\pi\)
\(54\) 0 0
\(55\) −1.44952 0.977616i −0.195453 0.131822i
\(56\) 0 0
\(57\) 4.99020i 0.660968i
\(58\) 0 0
\(59\) −8.61213 −1.12120 −0.560602 0.828085i \(-0.689430\pi\)
−0.560602 + 0.828085i \(0.689430\pi\)
\(60\) 0 0
\(61\) −13.0106 −1.66583 −0.832916 0.553399i \(-0.813330\pi\)
−0.832916 + 0.553399i \(0.813330\pi\)
\(62\) 0 0
\(63\) 1.12377i 0.141582i
\(64\) 0 0
\(65\) 8.63574 12.8043i 1.07113 1.58818i
\(66\) 0 0
\(67\) 8.61213i 1.05214i −0.850441 0.526070i \(-0.823665\pi\)
0.850441 0.526070i \(-0.176335\pi\)
\(68\) 0 0
\(69\) −2.69860 −0.324874
\(70\) 0 0
\(71\) 13.8138 1.63940 0.819698 0.572795i \(-0.194141\pi\)
0.819698 + 0.572795i \(0.194141\pi\)
\(72\) 0 0
\(73\) 7.29037i 0.853273i −0.904423 0.426637i \(-0.859698\pi\)
0.904423 0.426637i \(-0.140302\pi\)
\(74\) 0 0
\(75\) 4.63574 1.87347i 0.535290 0.216329i
\(76\) 0 0
\(77\) 0.878680i 0.100135i
\(78\) 0 0
\(79\) −12.7316 −1.43242 −0.716210 0.697885i \(-0.754125\pi\)
−0.716210 + 0.697885i \(0.754125\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 13.0601i 1.43353i 0.697312 + 0.716767i \(0.254379\pi\)
−0.697312 + 0.716767i \(0.745621\pi\)
\(84\) 0 0
\(85\) 1.25031 1.85384i 0.135615 0.201077i
\(86\) 0 0
\(87\) 4.48959i 0.481334i
\(88\) 0 0
\(89\) −10.7630 −1.14088 −0.570439 0.821340i \(-0.693227\pi\)
−0.570439 + 0.821340i \(0.693227\pi\)
\(90\) 0 0
\(91\) 7.76179 0.813657
\(92\) 0 0
\(93\) 5.36581i 0.556409i
\(94\) 0 0
\(95\) 9.25105 + 6.23928i 0.949137 + 0.640137i
\(96\) 0 0
\(97\) 18.2279i 1.85077i −0.379031 0.925384i \(-0.623743\pi\)
0.379031 0.925384i \(-0.376257\pi\)
\(98\) 0 0
\(99\) 0.781901 0.0785840
\(100\) 0 0
\(101\) 5.24877 0.522272 0.261136 0.965302i \(-0.415903\pi\)
0.261136 + 0.965302i \(0.415903\pi\)
\(102\) 0 0
\(103\) 4.10366i 0.404346i −0.979350 0.202173i \(-0.935200\pi\)
0.979350 0.202173i \(-0.0648003\pi\)
\(104\) 0 0
\(105\) 2.08330 + 1.40506i 0.203309 + 0.137120i
\(106\) 0 0
\(107\) 2.25307i 0.217812i 0.994052 + 0.108906i \(0.0347348\pi\)
−0.994052 + 0.108906i \(0.965265\pi\)
\(108\) 0 0
\(109\) 11.9804 1.14751 0.573757 0.819026i \(-0.305485\pi\)
0.573757 + 0.819026i \(0.305485\pi\)
\(110\) 0 0
\(111\) −1.87745 −0.178200
\(112\) 0 0
\(113\) 8.28057i 0.778971i 0.921033 + 0.389485i \(0.127347\pi\)
−0.921033 + 0.389485i \(0.872653\pi\)
\(114\) 0 0
\(115\) 3.37408 5.00278i 0.314635 0.466512i
\(116\) 0 0
\(117\) 6.90690i 0.638543i
\(118\) 0 0
\(119\) 1.12377 0.103016
\(120\) 0 0
\(121\) −10.3886 −0.944421
\(122\) 0 0
\(123\) 12.1973i 1.09979i
\(124\) 0 0
\(125\) −2.32299 + 10.9363i −0.207774 + 0.978177i
\(126\) 0 0
\(127\) 13.6385i 1.21022i 0.796140 + 0.605112i \(0.206872\pi\)
−0.796140 + 0.605112i \(0.793128\pi\)
\(128\) 0 0
\(129\) 4.10366 0.361307
\(130\) 0 0
\(131\) −22.5007 −1.96589 −0.982946 0.183895i \(-0.941129\pi\)
−0.982946 + 0.183895i \(0.941129\pi\)
\(132\) 0 0
\(133\) 5.60785i 0.486263i
\(134\) 0 0
\(135\) −1.25031 + 1.85384i −0.107609 + 0.159553i
\(136\) 0 0
\(137\) 9.29282i 0.793940i 0.917832 + 0.396970i \(0.129938\pi\)
−0.917832 + 0.396970i \(0.870062\pi\)
\(138\) 0 0
\(139\) −14.2500 −1.20867 −0.604335 0.796731i \(-0.706561\pi\)
−0.604335 + 0.796731i \(0.706561\pi\)
\(140\) 0 0
\(141\) 12.1029 1.01925
\(142\) 0 0
\(143\) 5.40051i 0.451614i
\(144\) 0 0
\(145\) 8.32299 + 5.61336i 0.691187 + 0.466164i
\(146\) 0 0
\(147\) 5.73713i 0.473191i
\(148\) 0 0
\(149\) 7.36827 0.603632 0.301816 0.953366i \(-0.402407\pi\)
0.301816 + 0.953366i \(0.402407\pi\)
\(150\) 0 0
\(151\) −6.34116 −0.516036 −0.258018 0.966140i \(-0.583069\pi\)
−0.258018 + 0.966140i \(0.583069\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) 9.94738 + 6.70891i 0.798992 + 0.538873i
\(156\) 0 0
\(157\) 9.95523i 0.794514i −0.917707 0.397257i \(-0.869962\pi\)
0.917707 0.397257i \(-0.130038\pi\)
\(158\) 0 0
\(159\) −7.12377 −0.564952
\(160\) 0 0
\(161\) 3.03262 0.239004
\(162\) 0 0
\(163\) 13.4192i 1.05107i −0.850771 0.525537i \(-0.823865\pi\)
0.850771 0.525537i \(-0.176135\pi\)
\(164\) 0 0
\(165\) −0.977616 + 1.44952i −0.0761073 + 0.112845i
\(166\) 0 0
