Properties

Label 3040.2.f.b.1521.25
Level $3040$
Weight $2$
Character 3040.1521
Analytic conductor $24.275$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3040,2,Mod(1521,3040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3040.1521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2745222145\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1521.25
Character \(\chi\) \(=\) 3040.1521
Dual form 3040.2.f.b.1521.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.530865i q^{3} +1.00000i q^{5} -1.59876 q^{7} +2.71818 q^{9} -4.08419i q^{11} +4.29317i q^{13} -0.530865 q^{15} -7.51422 q^{17} -1.00000i q^{19} -0.848726i q^{21} +7.97383 q^{23} -1.00000 q^{25} +3.03558i q^{27} +5.77844i q^{29} -3.57200 q^{31} +2.16815 q^{33} -1.59876i q^{35} +1.10308i q^{37} -2.27909 q^{39} +2.90996 q^{41} +4.31616i q^{43} +2.71818i q^{45} -6.15476 q^{47} -4.44396 q^{49} -3.98904i q^{51} +11.5004i q^{53} +4.08419 q^{55} +0.530865 q^{57} -6.91548i q^{59} +4.61636i q^{61} -4.34572 q^{63} -4.29317 q^{65} +10.2207i q^{67} +4.23303i q^{69} -11.3535 q^{71} +15.1543 q^{73} -0.530865i q^{75} +6.52964i q^{77} +3.08138 q^{79} +6.54306 q^{81} +3.40976i q^{83} -7.51422i q^{85} -3.06757 q^{87} -13.5566 q^{89} -6.86375i q^{91} -1.89625i q^{93} +1.00000 q^{95} +3.07007 q^{97} -11.1016i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4 q^{7} - 60 q^{9} + 24 q^{17} - 4 q^{23} - 44 q^{25} + 40 q^{33} + 24 q^{39} - 32 q^{41} + 20 q^{47} + 108 q^{49} - 8 q^{55} - 20 q^{63} + 12 q^{65} + 8 q^{71} - 88 q^{73} - 40 q^{79} + 116 q^{81}+ \cdots + 116 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1217\) \(1921\) \(2661\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.530865i 0.306495i 0.988188 + 0.153248i \(0.0489732\pi\)
−0.988188 + 0.153248i \(0.951027\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −1.59876 −0.604275 −0.302137 0.953264i \(-0.597700\pi\)
−0.302137 + 0.953264i \(0.597700\pi\)
\(8\) 0 0
\(9\) 2.71818 0.906061
\(10\) 0 0
\(11\) − 4.08419i − 1.23143i −0.787970 0.615714i \(-0.788868\pi\)
0.787970 0.615714i \(-0.211132\pi\)
\(12\) 0 0
\(13\) 4.29317i 1.19071i 0.803463 + 0.595355i \(0.202989\pi\)
−0.803463 + 0.595355i \(0.797011\pi\)
\(14\) 0 0
\(15\) −0.530865 −0.137069
\(16\) 0 0
\(17\) −7.51422 −1.82247 −0.911233 0.411891i \(-0.864869\pi\)
−0.911233 + 0.411891i \(0.864869\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) − 0.848726i − 0.185207i
\(22\) 0 0
\(23\) 7.97383 1.66266 0.831329 0.555781i \(-0.187581\pi\)
0.831329 + 0.555781i \(0.187581\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 3.03558i 0.584198i
\(28\) 0 0
\(29\) 5.77844i 1.07303i 0.843891 + 0.536515i \(0.180260\pi\)
−0.843891 + 0.536515i \(0.819740\pi\)
\(30\) 0 0
\(31\) −3.57200 −0.641551 −0.320775 0.947155i \(-0.603943\pi\)
−0.320775 + 0.947155i \(0.603943\pi\)
\(32\) 0 0
\(33\) 2.16815 0.377427
\(34\) 0 0
\(35\) − 1.59876i − 0.270240i
\(36\) 0 0
\(37\) 1.10308i 0.181346i 0.995881 + 0.0906728i \(0.0289017\pi\)
−0.995881 + 0.0906728i \(0.971098\pi\)
\(38\) 0 0
