L(s) = 1 | − i·3-s + (1.85 + 1.25i)5-s + 1.12i·7-s − 9-s − 0.781·11-s − 6.90i·13-s + (1.25 − 1.85i)15-s − i·17-s + 4.99·19-s + 1.12·21-s − 2.69i·23-s + (1.87 + 4.63i)25-s + i·27-s + 4.48·29-s + 5.36·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.829 + 0.559i)5-s + 0.424i·7-s − 0.333·9-s − 0.235·11-s − 1.91i·13-s + (0.322 − 0.478i)15-s − 0.242i·17-s + 1.14·19-s + 0.245·21-s − 0.562i·23-s + (0.374 + 0.927i)25-s + 0.192i·27-s + 0.833·29-s + 0.963·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1020 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 + 0.559i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1020 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.829 + 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.867593728\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.867593728\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-1.85 - 1.25i)T \) |
| 17 | \( 1 + iT \) |
good | 7 | \( 1 - 1.12iT - 7T^{2} \) |
| 11 | \( 1 + 0.781T + 11T^{2} \) |
| 13 | \( 1 + 6.90iT - 13T^{2} \) |
| 19 | \( 1 - 4.99T + 19T^{2} \) |
| 23 | \( 1 + 2.69iT - 23T^{2} \) |
| 29 | \( 1 - 4.48T + 29T^{2} \) |
| 31 | \( 1 - 5.36T + 31T^{2} \) |
| 37 | \( 1 + 1.87iT - 37T^{2} \) |
| 41 | \( 1 - 12.1T + 41T^{2} \) |
| 43 | \( 1 - 4.10iT - 43T^{2} \) |
| 47 | \( 1 - 12.1iT - 47T^{2} \) |
| 53 | \( 1 + 7.12iT - 53T^{2} \) |
| 59 | \( 1 + 8.61T + 59T^{2} \) |
| 61 | \( 1 + 13.0T + 61T^{2} \) |
| 67 | \( 1 + 8.61iT - 67T^{2} \) |
| 71 | \( 1 - 13.8T + 71T^{2} \) |
| 73 | \( 1 + 7.29iT - 73T^{2} \) |
| 79 | \( 1 + 12.7T + 79T^{2} \) |
| 83 | \( 1 - 13.0iT - 83T^{2} \) |
| 89 | \( 1 + 10.7T + 89T^{2} \) |
| 97 | \( 1 + 18.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.915801658801476165121310326010, −9.112038792161597229563888113327, −8.001234195281814611135356001366, −7.49131762258617275072314181684, −6.29833757025857455608529096208, −5.77831784910159371633681479900, −4.87982971422130821486258705147, −3.05762742661400043204201483278, −2.61442909258455375203497984183, −1.01770644586158768833246735148,
1.30445875257028939355857812239, 2.59519455053895040382739056239, 4.01070555226233830347381057344, 4.71460746623800598662832313814, 5.66107777184493740711690035982, 6.55052543829634552243760601658, 7.50397179181763375031125998044, 8.667544914260807429953378420835, 9.281867785265370326489583635159, 9.907782797180915955844132660634