\(167\) 6.35218i 0.491547i 0.969327 + 0.245773i \(0.0790419\pi\)
−0.969327 + 0.245773i \(0.920958\pi\)
\(168\) 0 0
\(169\) −34.7053 −2.66964
\(170\) 0 0
\(171\) −4.99020 −0.381610
\(172\) 0 0
\(173\) 1.30385i 0.0991300i −0.998771 0.0495650i \(-0.984217\pi\)
0.998771 0.0495650i \(-0.0157835\pi\)
\(174\) 0 0
\(175\) −5.20953 + 2.10535i −0.393803 + 0.159150i
\(176\) 0 0
\(177\) 8.61213i 0.647328i
\(178\) 0 0
\(179\) −6.60280 −0.493516 −0.246758 0.969077i \(-0.579365\pi\)
−0.246758 + 0.969077i \(0.579365\pi\)
\(180\) 0 0
\(181\) 4.95412 0.368237 0.184118 0.982904i \(-0.441057\pi\)
0.184118 + 0.982904i \(0.441057\pi\)
\(182\) 0 0
\(183\) 13.0106i 0.961769i
\(184\) 0 0
\(185\) 2.34739 3.48050i 0.172584 0.255892i
\(186\) 0 0
\(187\) 0.781901i 0.0571783i
\(188\) 0 0
\(189\) −1.12377 −0.0817425
\(190\) 0 0
\(191\) 19.0987 1.38193 0.690966 0.722888i \(-0.257186\pi\)
0.690966 + 0.722888i \(0.257186\pi\)
\(192\) 0 0
\(193\) 16.3984i 1.18038i 0.807263 + 0.590192i \(0.200948\pi\)
−0.807263 + 0.590192i \(0.799052\pi\)
\(194\) 0 0
\(195\) −12.8043 8.63574i −0.916936 0.618418i
\(196\) 0 0
\(197\) 18.2335i 1.29908i 0.760327 + 0.649540i \(0.225039\pi\)
−0.760327 + 0.649540i \(0.774961\pi\)
\(198\) 0 0
\(199\) −25.7329 −1.82415 −0.912077 0.410019i \(-0.865522\pi\)
−0.912077 + 0.410019i \(0.865522\pi\)
\(200\) 0 0
\(201\) −8.61213 −0.607453
\(202\) 0 0
\(203\) 5.04528i 0.354109i
\(204\) 0 0
\(205\) 22.6118 + 15.2503i 1.57928 + 1.06513i
\(206\) 0 0
\(207\) 2.69860i 0.187566i
\(208\) 0 0
\(209\) −3.90184 −0.269896
\(210\) 0 0
\(211\) 3.18988 0.219600 0.109800 0.993954i \(-0.464979\pi\)
0.109800 + 0.993954i \(0.464979\pi\)
\(212\) 0 0
\(213\) 13.8138i 0.946506i
\(214\) 0 0
\(215\) −5.13084 + 7.60755i −0.349920 + 0.518830i
\(216\) 0 0
\(217\) 6.02996i 0.409340i
\(218\) 0 0
\(219\) −7.29037 −0.492638
\(220\) 0 0
\(221\) −6.90690 −0.464608
\(222\) 0 0
\(223\) 18.6466i 1.24867i 0.781156 + 0.624336i \(0.214630\pi\)
−0.781156 + 0.624336i \(0.785370\pi\)
\(224\) 0 0
\(225\) −1.87347 4.63574i −0.124898 0.309050i
\(226\) 0 0
\(227\) 5.27935i 0.350402i −0.984533 0.175201i \(-0.943942\pi\)
0.984533 0.175201i \(-0.0560576\pi\)
\(228\) 0 0
\(229\) −16.9871 −1.12254 −0.561271 0.827632i \(-0.689687\pi\)
−0.561271 + 0.827632i \(0.689687\pi\)
\(230\) 0 0
\(231\) −0.878680 −0.0578129
\(232\) 0 0
\(233\) 8.52567i 0.558535i −0.960213 0.279267i \(-0.909908\pi\)
0.960213 0.279267i \(-0.0900916\pi\)
\(234\) 0 0
\(235\) −15.1324 + 22.4370i −0.987129 + 1.46363i
\(236\) 0 0
\(237\) 12.7316i 0.827008i
\(238\) 0 0
\(239\) 6.95412 0.449825 0.224912 0.974379i \(-0.427790\pi\)
0.224912 + 0.974379i \(0.427790\pi\)
\(240\) 0 0
\(241\) 7.25811 0.467536 0.233768 0.972292i \(-0.424894\pi\)
0.233768 + 0.972292i \(0.424894\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 10.6357 + 7.17318i 0.679493 + 0.458277i
\(246\) 0 0
\(247\) 34.4668i 2.19307i
\(248\) 0 0
\(249\) 13.0601 0.827652
\(250\) 0 0
\(251\) 8.63419 0.544985 0.272493 0.962158i \(-0.412152\pi\)
0.272493 + 0.962158i \(0.412152\pi\)
\(252\) 0 0
\(253\) 2.11004i 0.132657i
\(254\) 0 0
\(255\) −1.85384 1.25031i −0.116092 0.0782972i
\(256\) 0 0
\(257\) 0.542976i 0.0338699i −0.999857 0.0169350i \(-0.994609\pi\)
0.999857 0.0169350i \(-0.00539082\pi\)
\(258\) 0 0
\(259\) 2.10983 0.131099
\(260\) 0 0
\(261\) −4.48959 −0.277898
\(262\) 0 0
\(263\) 2.74985i 0.169563i 0.996400 + 0.0847815i \(0.0270192\pi\)
−0.996400 + 0.0847815i \(0.972981\pi\)
\(264\) 0 0
\(265\) 8.90690 13.2064i 0.547147 0.811260i
\(266\) 0 0
\(267\) 10.7630i 0.658686i
\(268\) 0 0
\(269\) −11.8531 −0.722694 −0.361347 0.932431i \(-0.617683\pi\)
−0.361347 + 0.932431i \(0.617683\pi\)
\(270\) 0 0
\(271\) 4.52267 0.274732 0.137366 0.990520i \(-0.456136\pi\)
0.137366 + 0.990520i \(0.456136\pi\)
\(272\) 0 0
\(273\) 7.76179i 0.469765i
\(274\) 0 0
\(275\) −1.46487 3.62469i −0.0883347 0.218577i
\(276\) 0 0
\(277\) 12.7316i 0.764969i −0.923962 0.382485i \(-0.875068\pi\)
0.923962 0.382485i \(-0.124932\pi\)
\(278\) 0 0
\(279\) −5.36581 −0.321243
\(280\) 0 0