\(39\) −2.27909 −0.364947
\(40\) 0 0
\(41\) 2.90996 0.454459 0.227230 0.973841i \(-0.427033\pi\)
0.227230 + 0.973841i \(0.427033\pi\)
\(42\) 0 0
\(43\) 4.31616i 0.658208i 0.944294 + 0.329104i \(0.106747\pi\)
−0.944294 + 0.329104i \(0.893253\pi\)
\(44\) 0 0
\(45\) 2.71818i 0.405203i
\(46\) 0 0
\(47\) −6.15476 −0.897764 −0.448882 0.893591i \(-0.648178\pi\)
−0.448882 + 0.893591i \(0.648178\pi\)
\(48\) 0 0
\(49\) −4.44396 −0.634852
\(50\) 0 0
\(51\) − 3.98904i − 0.558577i
\(52\) 0 0
\(53\) 11.5004i 1.57971i 0.613296 + 0.789853i \(0.289843\pi\)
−0.613296 + 0.789853i \(0.710157\pi\)
\(54\) 0 0
\(55\) 4.08419 0.550712
\(56\) 0 0
\(57\) 0.530865 0.0703148
\(58\) 0 0
\(59\) − 6.91548i − 0.900319i −0.892948 0.450159i \(-0.851367\pi\)
0.892948 0.450159i \(-0.148633\pi\)
\(60\) 0 0
\(61\) 4.61636i 0.591064i 0.955333 + 0.295532i \(0.0954969\pi\)
−0.955333 + 0.295532i \(0.904503\pi\)
\(62\) 0 0
\(63\) −4.34572 −0.547510
\(64\) 0 0
\(65\) −4.29317 −0.532502
\(66\) 0 0
\(67\) 10.2207i 1.24866i 0.781162 + 0.624328i \(0.214627\pi\)
−0.781162 + 0.624328i \(0.785373\pi\)
\(68\) 0 0
\(69\) 4.23303i 0.509596i
\(70\) 0 0
\(71\) −11.3535 −1.34741 −0.673704 0.739001i \(-0.735298\pi\)
−0.673704 + 0.739001i \(0.735298\pi\)
\(72\) 0 0
\(73\) 15.1543 1.77368 0.886840 0.462078i \(-0.152896\pi\)
0.886840 + 0.462078i \(0.152896\pi\)
\(74\) 0 0
\(75\) − 0.530865i − 0.0612990i
\(76\) 0 0
\(77\) 6.52964i 0.744121i
\(78\) 0 0
\(79\) 3.08138 0.346683 0.173341 0.984862i \(-0.444544\pi\)
0.173341 + 0.984862i \(0.444544\pi\)
\(80\) 0 0
\(81\) 6.54306 0.727007
\(82\) 0 0
\(83\) 3.40976i 0.374270i 0.982334 + 0.187135i \(0.0599202\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(84\) 0 0
\(85\) − 7.51422i − 0.815032i
\(86\) 0 0
\(87\) −3.06757 −0.328878
\(88\) 0 0
\(89\) −13.5566 −1.43699 −0.718497 0.695530i \(-0.755170\pi\)
−0.718497 + 0.695530i \(0.755170\pi\)
\(90\) 0 0
\(91\) − 6.86375i − 0.719516i
\(92\) 0 0
\(93\) − 1.89625i − 0.196632i
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 3.07007 0.311718 0.155859 0.987779i \(-0.450185\pi\)
0.155859 + 0.987779i \(0.450185\pi\)
\(98\) 0 0
\(99\) − 11.1016i − 1.11575i
\(100\) 0 0
\(101\) − 10.5727i − 1.05202i −0.850478 0.526010i \(-0.823687\pi\)
0.850478 0.526010i \(-0.176313\pi\)
\(102\) 0 0
\(103\) −10.5955 −1.04401 −0.522004 0.852943i \(-0.674815\pi\)
−0.522004 + 0.852943i \(0.674815\pi\)
\(104\) 0 0
\(105\) 0.848726 0.0828272
\(106\) 0 0
\(107\) 2.02637i 0.195897i 0.995191 + 0.0979484i \(0.0312280\pi\)
−0.995191 + 0.0979484i \(0.968772\pi\)
\(108\) 0 0
\(109\) 9.89833i 0.948088i 0.880501 + 0.474044i \(0.157206\pi\)
−0.880501 + 0.474044i \(0.842794\pi\)
\(110\) 0 0
\(111\) −0.585588 −0.0555815
\(112\) 0 0
\(113\) −10.9289 −1.02811 −0.514054 0.857758i \(-0.671857\pi\)
−0.514054 + 0.857758i \(0.671857\pi\)
\(114\) 0 0
\(115\) 7.97383i 0.743563i
\(116\) 0 0
\(117\) 11.6696i 1.07886i
\(118\) 0 0
\(119\) 12.0134 1.10127
\(120\) 0 0
\(121\) −5.68058 −0.516416
\(122\) 0 0