\(281\) −5.08217 −0.303177 −0.151589 0.988444i \(-0.548439\pi\)
−0.151589 + 0.988444i \(0.548439\pi\)
\(282\) 0 0
\(283\) 10.2759i 0.610838i 0.952218 + 0.305419i \(0.0987965\pi\)
−0.952218 + 0.305419i \(0.901203\pi\)
\(284\) 0 0
\(285\) 6.23928 9.25105i 0.369583 0.547985i
\(286\) 0 0
\(287\) 13.7070i 0.809097i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −18.2279 −1.06854
\(292\) 0 0
\(293\) 15.7290i 0.918899i −0.888204 0.459450i \(-0.848047\pi\)
0.888204 0.459450i \(-0.151953\pi\)
\(294\) 0 0
\(295\) −15.9655 10.7678i −0.929550 0.626926i
\(296\) 0 0
\(297\) 0.781901i 0.0453705i
\(298\) 0 0
\(299\) −18.6390 −1.07792
\(300\) 0 0
\(301\) −4.61159 −0.265807
\(302\) 0 0
\(303\) 5.24877i 0.301534i
\(304\) 0 0
\(305\) −24.1195 16.2672i −1.38108 0.931457i
\(306\) 0 0
\(307\) 10.5871i 0.604237i −0.953270 0.302118i \(-0.902306\pi\)
0.953270 0.302118i \(-0.0976938\pi\)
\(308\) 0 0
\(309\) −4.10366 −0.233449
\(310\) 0 0
\(311\) −5.65741 −0.320802 −0.160401 0.987052i \(-0.551279\pi\)
−0.160401 + 0.987052i \(0.551279\pi\)
\(312\) 0 0
\(313\) 3.80752i 0.215214i 0.994194 + 0.107607i \(0.0343188\pi\)
−0.994194 + 0.107607i \(0.965681\pi\)
\(314\) 0 0
\(315\) 1.40506 2.08330i 0.0791662 0.117381i
\(316\) 0 0
\(317\) 22.5226i 1.26500i 0.774562 + 0.632498i \(0.217970\pi\)
−0.774562 + 0.632498i \(0.782030\pi\)
\(318\) 0 0
\(319\) −3.51041 −0.196545
\(320\) 0 0
\(321\) 2.25307 0.125754
\(322\) 0 0
\(323\) 4.99020i 0.277662i
\(324\) 0 0
\(325\) 32.0186 12.9398i 1.77607 0.717774i
\(326\) 0 0
\(327\) 11.9804i 0.662518i
\(328\) 0 0
\(329\) −13.6010 −0.749846
\(330\) 0 0
\(331\) 19.6337 1.07917 0.539584 0.841932i \(-0.318582\pi\)
0.539584 + 0.841932i \(0.318582\pi\)
\(332\) 0 0
\(333\) 1.87745i 0.102884i
\(334\) 0 0
\(335\) 10.7678 15.9655i 0.588308 0.872291i
\(336\) 0 0
\(337\) 18.5014i 1.00783i 0.863752 + 0.503917i \(0.168108\pi\)
−0.863752 + 0.503917i \(0.831892\pi\)
\(338\) 0 0
\(339\) 8.28057 0.449739
\(340\) 0 0
\(341\) −4.19554 −0.227201
\(342\) 0 0
\(343\) 14.3137i 0.772865i
\(344\) 0 0
\(345\) −5.00278 3.37408i −0.269341 0.181654i
\(346\) 0 0
\(347\) 3.69431i 0.198321i −0.995071 0.0991604i \(-0.968384\pi\)
0.995071 0.0991604i \(-0.0316157\pi\)
\(348\) 0 0
\(349\) 11.3234 0.606128 0.303064 0.952970i \(-0.401990\pi\)
0.303064 + 0.952970i \(0.401990\pi\)
\(350\) 0 0
\(351\) 6.90690 0.368663
\(352\) 0 0
\(353\) 5.04282i 0.268402i 0.990954 + 0.134201i \(0.0428469\pi\)
−0.990954 + 0.134201i \(0.957153\pi\)
\(354\) 0 0
\(355\) 25.6086 + 17.2715i 1.35916 + 0.916675i
\(356\) 0 0
\(357\) 1.12377i 0.0594764i
\(358\) 0 0
\(359\) −12.5901 −0.664479 −0.332240 0.943195i \(-0.607804\pi\)
−0.332240 + 0.943195i \(0.607804\pi\)
\(360\) 0 0
\(361\) 5.90210 0.310637
\(362\) 0 0
\(363\) 10.3886i 0.545262i
\(364\) 0 0
\(365\) 9.11520 13.5152i 0.477111 0.707418i
\(366\) 0 0
\(367\) 13.5231i 0.705899i −0.935642 0.352949i \(-0.885179\pi\)
0.935642 0.352949i \(-0.114821\pi\)
\(368\) 0 0
\(369\) −12.1973 −0.634965
\(370\) 0 0
\(371\) 8.00551 0.415625
\(372\) 0 0
\(373\) 14.2475i 0.737710i 0.929487 + 0.368855i \(0.120250\pi\)
−0.929487 + 0.368855i \(0.879750\pi\)
\(374\) 0 0
\(375\) 10.9363 + 2.32299i 0.564751 + 0.119959i
\(376\) 0 0
\(377\) 31.0091i 1.59705i
\(378\) 0 0
\(379\) −29.2881 −1.50443 −0.752214 0.658919i \(-0.771014\pi\)
−0.752214 + 0.658919i \(0.771014\pi\)
\(380\) 0 0
\(381\) 13.6385 0.698723
\(382\) 0 0
\(383\) 35.8201i 1.83032i 0.403090 + 0.915160i \(0.367936\pi\)
−0.403090 + 0.915160i \(0.632064\pi\)
\(384\) 0 0
\(385\) 1.09862 1.62893i 0.0559908 0.0830182i
\(386\) 0 0
\(387\) 4.10366i 0.208601i
\(388\) 0 0
\(389\) 6.83463 0.346529 0.173265 0.984875i \(-0.444568\pi\)
0.173265 + 0.984875i \(0.444568\pi\)
\(390\) 0 0
\(391\) −2.69860 −0.136474
\(392\) 0 0
\(393\) 22.5007i 1.13501i
\(394\) 0 0
\(395\) −23.6024 15.9184i −1.18757 0.800944i
\(396\) 0 0
\(397\) 1.66675i 0.0836518i 0.999125 + 0.0418259i \(0.0133175\pi\)
−0.999125 + 0.0418259i \(0.986683\pi\)
\(398\) 0 0
\(399\) 5.60785 0.280744
\(400\) 0 0
\(401\) −15.4681 −0.772440 −0.386220 0.922407i \(-0.626219\pi\)
−0.386220 + 0.922407i \(0.626219\pi\)
\(402\) 0 0
\(403\) 37.0611i 1.84615i
\(404\) 0 0
\(405\) 1.85384 + 1.25031i 0.0921182 + 0.0621282i
\(406\) 0 0
\(407\) 1.46798i 0.0727652i
\(408\) 0 0
\(409\) 10.7451 0.531311 0.265656 0.964068i \(-0.414412\pi\)
0.265656 + 0.964068i \(0.414412\pi\)
\(410\) 0 0
\(411\) 9.29282 0.458381
\(412\) 0 0
\(413\) 9.67809i 0.476227i
\(414\) 0 0
\(415\) −16.3292 + 24.2114i −0.801567 + 1.18849i
\(416\) 0 0
\(417\) 14.2500i 0.697825i
\(418\) 0 0
\(419\) 12.0041 0.586437 0.293219 0.956045i \(-0.405274\pi\)
0.293219 + 0.956045i \(0.405274\pi\)
\(420\) 0 0
\(421\) 34.8222 1.69713 0.848564 0.529092i \(-0.177467\pi\)
0.848564 + 0.529092i \(0.177467\pi\)
\(422\) 0 0
\(423\) 12.1029i 0.588465i
\(424\) 0 0
\(425\) 4.63574 1.87347i 0.224867 0.0908765i
\(426\) 0 0
\(427\) 14.6209i 0.707556i
\(428\) 0 0
\(429\) 5.40051 0.260739
\(430\) 0 0
\(431\) 2.43069 0.117082 0.0585411 0.998285i \(-0.481355\pi\)
0.0585411 + 0.998285i \(0.481355\pi\)
\(432\) 0 0
\(433\) 26.7271i 1.28442i 0.766528 + 0.642211i \(0.221983\pi\)
−0.766528 + 0.642211i \(0.778017\pi\)
\(434\) 0 0
\(435\) 5.61336 8.32299i 0.269140 0.399057i
\(436\) 0 0
\(437\) 13.4666i 0.644193i
\(438\) 0 0
\(439\) 12.2029 0.582412 0.291206 0.956660i \(-0.405943\pi\)
0.291206 + 0.956660i \(0.405943\pi\)
\(440\) 0 0
\(441\) −5.73713 −0.273197
\(442\) 0 0
\(443\) 34.6225i 1.64496i 0.568791 + 0.822482i \(0.307411\pi\)
−0.568791 + 0.822482i \(0.692589\pi\)
\(444\) 0 0
\(445\) −19.9529 13.4571i −0.945860 0.637926i
\(446\) 0 0
\(447\) 7.36827i 0.348507i
\(448\) 0 0
\(449\) 2.34666 0.110746 0.0553729 0.998466i \(-0.482365\pi\)
0.0553729 + 0.998466i \(0.482365\pi\)
\(450\) 0 0
\(451\) −9.53706 −0.449083
\(452\) 0 0
\(453\) 6.34116i 0.297933i
\(454\) 0 0
\(455\) 14.3891 + 9.70462i 0.674573 + 0.454960i
\(456\) 0 0
\(457\) 4.07616i 0.190675i −0.995445 0.0953373i \(-0.969607\pi\)
0.995445 0.0953373i \(-0.0303930\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −2.38909 −0.111271 −0.0556356 0.998451i \(-0.517719\pi\)
−0.0556356 + 0.998451i \(0.517719\pi\)
\(462\) 0 0
\(463\) 32.6445i 1.51712i −0.651603 0.758560i \(-0.725903\pi\)
0.651603 0.758560i \(-0.274097\pi\)
\(464\) 0 0
\(465\) 6.70891 9.94738i 0.311118 0.461298i
\(466\) 0 0
\(467\) 5.93390i 0.274588i 0.990530 + 0.137294i \(0.0438405\pi\)
−0.990530 + 0.137294i \(0.956159\pi\)
\(468\) 0 0
\(469\) 9.67809 0.446892
\(470\) 0 0
\(471\) −9.95523 −0.458713
\(472\) 0 0
\(473\) 3.20866i 0.147534i
\(474\) 0 0
\(475\) 9.34897 + 23.1333i 0.428960 + 1.06143i
\(476\) 0 0
\(477\) 7.12377i 0.326175i
\(478\) 0 0
\(479\) 5.98199 0.273324 0.136662 0.990618i \(-0.456363\pi\)
0.136662 + 0.990618i \(0.456363\pi\)
\(480\) 0 0
\(481\) −12.9674 −0.591262
\(482\) 0 0
\(483\) 3.03262i 0.137989i
\(484\) 0 0
\(485\) 22.7905 33.7917i 1.03486 1.53440i
\(486\) 0 0
\(487\) 12.6033i 0.571110i −0.958362 0.285555i \(-0.907822\pi\)
0.958362 0.285555i \(-0.0921780\pi\)
\(488\) 0 0
\(489\) −13.4192 −0.606837
\(490\) 0 0
\(491\) −16.1398 −0.728381 −0.364190 0.931324i \(-0.618654\pi\)
−0.364190 + 0.931324i \(0.618654\pi\)
\(492\) 0 0
\(493\) 4.48959i 0.202201i
\(494\) 0 0
\(495\) 1.44952 + 0.977616i 0.0651512 + 0.0439406i
\(496\) 0 0
\(497\) 15.5236i 0.696328i
\(498\) 0 0
\(499\) −9.02160 −0.403862 −0.201931 0.979400i \(-0.564722\pi\)
−0.201931 + 0.979400i \(0.564722\pi\)
\(500\) 0 0
\(501\) 6.35218 0.283795
\(502\) 0 0
\(503\) 0.646591i 0.0288301i 0.999896 + 0.0144150i \(0.00458861\pi\)
−0.999896 + 0.0144150i \(0.995411\pi\)
\(504\) 0 0
\(505\) 9.73040 + 6.56258i 0.432997 + 0.292031i
\(506\) 0 0
\(507\) 34.7053i 1.54132i
\(508\) 0 0
\(509\) 22.4014 0.992926 0.496463 0.868058i \(-0.334632\pi\)
0.496463 + 0.868058i \(0.334632\pi\)
\(510\) 0 0
\(511\) 8.19273 0.362425
\(512\) 0 0
\(513\) 4.99020i 0.220323i
\(514\) 0 0
\(515\) 5.13084 7.60755i 0.226092 0.335229i
\(516\) 0 0
\(517\) 9.46331i 0.416196i
\(518\) 0 0
\(519\) −1.30385 −0.0572327
\(520\) 0 0
\(521\) 11.8531 0.519292 0.259646 0.965704i \(-0.416394\pi\)
0.259646 + 0.965704i \(0.416394\pi\)
\(522\) 0 0