\(123\) 1.54480i 0.139290i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) −4.07012 −0.361165 −0.180583 0.983560i \(-0.557798\pi\)
−0.180583 + 0.983560i \(0.557798\pi\)
\(128\) 0 0
\(129\) −2.29130 −0.201737
\(130\) 0 0
\(131\) 17.8997i 1.56390i 0.623338 + 0.781952i \(0.285776\pi\)
−0.623338 + 0.781952i \(0.714224\pi\)
\(132\) 0 0
\(133\) 1.59876i 0.138630i
\(134\) 0 0
\(135\) −3.03558 −0.261261
\(136\) 0 0
\(137\) 2.57962 0.220392 0.110196 0.993910i \(-0.464852\pi\)
0.110196 + 0.993910i \(0.464852\pi\)
\(138\) 0 0
\(139\) − 13.5951i − 1.15312i −0.817055 0.576560i \(-0.804395\pi\)
0.817055 0.576560i \(-0.195605\pi\)
\(140\) 0 0
\(141\) − 3.26735i − 0.275160i
\(142\) 0 0
\(143\) 17.5341 1.46627
\(144\) 0 0
\(145\) −5.77844 −0.479874
\(146\) 0 0
\(147\) − 2.35915i − 0.194579i
\(148\) 0 0
\(149\) − 1.38602i − 0.113547i −0.998387 0.0567735i \(-0.981919\pi\)
0.998387 0.0567735i \(-0.0180813\pi\)
\(150\) 0 0
\(151\) −17.6513 −1.43644 −0.718220 0.695816i \(-0.755043\pi\)
−0.718220 + 0.695816i \(0.755043\pi\)
\(152\) 0 0
\(153\) −20.4250 −1.65127
\(154\) 0 0
\(155\) − 3.57200i − 0.286910i
\(156\) 0 0
\(157\) 12.4964i 0.997325i 0.866796 + 0.498662i \(0.166175\pi\)
−0.866796 + 0.498662i \(0.833825\pi\)
\(158\) 0 0
\(159\) −6.10518 −0.484172
\(160\) 0 0
\(161\) −12.7482 −1.00470
\(162\) 0 0
\(163\) 10.6418i 0.833533i 0.909013 + 0.416767i \(0.136837\pi\)
−0.909013 + 0.416767i \(0.863163\pi\)
\(164\) 0 0
\(165\) 2.16815i 0.168790i
\(166\) 0 0
\(167\) −9.32577 −0.721650 −0.360825 0.932634i \(-0.617505\pi\)
−0.360825 + 0.932634i \(0.617505\pi\)
\(168\) 0 0
\(169\) −5.43128 −0.417791
\(170\) 0 0
\(171\) − 2.71818i − 0.207865i
\(172\) 0 0
\(173\) − 14.2559i − 1.08386i −0.840424 0.541929i \(-0.817694\pi\)
0.840424 0.541929i \(-0.182306\pi\)
\(174\) 0 0
\(175\) 1.59876 0.120855
\(176\) 0 0
\(177\) 3.67119 0.275943
\(178\) 0 0
\(179\) 15.8824i 1.18711i 0.804794 + 0.593554i \(0.202276\pi\)
−0.804794 + 0.593554i \(0.797724\pi\)
\(180\) 0 0
\(181\) 9.70924i 0.721682i 0.932627 + 0.360841i \(0.117510\pi\)
−0.932627 + 0.360841i \(0.882490\pi\)
\(182\) 0 0
\(183\) −2.45066 −0.181158
\(184\) 0 0
\(185\) −1.10308 −0.0811002
\(186\) 0 0
\(187\) 30.6895i 2.24424i
\(188\) 0 0
\(189\) − 4.85317i − 0.353016i
\(190\) 0 0
\(191\) −5.34269 −0.386584 −0.193292 0.981141i \(-0.561916\pi\)
−0.193292 + 0.981141i \(0.561916\pi\)
\(192\) 0 0
\(193\) −6.68316 −0.481065 −0.240532 0.970641i \(-0.577322\pi\)
−0.240532 + 0.970641i \(0.577322\pi\)
\(194\) 0 0
\(195\) − 2.27909i − 0.163209i
\(196\) 0 0
\(197\) − 1.87200i − 0.133374i −0.997774 0.0666872i \(-0.978757\pi\)
0.997774 0.0666872i \(-0.0212429\pi\)
\(198\) 0 0
\(199\) −11.7535 −0.833184 −0.416592 0.909094i \(-0.636776\pi\)
−0.416592 + 0.909094i \(0.636776\pi\)
\(200\) 0 0
\(201\) −5.42580 −0.382707
\(202\) 0 0
\(203\) − 9.23835i − 0.648405i
\(204\) 0 0
\(205\) 2.90996i 0.203240i
\(206\) 0 0
\(207\) 21.6743 1.50647
\(208\) 0 0
\(209\) −4.08419 −0.282509
\(210\) 0 0
\(211\) 16.3391i 1.12483i 0.826856 + 0.562413i \(0.190127\pi\)
−0.826856 + 0.562413i \(0.809873\pi\)
\(212\) 0 0