\(523\) 35.2253i 1.54029i 0.637866 + 0.770147i \(0.279817\pi\)
−0.637866 + 0.770147i \(0.720183\pi\)
\(524\) 0 0
\(525\) 2.10535 + 5.20953i 0.0918851 + 0.227362i
\(526\) 0 0
\(527\) 5.36581i 0.233739i
\(528\) 0 0
\(529\) 15.7175 0.683372
\(530\) 0 0
\(531\) 8.61213 0.373735
\(532\) 0 0
\(533\) 84.2454i 3.64907i
\(534\) 0 0
\(535\) −2.81702 + 4.17683i −0.121791 + 0.180580i
\(536\) 0 0
\(537\) 6.60280i 0.284932i
\(538\) 0 0
\(539\) −4.48587 −0.193220
\(540\) 0 0
\(541\) 0.765471 0.0329101 0.0164551 0.999865i \(-0.494762\pi\)
0.0164551 + 0.999865i \(0.494762\pi\)
\(542\) 0 0
\(543\) 4.95412i 0.212602i
\(544\) 0 0
\(545\) 22.2098 + 14.9792i 0.951362 + 0.641637i
\(546\) 0 0
\(547\) 3.36521i 0.143886i 0.997409 + 0.0719431i \(0.0229200\pi\)
−0.997409 + 0.0719431i \(0.977080\pi\)
\(548\) 0 0
\(549\) 13.0106 0.555277
\(550\) 0 0
\(551\) 22.4039 0.954440
\(552\) 0 0
\(553\) 14.3075i 0.608415i
\(554\) 0 0
\(555\) −3.48050 2.34739i −0.147739 0.0996412i
\(556\) 0 0
\(557\) 9.62270i 0.407727i −0.978999 0.203863i \(-0.934650\pi\)
0.978999 0.203863i \(-0.0653498\pi\)
\(558\) 0 0
\(559\) 28.3436 1.19881
\(560\) 0 0
\(561\) 0.781901 0.0330119
\(562\) 0 0
\(563\) 38.9023i 1.63953i −0.572697 0.819767i \(-0.694103\pi\)
0.572697 0.819767i \(-0.305897\pi\)
\(564\) 0 0
\(565\) −10.3533 + 15.3509i −0.435565 + 0.645816i
\(566\) 0 0
\(567\) 1.12377i 0.0471940i
\(568\) 0 0
\(569\) −15.9914 −0.670395 −0.335197 0.942148i \(-0.608803\pi\)
−0.335197 + 0.942148i \(0.608803\pi\)
\(570\) 0 0
\(571\) 5.08906 0.212971 0.106485 0.994314i \(-0.466040\pi\)
0.106485 + 0.994314i \(0.466040\pi\)
\(572\) 0 0
\(573\) 19.0987i 0.797858i
\(574\) 0 0
\(575\) 12.5100 5.05574i 0.521704 0.210839i
\(576\) 0 0
\(577\) 14.0056i 0.583059i 0.956562 + 0.291530i \(0.0941642\pi\)
−0.956562 + 0.291530i \(0.905836\pi\)
\(578\) 0 0
\(579\) 16.3984 0.681496
\(580\) 0 0
\(581\) −14.6766 −0.608889
\(582\) 0 0
\(583\) 5.57009i 0.230689i
\(584\) 0 0
\(585\) −8.63574 + 12.8043i −0.357044 + 0.529393i
\(586\) 0 0
\(587\) 29.7769i 1.22902i −0.788908 0.614512i \(-0.789353\pi\)
0.788908 0.614512i \(-0.210647\pi\)
\(588\) 0 0
\(589\) 26.7765 1.10331
\(590\) 0 0
\(591\) 18.2335 0.750025
\(592\) 0 0
\(593\) 32.2587i 1.32471i 0.749191 + 0.662354i \(0.230442\pi\)
−0.749191 + 0.662354i \(0.769558\pi\)
\(594\) 0 0
\(595\) 2.08330 + 1.40506i 0.0854069 + 0.0576019i
\(596\) 0 0
\(597\) 25.7329i 1.05318i
\(598\) 0 0
\(599\) −7.07116 −0.288920 −0.144460 0.989511i \(-0.546144\pi\)
−0.144460 + 0.989511i \(0.546144\pi\)
\(600\) 0 0
\(601\) −30.9910 −1.26415 −0.632074 0.774908i \(-0.717796\pi\)
−0.632074 + 0.774908i \(0.717796\pi\)
\(602\) 0 0
\(603\) 8.61213i 0.350713i
\(604\) 0 0
\(605\) −19.2589 12.9890i −0.782985 0.528077i
\(606\) 0 0
\(607\) 19.5806i 0.794752i −0.917656 0.397376i \(-0.869921\pi\)
0.917656 0.397376i \(-0.130079\pi\)
\(608\) 0 0
\(609\) 5.04528 0.204445
\(610\) 0 0
\(611\) 83.5939 3.38185
\(612\) 0 0
\(613\) 36.2578i 1.46444i 0.681069 + 0.732219i \(0.261515\pi\)
−0.681069 + 0.732219i \(0.738485\pi\)
\(614\) 0 0
\(615\) 15.2503 22.6118i 0.614953 0.911797i
\(616\) 0 0
\(617\) 1.63153i 0.0656828i −0.999461 0.0328414i \(-0.989544\pi\)
0.999461 0.0328414i \(-0.0104556\pi\)
\(618\) 0 0
\(619\) 4.39843 0.176788 0.0883939 0.996086i \(-0.471827\pi\)
0.0883939 + 0.996086i \(0.471827\pi\)
\(620\) 0 0
\(621\) 2.69860 0.108291
\(622\) 0 0
\(623\) 12.0952i 0.484584i
\(624\) 0 0
\(625\) −17.9802 + 17.3698i −0.719210 + 0.694793i
\(626\) 0 0
\(627\) 3.90184i 0.155825i
\(628\) 0 0
\(629\) −1.87745 −0.0748590
\(630\) 0 0
\(631\) 32.3381 1.28736 0.643679 0.765295i \(-0.277407\pi\)
0.643679 + 0.765295i \(0.277407\pi\)
\(632\) 0 0
\(633\) 3.18988i 0.126786i
\(634\) 0 0
\(635\) −17.0523 + 25.2837i −0.676702 + 1.00335i
\(636\) 0 0
\(637\) 39.6258i 1.57003i
\(638\) 0 0
\(639\) −13.8138 −0.546466
\(640\) 0 0
\(641\) −45.6200 −1.80188 −0.900941 0.433942i \(-0.857122\pi\)
−0.900941 + 0.433942i \(0.857122\pi\)
\(642\) 0 0
\(643\) 23.3446i 0.920621i −0.887758 0.460310i \(-0.847738\pi\)
0.887758 0.460310i \(-0.152262\pi\)
\(644\) 0 0
\(645\) 7.60755 + 5.13084i 0.299547 + 0.202027i
\(646\) 0 0
\(647\) 28.6985i 1.12826i 0.825687 + 0.564128i \(0.190788\pi\)
−0.825687 + 0.564128i \(0.809212\pi\)
\(648\) 0 0
\(649\) 6.73384 0.264326
\(650\) 0 0
\(651\) 6.02996 0.236333
\(652\) 0 0
\(653\) 28.6270i 1.12026i −0.828404 0.560130i \(-0.810751\pi\)
0.828404 0.560130i \(-0.189249\pi\)
\(654\) 0 0
\(655\) −41.7127 28.1327i −1.62985 1.09924i
\(656\) 0 0
\(657\) 7.29037i 0.284424i
\(658\) 0 0
\(659\) 4.91783 0.191571 0.0957856 0.995402i \(-0.469464\pi\)
0.0957856 + 0.995402i \(0.469464\pi\)
\(660\) 0 0
\(661\) −17.6855 −0.687886 −0.343943 0.938991i \(-0.611763\pi\)
−0.343943 + 0.938991i \(0.611763\pi\)
\(662\) 0 0
\(663\) 6.90690i 0.268242i
\(664\) 0 0
\(665\) −7.01154 + 10.3961i −0.271896 + 0.403143i
\(666\) 0 0
\(667\) 12.1156i 0.469118i
\(668\) 0 0
\(669\) 18.6466 0.720921
\(670\) 0 0
\(671\) 10.1730 0.392723
\(672\) 0 0
\(673\) 3.66435i 0.141250i −0.997503 0.0706252i \(-0.977501\pi\)
0.997503 0.0706252i \(-0.0224994\pi\)
\(674\) 0 0
\(675\) −4.63574 + 1.87347i −0.178430 + 0.0721098i
\(676\) 0 0
\(677\) 50.8292i 1.95353i −0.214325 0.976763i \(-0.568755\pi\)
0.214325 0.976763i \(-0.431245\pi\)
\(678\) 0 0
\(679\) 20.4841 0.786107
\(680\) 0 0
\(681\) −5.27935 −0.202305
\(682\) 0 0
\(683\) 44.8133i 1.71473i −0.514707 0.857366i \(-0.672099\pi\)
0.514707 0.857366i \(-0.327901\pi\)
\(684\) 0 0
\(685\) −11.6189 + 17.2274i −0.443935 + 0.658227i
\(686\) 0 0
\(687\) 16.9871i 0.648100i
\(688\) 0 0
\(689\) −49.2032 −1.87449
\(690\) 0 0
\(691\) 17.9779 0.683913 0.341957 0.939716i \(-0.388910\pi\)
0.341957 + 0.939716i \(0.388910\pi\)
\(692\) 0 0
\(693\) 0.878680i 0.0333783i
\(694\) 0 0
\(695\) −26.4173 17.8169i −1.00206 0.675832i
\(696\) 0 0
\(697\) 12.1973i 0.462005i
\(698\) 0 0
\(699\) −8.52567 −0.322470
\(700\) 0 0
\(701\) −32.1980 −1.21610 −0.608051 0.793898i \(-0.708048\pi\)
−0.608051 + 0.793898i \(0.708048\pi\)
\(702\) 0 0
\(703\) 9.36887i 0.353354i
\(704\) 0 0
\(705\) 22.4370 + 15.1324i 0.845025 + 0.569919i
\(706\) 0 0
\(707\) 5.89843i 0.221833i
\(708\) 0 0
\(709\) 40.8651 1.53472 0.767361 0.641215i \(-0.221569\pi\)
0.767361 + 0.641215i \(0.221569\pi\)
\(710\) 0 0
\(711\) 12.7316 0.477473
\(712\) 0 0
\(713\) 14.4802i 0.542288i
\(714\) 0 0
\(715\) −6.75230 + 10.0117i −0.252522 + 0.374416i
\(716\) 0 0
\(717\) 6.95412i 0.259706i
\(718\) 0 0
\(719\) −12.4487 −0.464258 −0.232129 0.972685i \(-0.574569\pi\)
−0.232129 + 0.972685i \(0.574569\pi\)
\(720\) 0 0
\(721\) 4.61159 0.171744
\(722\) 0 0
\(723\) 7.25811i 0.269932i
\(724\) 0 0
\(725\) 8.41109 + 20.8126i 0.312380 + 0.772960i
\(726\) 0 0
\(727\) 13.5687i 0.503236i −0.967827 0.251618i \(-0.919037\pi\)
0.967827 0.251618i \(-0.0809626\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 4.10366 0.151779
\(732\) 0 0
\(733\) 19.1364i 0.706820i −0.935468 0.353410i \(-0.885022\pi\)
0.935468 0.353410i \(-0.114978\pi\)
\(734\) 0 0
\(735\) 7.17318 10.6357i 0.264587 0.392305i
\(736\) 0 0
\(737\) 6.73384i 0.248044i
\(738\) 0 0
\(739\) 15.2592 0.561319 0.280659 0.959807i \(-0.409447\pi\)
0.280659 + 0.959807i \(0.409447\pi\)
\(740\) 0 0
\(741\) −34.4668 −1.26617
\(742\) 0 0
\(743\) 5.68967i 0.208734i −0.994539 0.104367i \(-0.966718\pi\)
0.994539 0.104367i \(-0.0332816\pi\)
\(744\) 0 0
\(745\) 13.6596 + 9.21259i 0.500449 + 0.337523i
\(746\) 0 0
\(747\) 13.0601i 0.477845i
\(748\) 0 0
\(749\) −2.53194 −0.0925149
\(750\) 0 0
\(751\) −44.9416 −1.63994 −0.819972 0.572404i \(-0.806011\pi\)
−0.819972 + 0.572404i \(0.806011\pi\)
\(752\) 0 0
\(753\) 8.63419i 0.314647i
\(754\) 0 0
\(755\) −11.7555 7.92839i −0.427827 0.288544i
\(756\) 0 0
\(757\) 3.21402i 0.116816i −0.998293 0.0584079i \(-0.981398\pi\)
0.998293 0.0584079i \(-0.0186024\pi\)
\(758\) 0 0
\(759\) 2.11004 0.0765896
\(760\) 0 0
\(761\) −49.6110 −1.79840 −0.899199 0.437540i \(-0.855850\pi\)
−0.899199 + 0.437540i \(0.855850\pi\)
\(762\) 0 0
\(763\) 13.4633i 0.487403i
\(764\) 0 0
\(765\) −1.25031 + 1.85384i −0.0452049 + 0.0670258i
\(766\) 0 0
\(767\) 59.4832i 2.14781i
\(768\) 0 0