\(213\) − 6.02715i − 0.412974i
\(214\) 0 0
\(215\) −4.31616 −0.294360
\(216\) 0 0
\(217\) 5.71078 0.387673
\(218\) 0 0
\(219\) 8.04490i 0.543624i
\(220\) 0 0
\(221\) − 32.2598i − 2.17003i
\(222\) 0 0
\(223\) −14.1309 −0.946278 −0.473139 0.880988i \(-0.656879\pi\)
−0.473139 + 0.880988i \(0.656879\pi\)
\(224\) 0 0
\(225\) −2.71818 −0.181212
\(226\) 0 0
\(227\) − 14.1373i − 0.938324i −0.883112 0.469162i \(-0.844556\pi\)
0.883112 0.469162i \(-0.155444\pi\)
\(228\) 0 0
\(229\) 13.1301i 0.867665i 0.900994 + 0.433832i \(0.142839\pi\)
−0.900994 + 0.433832i \(0.857161\pi\)
\(230\) 0 0
\(231\) −3.46636 −0.228069
\(232\) 0 0
\(233\) −16.8001 −1.10061 −0.550306 0.834963i \(-0.685489\pi\)
−0.550306 + 0.834963i \(0.685489\pi\)
\(234\) 0 0
\(235\) − 6.15476i − 0.401492i
\(236\) 0 0
\(237\) 1.63580i 0.106257i
\(238\) 0 0
\(239\) 12.7091 0.822083 0.411042 0.911617i \(-0.365165\pi\)
0.411042 + 0.911617i \(0.365165\pi\)
\(240\) 0 0
\(241\) −2.78627 −0.179479 −0.0897396 0.995965i \(-0.528603\pi\)
−0.0897396 + 0.995965i \(0.528603\pi\)
\(242\) 0 0
\(243\) 12.5802i 0.807022i
\(244\) 0 0
\(245\) − 4.44396i − 0.283915i
\(246\) 0 0
\(247\) 4.29317 0.273168
\(248\) 0 0
\(249\) −1.81012 −0.114712
\(250\) 0 0
\(251\) − 19.1306i − 1.20752i −0.797168 0.603758i \(-0.793669\pi\)
0.797168 0.603758i \(-0.206331\pi\)
\(252\) 0 0
\(253\) − 32.5666i − 2.04744i
\(254\) 0 0
\(255\) 3.98904 0.249803
\(256\) 0 0
\(257\) 15.3571 0.957952 0.478976 0.877828i \(-0.341008\pi\)
0.478976 + 0.877828i \(0.341008\pi\)
\(258\) 0 0
\(259\) − 1.76356i − 0.109583i
\(260\) 0 0
\(261\) 15.7069i 0.972231i
\(262\) 0 0
\(263\) 30.6398 1.88933 0.944665 0.328037i \(-0.106387\pi\)
0.944665 + 0.328037i \(0.106387\pi\)
\(264\) 0 0
\(265\) −11.5004 −0.706466
\(266\) 0 0
\(267\) − 7.19671i − 0.440432i
\(268\) 0 0
\(269\) 21.9765i 1.33993i 0.742394 + 0.669964i \(0.233690\pi\)
−0.742394 + 0.669964i \(0.766310\pi\)
\(270\) 0 0
\(271\) −2.44649 −0.148614 −0.0743069 0.997235i \(-0.523674\pi\)
−0.0743069 + 0.997235i \(0.523674\pi\)
\(272\) 0 0
\(273\) 3.64372 0.220528
\(274\) 0 0
\(275\) 4.08419i 0.246286i
\(276\) 0 0
\(277\) − 27.0414i − 1.62476i −0.583127 0.812381i \(-0.698171\pi\)
0.583127 0.812381i \(-0.301829\pi\)
\(278\) 0 0
\(279\) −9.70936 −0.581284
\(280\) 0 0
\(281\) 15.9317 0.950404 0.475202 0.879877i \(-0.342375\pi\)
0.475202 + 0.879877i \(0.342375\pi\)
\(282\) 0 0
\(283\) − 4.15406i − 0.246933i −0.992349 0.123467i \(-0.960599\pi\)
0.992349 0.123467i \(-0.0394012\pi\)
\(284\) 0 0
\(285\) 0.530865i 0.0314457i
\(286\) 0 0
\(287\) −4.65233 −0.274618
\(288\) 0 0
\(289\) 39.4635 2.32138
\(290\) 0 0
\(291\) 1.62979i 0.0955401i
\(292\) 0 0
\(293\) 21.0272i 1.22842i 0.789141 + 0.614212i \(0.210526\pi\)
−0.789141 + 0.614212i \(0.789474\pi\)
\(294\) 0 0
\(295\) 6.91548 0.402635
\(296\) 0 0
\(297\) 12.3979 0.719398
\(298\) 0 0
\(299\) 34.2330i 1.97974i
\(300\) 0 0
\(301\) − 6.90050i − 0.397738i
\(302\) 0 0
\(303\) 5.61266 0.322439
\(304\) 0 0
\(305\) −4.61636 −0.264332
\(306\) 0 0
\(307\) − 16.6865i − 0.952348i −0.879351 0.476174i \(-0.842023\pi\)
0.879351 0.476174i \(-0.157977\pi\)
\(308\) 0 0
\(309\) − 5.62479i − 0.319983i
\(310\) 0 0
\(311\) 9.12451 0.517403 0.258702 0.965957i \(-0.416705\pi\)
0.258702 + 0.965957i \(0.416705\pi\)
\(312\) 0 0
\(313\) −23.5688 −1.33219 −0.666093 0.745869i \(-0.732035\pi\)
−0.666093 + 0.745869i \(0.732035\pi\)
\(314\) 0 0
\(315\) − 4.34572i − 0.244854i
\(316\) 0 0
\(317\) − 13.6522i − 0.766786i −0.923585 0.383393i \(-0.874756\pi\)
0.923585 0.383393i \(-0.125244\pi\)
\(318\) 0 0
\(319\) 23.6002 1.32136
\(320\) 0 0
\(321\) −1.07573 −0.0600414
\(322\) 0 0
\(323\) 7.51422i 0.418102i
\(324\) 0 0
\(325\) − 4.29317i − 0.238142i
\(326\) 0 0
\(327\) −5.25468 −0.290584
\(328\) 0 0
\(329\) 9.83999 0.542496
\(330\) 0 0
\(331\) 22.6976i 1.24757i 0.781595 + 0.623786i \(0.214406\pi\)
−0.781595 + 0.623786i \(0.785594\pi\)
\(332\) 0 0
\(333\) 2.99838i 0.164310i
\(334\) 0 0
\(335\) −10.2207 −0.558416
\(336\) 0 0
\(337\) 35.6697 1.94305 0.971527 0.236930i \(-0.0761413\pi\)
0.971527 + 0.236930i \(0.0761413\pi\)
\(338\) 0 0
\(339\) − 5.80179i − 0.315110i
\(340\) 0 0
\(341\) 14.5887i 0.790024i
\(342\) 0 0
\(343\) 18.2962 0.987900
\(344\) 0 0
\(345\) −4.23303 −0.227898
\(346\) 0 0
\(347\) 6.33393i 0.340023i 0.985442 + 0.170012i \(0.0543805\pi\)
−0.985442 + 0.170012i \(0.945619\pi\)
\(348\) 0 0
\(349\) − 17.8252i − 0.954159i −0.878860 0.477079i \(-0.841695\pi\)
0.878860 0.477079i \(-0.158305\pi\)
\(350\) 0 0
\(351\) −13.0323 −0.695611
\(352\) 0 0
\(353\) 27.7834 1.47876 0.739381 0.673287i \(-0.235118\pi\)
0.739381 + 0.673287i \(0.235118\pi\)
\(354\) 0 0
\(355\) − 11.3535i − 0.602579i
\(356\) 0 0
\(357\) 6.37752i 0.337534i
\(358\) 0 0
\(359\) −9.93716 −0.524463 −0.262232 0.965005i \(-0.584458\pi\)
−0.262232 + 0.965005i \(0.584458\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) − 3.01562i − 0.158279i
\(364\) 0 0
\(365\) 15.1543i 0.793213i
\(366\) 0 0
\(367\) 6.50515 0.339566 0.169783 0.985481i \(-0.445693\pi\)
0.169783 + 0.985481i \(0.445693\pi\)
\(368\) 0 0
\(369\) 7.90980 0.411768
\(370\) 0 0
\(371\) − 18.3864i − 0.954576i
\(372\) 0 0
\(373\) 18.1569i 0.940129i 0.882632 + 0.470065i \(0.155769\pi\)
−0.882632 + 0.470065i \(0.844231\pi\)
\(374\) 0 0
\(375\) 0.530865 0.0274138
\(376\) 0 0
\(377\) −24.8078 −1.27767
\(378\) 0 0
\(379\) 30.5842i 1.57101i 0.618858 + 0.785503i \(0.287596\pi\)
−0.618858 + 0.785503i \(0.712404\pi\)
\(380\) 0 0
\(381\) − 2.16069i − 0.110695i
\(382\) 0 0
\(383\) −32.9375 −1.68303 −0.841514 0.540236i \(-0.818335\pi\)
−0.841514 + 0.540236i \(0.818335\pi\)
\(384\) 0 0
\(385\) −6.52964 −0.332781
\(386\) 0 0
\(387\) 11.7321i 0.596376i
\(388\) 0 0
\(389\) − 13.4993i − 0.684444i −0.939619 0.342222i \(-0.888821\pi\)
0.939619 0.342222i \(-0.111179\pi\)
\(390\) 0 0
\(391\) −59.9171 −3.03014
\(392\) 0 0
\(393\) −9.50233 −0.479329
\(394\) 0 0
\(395\) 3.08138i 0.155041i
\(396\) 0 0
\(397\) 29.6811i 1.48965i 0.667259 + 0.744826i \(0.267467\pi\)
−0.667259 + 0.744826i \(0.732533\pi\)
\(398\) 0 0
\(399\) −0.848726 −0.0424894