\(769\) −45.2790 −1.63280 −0.816401 0.577485i \(-0.804034\pi\)
−0.816401 + 0.577485i \(0.804034\pi\)
\(770\) 0 0
\(771\) −0.542976 −0.0195548
\(772\) 0 0
\(773\) 34.7968i 1.25155i 0.780002 + 0.625777i \(0.215218\pi\)
−0.780002 + 0.625777i \(0.784782\pi\)
\(774\) 0 0
\(775\) 10.0527 + 24.8745i 0.361103 + 0.893520i
\(776\) 0 0
\(777\) 2.10983i 0.0756898i
\(778\) 0 0
\(779\) 60.8668 2.18078
\(780\) 0 0
\(781\) −10.8010 −0.386491
\(782\) 0 0
\(783\) 4.48959i 0.160445i
\(784\) 0 0
\(785\) 12.4471 18.4554i 0.444256 0.658703i
\(786\) 0 0
\(787\) 2.99106i 0.106620i −0.998578 0.0533098i \(-0.983023\pi\)
0.998578 0.0533098i \(-0.0169771\pi\)
\(788\) 0 0
\(789\) 2.74985 0.0978972
\(790\) 0 0
\(791\) −9.30549 −0.330865
\(792\) 0 0
\(793\) 89.8627i 3.19112i
\(794\) 0 0
\(795\) −13.2064 8.90690i −0.468381 0.315895i
\(796\) 0 0
\(797\) 15.5293i 0.550077i −0.961433 0.275039i \(-0.911309\pi\)
0.961433 0.275039i \(-0.0886906\pi\)
\(798\) 0 0
\(799\) 12.1029 0.428171
\(800\) 0 0
\(801\) 10.7630 0.380293
\(802\) 0 0
\(803\) 5.70035i 0.201161i
\(804\) 0 0
\(805\) 5.62200 + 3.79170i 0.198149 + 0.133640i
\(806\) 0 0
\(807\) 11.8531i 0.417248i
\(808\) 0 0
\(809\) −5.31416 −0.186836 −0.0934180 0.995627i \(-0.529779\pi\)
−0.0934180 + 0.995627i \(0.529779\pi\)
\(810\) 0 0
\(811\) 38.6831 1.35835 0.679174 0.733978i \(-0.262338\pi\)
0.679174 + 0.733978i \(0.262338\pi\)
\(812\) 0 0
\(813\) 4.52267i 0.158617i
\(814\) 0 0
\(815\) 16.7781 24.8771i 0.587712 0.871407i
\(816\) 0 0
\(817\) 20.4781i 0.716438i
\(818\) 0 0
\(819\) −7.76179 −0.271219
\(820\) 0 0
\(821\) −36.8426 −1.28582 −0.642909 0.765943i \(-0.722273\pi\)
−0.642909 + 0.765943i \(0.722273\pi\)
\(822\) 0 0
\(823\) 7.36521i 0.256735i 0.991727 + 0.128368i \(0.0409737\pi\)
−0.991727 + 0.128368i \(0.959026\pi\)
\(824\) 0 0
\(825\) −3.62469 + 1.46487i −0.126196 + 0.0510001i
\(826\) 0 0
\(827\) 32.4229i 1.12745i 0.825961 + 0.563727i \(0.190633\pi\)
−0.825961 + 0.563727i \(0.809367\pi\)
\(828\) 0 0
\(829\) 30.8905 1.07287 0.536435 0.843942i \(-0.319771\pi\)
0.536435 + 0.843942i \(0.319771\pi\)
\(830\) 0 0
\(831\) −12.7316 −0.441655
\(832\) 0 0
\(833\) 5.73713i 0.198780i
\(834\) 0 0
\(835\) −7.94218 + 11.7759i −0.274850 + 0.407523i
\(836\) 0 0
\(837\) 5.36581i 0.185470i
\(838\) 0 0
\(839\) −16.5933 −0.572863 −0.286431 0.958101i \(-0.592469\pi\)
−0.286431 + 0.958101i \(0.592469\pi\)
\(840\) 0 0
\(841\) −8.84361 −0.304952
\(842\) 0 0
\(843\) 5.08217i 0.175039i
\(844\) 0 0
\(845\) −64.3381 43.3922i −2.21330 1.49274i
\(846\) 0 0
\(847\) 11.6745i 0.401139i
\(848\) 0 0
\(849\) 10.2759 0.352667
\(850\) 0 0
\(851\) −5.06650 −0.173677
\(852\) 0 0
\(853\) 49.8460i 1.70669i 0.521344 + 0.853347i \(0.325431\pi\)
−0.521344 + 0.853347i \(0.674569\pi\)
\(854\) 0 0
\(855\) −9.25105 6.23928i −0.316379 0.213379i
\(856\) 0 0
\(857\) 44.1973i 1.50975i 0.655867 + 0.754876i \(0.272303\pi\)
−0.655867 + 0.754876i \(0.727697\pi\)
\(858\) 0 0
\(859\) −11.0703 −0.377715 −0.188857 0.982005i \(-0.560478\pi\)
−0.188857 + 0.982005i \(0.560478\pi\)
\(860\) 0 0
\(861\) 13.7070 0.467132
\(862\) 0 0
\(863\) 1.97166i 0.0671162i 0.999437 + 0.0335581i \(0.0106839\pi\)
−0.999437 + 0.0335581i \(0.989316\pi\)
\(864\) 0 0
\(865\) 1.63021 2.41713i 0.0554289 0.0821850i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 9.95487 0.337696
\(870\) 0 0
\(871\) −59.4832 −2.01551
\(872\) 0 0
\(873\) 18.2279i 0.616923i
\(874\) 0 0
\(875\) −12.2900 2.61051i −0.415477 0.0882514i
\(876\) 0 0
\(877\) 18.6005i 0.628094i −0.949407 0.314047i \(-0.898315\pi\)
0.949407 0.314047i \(-0.101685\pi\)
\(878\) 0 0
\(879\) −15.7290 −0.530527
\(880\) 0 0
\(881\) −26.9871 −0.909220 −0.454610 0.890691i \(-0.650221\pi\)
−0.454610 + 0.890691i \(0.650221\pi\)
\(882\) 0 0
\(883\) 32.5684i 1.09601i 0.836474 + 0.548007i \(0.184613\pi\)
−0.836474 + 0.548007i \(0.815387\pi\)
\(884\) 0 0
\(885\) −10.7678 + 15.9655i −0.361956 + 0.536676i
\(886\) 0 0
\(887\) 15.9614i 0.535932i 0.963428 + 0.267966i \(0.0863515\pi\)
−0.963428 + 0.267966i \(0.913649\pi\)
\(888\) 0 0
\(889\) −15.3266 −0.514038