\(400\) 0 0
\(401\) 5.56949 0.278127 0.139064 0.990283i \(-0.455591\pi\)
0.139064 + 0.990283i \(0.455591\pi\)
\(402\) 0 0
\(403\) − 15.3352i − 0.763901i
\(404\) 0 0
\(405\) 6.54306i 0.325127i
\(406\) 0 0
\(407\) 4.50519 0.223314
\(408\) 0 0
\(409\) −29.9040 −1.47866 −0.739330 0.673343i \(-0.764858\pi\)
−0.739330 + 0.673343i \(0.764858\pi\)
\(410\) 0 0
\(411\) 1.36943i 0.0675491i
\(412\) 0 0
\(413\) 11.0562i 0.544040i
\(414\) 0 0
\(415\) −3.40976 −0.167379
\(416\) 0 0
\(417\) 7.21715 0.353425
\(418\) 0 0
\(419\) − 0.927860i − 0.0453289i −0.999743 0.0226645i \(-0.992785\pi\)
0.999743 0.0226645i \(-0.00721494\pi\)
\(420\) 0 0
\(421\) − 36.2436i − 1.76641i −0.468990 0.883204i \(-0.655382\pi\)
0.468990 0.883204i \(-0.344618\pi\)
\(422\) 0 0
\(423\) −16.7298 −0.813429
\(424\) 0 0
\(425\) 7.51422 0.364493
\(426\) 0 0
\(427\) − 7.38045i − 0.357165i
\(428\) 0 0
\(429\) 9.30824i 0.449406i
\(430\) 0 0
\(431\) −14.2580 −0.686785 −0.343392 0.939192i \(-0.611576\pi\)
−0.343392 + 0.939192i \(0.611576\pi\)
\(432\) 0 0
\(433\) 8.82519 0.424112 0.212056 0.977258i \(-0.431984\pi\)
0.212056 + 0.977258i \(0.431984\pi\)
\(434\) 0 0
\(435\) − 3.06757i − 0.147079i
\(436\) 0 0
\(437\) − 7.97383i − 0.381440i
\(438\) 0 0
\(439\) 20.6663 0.986351 0.493175 0.869930i \(-0.335836\pi\)
0.493175 + 0.869930i \(0.335836\pi\)
\(440\) 0 0
\(441\) −12.0795 −0.575215
\(442\) 0 0
\(443\) 11.4417i 0.543612i 0.962352 + 0.271806i \(0.0876209\pi\)
−0.962352 + 0.271806i \(0.912379\pi\)
\(444\) 0 0
\(445\) − 13.5566i − 0.642643i
\(446\) 0 0
\(447\) 0.735789 0.0348016
\(448\) 0 0
\(449\) 28.4103 1.34077 0.670383 0.742015i \(-0.266130\pi\)
0.670383 + 0.742015i \(0.266130\pi\)
\(450\) 0 0
\(451\) − 11.8848i − 0.559634i
\(452\) 0 0
\(453\) − 9.37045i − 0.440262i
\(454\) 0 0
\(455\) 6.86375 0.321777
\(456\) 0 0
\(457\) −35.1259 −1.64312 −0.821561 0.570121i \(-0.806896\pi\)
−0.821561 + 0.570121i \(0.806896\pi\)
\(458\) 0 0
\(459\) − 22.8100i − 1.06468i
\(460\) 0 0
\(461\) − 30.0315i − 1.39871i −0.714777 0.699353i \(-0.753472\pi\)
0.714777 0.699353i \(-0.246528\pi\)
\(462\) 0 0
\(463\) 2.07091 0.0962432 0.0481216 0.998841i \(-0.484677\pi\)
0.0481216 + 0.998841i \(0.484677\pi\)
\(464\) 0 0
\(465\) 1.89625 0.0879366
\(466\) 0 0
\(467\) 40.1423i 1.85756i 0.370628 + 0.928781i \(0.379142\pi\)
−0.370628 + 0.928781i \(0.620858\pi\)
\(468\) 0 0
\(469\) − 16.3404i − 0.754531i
\(470\) 0 0
\(471\) −6.63393 −0.305675
\(472\) 0 0
\(473\) 17.6280 0.810536
\(474\) 0 0
\(475\) 1.00000i 0.0458831i
\(476\) 0 0
\(477\) 31.2603i 1.43131i
\(478\) 0 0
\(479\) 26.0532 1.19040 0.595200 0.803577i \(-0.297073\pi\)
0.595200 + 0.803577i \(0.297073\pi\)
\(480\) 0 0
\(481\) −4.73571 −0.215930
\(482\) 0 0
\(483\) − 6.76759i − 0.307936i
\(484\) 0 0
\(485\) 3.07007i 0.139405i
\(486\) 0 0
\(487\) 7.11676 0.322491 0.161245 0.986914i \(-0.448449\pi\)
0.161245 + 0.986914i \(0.448449\pi\)
\(488\) 0 0
\(489\) −5.64938 −0.255474
\(490\) 0 0
\(491\) − 37.1832i − 1.67805i −0.544090 0.839027i \(-0.683125\pi\)