\(890\) 0 0
\(891\) −0.781901 −0.0261947
\(892\) 0 0
\(893\) 60.3961i 2.02108i
\(894\) 0 0
\(895\) −12.2405 8.25552i −0.409156 0.275952i
\(896\) 0 0
\(897\) 18.6390i 0.622337i
\(898\) 0 0
\(899\) 24.0903 0.803456
\(900\) 0 0
\(901\) −7.12377 −0.237327
\(902\) 0 0
\(903\) 4.61159i 0.153464i
\(904\) 0 0
\(905\) 9.18416 + 6.19417i 0.305292 + 0.205901i
\(906\) 0 0
\(907\) 46.1926i 1.53380i −0.641767 0.766900i \(-0.721798\pi\)
0.641767 0.766900i \(-0.278202\pi\)
\(908\) 0 0
\(909\) −5.24877 −0.174091
\(910\) 0 0
\(911\) 3.03435 0.100533 0.0502663 0.998736i \(-0.483993\pi\)
0.0502663 + 0.998736i \(0.483993\pi\)
\(912\) 0 0
\(913\) 10.2117i 0.337959i
\(914\) 0 0
\(915\) −16.2672 + 24.1195i −0.537777 + 0.797367i
\(916\) 0 0
\(917\) 25.2856i 0.835005i
\(918\) 0 0
\(919\) 32.7231 1.07943 0.539717 0.841847i \(-0.318531\pi\)
0.539717 + 0.841847i \(0.318531\pi\)
\(920\) 0 0
\(921\) −10.5871 −0.348856
\(922\) 0 0
\(923\) 95.4106i 3.14048i
\(924\) 0 0
\(925\) 8.70339 3.51735i 0.286166 0.115650i
\(926\) 0 0
\(927\) 4.10366i 0.134782i
\(928\) 0 0
\(929\) 29.6401 0.972460 0.486230 0.873831i \(-0.338372\pi\)
0.486230 + 0.873831i \(0.338372\pi\)
\(930\) 0 0
\(931\) 28.6294 0.938292
\(932\) 0 0
\(933\) 5.65741i 0.185215i
\(934\) 0 0
\(935\) −0.977616 + 1.44952i −0.0319715 + 0.0474044i
\(936\) 0 0
\(937\) 13.5349i 0.442165i −0.975255 0.221082i \(-0.929041\pi\)
0.975255 0.221082i \(-0.0709590\pi\)
\(938\) 0 0
\(939\) 3.80752 0.124254
\(940\) 0 0
\(941\) 55.0553 1.79475 0.897376 0.441267i \(-0.145471\pi\)
0.897376 + 0.441267i \(0.145471\pi\)
\(942\) 0 0
\(943\) 32.9156i 1.07188i
\(944\) 0 0
\(945\) −2.08330 1.40506i −0.0677697 0.0457066i
\(946\) 0 0
\(947\) 43.7344i 1.42118i −0.703608 0.710588i \(-0.748429\pi\)
0.703608 0.710588i \(-0.251571\pi\)
\(948\) 0 0
\(949\) −50.3539 −1.63456
\(950\) 0 0
\(951\) 22.5226 0.730345
\(952\) 0 0
\(953\) 21.4795i 0.695790i −0.937533 0.347895i \(-0.886897\pi\)
0.937533 0.347895i \(-0.113103\pi\)
\(954\) 0 0
\(955\) 35.4059 + 23.8792i 1.14571 + 0.772712i
\(956\) 0 0
\(957\) 3.51041i 0.113476i
\(958\) 0 0
\(959\) −10.4430 −0.337223
\(960\) 0 0
\(961\) −2.20804 −0.0712273
\(962\) 0 0
\(963\) 2.25307i 0.0726041i
\(964\) 0 0
\(965\) −20.5031 + 30.4001i −0.660017 + 0.978614i
\(966\) 0 0
\(967\) 3.21334i 0.103334i 0.998664 + 0.0516671i \(0.0164535\pi\)
−0.998664 + 0.0516671i \(0.983547\pi\)
\(968\) 0 0
\(969\) −4.99020 −0.160308
\(970\) 0 0
\(971\) −7.02628 −0.225484 −0.112742 0.993624i \(-0.535963\pi\)
−0.112742 + 0.993624i \(0.535963\pi\)
\(972\) 0 0
\(973\) 16.0138i 0.513378i
\(974\) 0 0
\(975\) −12.9398 32.0186i −0.414407 1.02542i
\(976\) 0 0
\(977\) 37.8209i 1.21000i 0.796226 + 0.604999i \(0.206827\pi\)
−0.796226 + 0.604999i \(0.793173\pi\)
\(978\) 0 0
\(979\) 8.41562 0.268964
\(980\) 0 0
\(981\) −11.9804 −0.382505
\(982\) 0 0
\(983\) 28.1150i 0.896729i 0.893851 + 0.448365i \(0.147993\pi\)
−0.893851 + 0.448365i \(0.852007\pi\)
\(984\) 0 0
\(985\) −22.7974 + 33.8020i −0.726386 + 1.07702i
\(986\) 0 0
\(987\) 13.6010i 0.432924i
\(988\) 0 0
\(989\) 11.0742 0.352138
\(990\) 0 0
\(991\) 3.96666 0.126005 0.0630026 0.998013i \(-0.479932\pi\)
0.0630026 + 0.998013i \(0.479932\pi\)
\(992\) 0 0
\(993\) 19.6337i 0.623057i
\(994\) 0 0
\(995\) −47.7047 32.1740i −1.51234 1.01998i
\(996\) 0 0
\(997\) 22.4622i 0.711384i 0.934603 + 0.355692i \(0.115755\pi\)
−0.934603 + 0.355692i \(0.884245\pi\)
\(998\) 0 0
\(999\) 1.87745 0.0594000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1020.2.g.d.409.4 10
3.2 odd 2 3060.2.g.g.2449.3 10
4.3 odd 2 4080.2.m.r.2449.9 10
5.2 odd 4 5100.2.a.bc.1.3 5
5.3 odd 4 5100.2.a.bd.1.3 5
5.4 even 2 inner 1020.2.g.d.409.9 yes 10
15.14 odd 2 3060.2.g.g.2449.4 10
20.19 odd 2 4080.2.m.r.2449.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.g.d.409.4 10 1.1 even 1 trivial
1020.2.g.d.409.9 yes 10 5.4 even 2 inner
3060.2.g.g.2449.3 10 3.2 odd 2
3060.2.g.g.2449.4 10 15.14 odd 2
4080.2.m.r.2449.4 10 20.19 odd 2
4080.2.m.r.2449.9 10 4.3 odd 2
5100.2.a.bc.1.3 5 5.2 odd 4
5100.2.a.bd.1.3 5 5.3 odd 4