0.544090 0.839027i \(-0.316875\pi\)
\(492\) 0 0
\(493\) − 43.4205i − 1.95556i
\(494\) 0 0
\(495\) 11.1016 0.498978
\(496\) 0 0
\(497\) 18.1515 0.814204
\(498\) 0 0
\(499\) − 10.4518i − 0.467888i −0.972250 0.233944i \(-0.924837\pi\)
0.972250 0.233944i \(-0.0751633\pi\)
\(500\) 0 0
\(501\) − 4.95073i − 0.221182i
\(502\) 0 0
\(503\) 30.2318 1.34797 0.673985 0.738745i \(-0.264581\pi\)
0.673985 + 0.738745i \(0.264581\pi\)
\(504\) 0 0
\(505\) 10.5727 0.470478
\(506\) 0 0
\(507\) − 2.88328i − 0.128051i
\(508\) 0 0
\(509\) − 12.5208i − 0.554975i −0.960729 0.277488i \(-0.910498\pi\)
0.960729 0.277488i \(-0.0895017\pi\)
\(510\) 0 0
\(511\) −24.2281 −1.07179
\(512\) 0 0
\(513\) 3.03558 0.134024
\(514\) 0 0
\(515\) − 10.5955i − 0.466894i
\(516\) 0 0
\(517\) 25.1372i 1.10553i
\(518\) 0 0
\(519\) 7.56797 0.332197
\(520\) 0 0
\(521\) 15.0001 0.657168 0.328584 0.944475i \(-0.393429\pi\)
0.328584 + 0.944475i \(0.393429\pi\)
\(522\) 0 0
\(523\) − 23.4506i − 1.02543i −0.858560 0.512713i \(-0.828641\pi\)
0.858560 0.512713i \(-0.171359\pi\)
\(524\) 0 0
\(525\) 0.848726i 0.0370414i
\(526\) 0 0
\(527\) 26.8408 1.16920
\(528\) 0 0
\(529\) 40.5819 1.76443
\(530\) 0 0
\(531\) − 18.7975i − 0.815743i
\(532\) 0 0
\(533\) 12.4929i 0.541129i
\(534\) 0 0
\(535\) −2.02637 −0.0876077
\(536\) 0 0
\(537\) −8.43142 −0.363843
\(538\) 0 0
\(539\) 18.1500i 0.781775i
\(540\) 0 0
\(541\) 6.30059i 0.270884i 0.990785 + 0.135442i \(0.0432454\pi\)
−0.990785 + 0.135442i \(0.956755\pi\)
\(542\) 0 0
\(543\) −5.15429 −0.221192
\(544\) 0 0
\(545\) −9.89833 −0.423998
\(546\) 0 0
\(547\) 2.94592i 0.125958i 0.998015 + 0.0629792i \(0.0200602\pi\)
−0.998015 + 0.0629792i \(0.979940\pi\)
\(548\) 0 0
\(549\) 12.5481i 0.535540i
\(550\) 0 0
\(551\) 5.77844 0.246170
\(552\) 0 0
\(553\) −4.92639 −0.209492
\(554\) 0 0
\(555\) − 0.585588i − 0.0248568i
\(556\) 0 0
\(557\) − 1.01592i − 0.0430460i −0.999768 0.0215230i \(-0.993148\pi\)
0.999768 0.0215230i \(-0.00685151\pi\)
\(558\) 0 0
\(559\) −18.5300 −0.783735
\(560\) 0 0
\(561\) −16.2920 −0.687848
\(562\) 0 0
\(563\) 20.8276i 0.877781i 0.898541 + 0.438890i \(0.144628\pi\)
−0.898541 + 0.438890i \(0.855372\pi\)
\(564\) 0 0
\(565\) − 10.9289i − 0.459784i
\(566\) 0 0
\(567\) −10.4608 −0.439312
\(568\) 0 0
\(569\) 21.6656 0.908269 0.454135 0.890933i \(-0.349948\pi\)
0.454135 + 0.890933i \(0.349948\pi\)
\(570\) 0 0
\(571\) − 11.1870i − 0.468160i −0.972217 0.234080i \(-0.924792\pi\)
0.972217 0.234080i \(-0.0752078\pi\)
\(572\) 0 0
\(573\) − 2.83625i − 0.118486i
\(574\) 0 0
\(575\) −7.97383 −0.332532
\(576\) 0 0
\(577\) −7.17954 −0.298888 −0.149444 0.988770i \(-0.547748\pi\)
−0.149444 + 0.988770i \(0.547748\pi\)
\(578\) 0 0
\(579\) − 3.54786i − 0.147444i
\(580\) 0 0
\(581\) − 5.45139i − 0.226162i
\(582\) 0 0
\(583\) 46.9699 1.94530
\(584\) 0 0
\(585\) −11.6696 −0.482479
\(586\) 0 0
\(587\) − 21.8913i − 0.903550i −0.892132 0.451775i \(-0.850791\pi\)
0.892132 0.451775i \(-0.149209\pi\)
\(588\) 0 0
\(589\) 3.57200i 0.147182i
\(590\) 0 0
\(591\) 0.993778 0.0408786
\(592\) 0 0
\(593\) −15.5372 −0.638036 −0.319018 0.947749i \(-0.603353\pi\)
−0.319018 + 0.947749i \(0.603353\pi\)
\(594\) 0 0
\(595\) 12.0134i 0.492503i
\(596\) 0 0
\(597\) − 6.23953i − 0.255367i
\(598\) 0 0
\(599\) 33.3360 1.36207 0.681037 0.732249i \(-0.261529\pi\)
0.681037 + 0.732249i \(0.261529\pi\)
\(600\) 0 0
\(601\) 0.180219 0.00735130 0.00367565 0.999993i \(-0.498830\pi\)
0.00367565 + 0.999993i \(0.498830\pi\)
\(602\) 0 0
\(603\) 27.7817i 1.13136i
\(604\) 0 0
\(605\) − 5.68058i − 0.230948i
\(606\) 0 0
\(607\) 21.7657 0.883441 0.441720 0.897153i \(-0.354368\pi\)
0.441720 + 0.897153i \(0.354368\pi\)
\(608\) 0 0
\(609\) 4.90432 0.198733
\(610\) 0 0
\(611\) − 26.4234i − 1.06898i
\(612\) 0 0
\(613\) − 0.0959402i − 0.00387499i −0.999998 0.00193749i \(-0.999383\pi\)
0.999998 0.00193749i \(-0.000616724\pi\)
\(614\) 0 0
\(615\) −1.54480 −0.0622922
\(616\) 0 0
\(617\) 46.4973 1.87191 0.935956 0.352117i \(-0.114538\pi\)
0.935956 + 0.352117i \(0.114538\pi\)
\(618\) 0 0
\(619\) 6.37072i 0.256061i 0.991770 + 0.128030i \(0.0408655\pi\)
−0.991770 + 0.128030i \(0.959135\pi\)
\(620\) 0 0
\(621\) 24.2052i 0.971322i
\(622\) 0 0
\(623\) 21.6737 0.868339
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) − 2.16815i − 0.0865876i
\(628\) 0 0
\(629\) − 8.28880i − 0.330496i
\(630\) 0 0
\(631\) 28.9645 1.15306 0.576530 0.817076i \(-0.304406\pi\)
0.576530 + 0.817076i \(0.304406\pi\)
\(632\) 0 0
\(633\) −8.67383 −0.344754
\(634\) 0 0
\(635\) − 4.07012i − 0.161518i
\(636\) 0 0
\(637\) − 19.0787i − 0.755925i
\(638\) 0 0
\(639\) −30.8608 −1.22083
\(640\) 0 0
\(641\) 23.1989 0.916301 0.458151 0.888875i \(-0.348512\pi\)
0.458151 + 0.888875i \(0.348512\pi\)
\(642\) 0 0
\(643\) − 2.62001i − 0.103323i −0.998665 0.0516616i \(-0.983548\pi\)
0.998665 0.0516616i \(-0.0164517\pi\)
\(644\) 0 0
\(645\) − 2.29130i − 0.0902197i
\(646\) 0 0
\(647\) 6.48788 0.255065 0.127532 0.991834i \(-0.459294\pi\)
0.127532 + 0.991834i \(0.459294\pi\)
\(648\) 0 0
\(649\) −28.2441 −1.10868
\(650\) 0 0
\(651\) 3.03165i 0.118820i
\(652\) 0 0
\(653\) − 26.3459i − 1.03099i −0.856891 0.515497i \(-0.827607\pi\)
0.856891 0.515497i \(-0.172393\pi\)
\(654\) 0 0
\(655\) −17.8997 −0.699399
\(656\) 0 0
\(657\) 41.1922 1.60706
\(658\) 0 0
\(659\) − 17.9787i − 0.700350i −0.936684 0.350175i \(-0.886122\pi\)
0.936684 0.350175i \(-0.113878\pi\)
\(660\) 0 0
\(661\) − 20.4574i − 0.795700i −0.917450 0.397850i \(-0.869756\pi\)
0.917450 0.397850i \(-0.130244\pi\)
\(662\) 0 0
\(663\) 17.1256 0.665103
\(664\) 0 0
\(665\) −1.59876 −0.0619973
\(666\) 0 0
\(667\) 46.0763i 1.78408i
\(668\) 0 0
\(669\) − 7.50162i − 0.290029i
\(670\) 0 0
\(671\) 18.8541 0.727853
\(672\) 0 0
\(673\) −26.5170 −1.02215 −0.511077 0.859535i \(-0.670753\pi\)
−0.511077 + 0.859535i \(0.670753\pi\)
\(674\) 0 0
\(675\) − 3.03558i − 0.116840i
\(676\) 0 0
\(677\) 24.0962i 0.926092i 0.886334 + 0.463046i \(0.153244\pi\)
−0.886334 + 0.463046i \(0.846756\pi\)
\(678\) 0 0
\(679\) −4.90831 −0.188363
\(680\) 0 0
\(681\) 7.50498 0.287592
\(682\) 0 0
\(683\) − 36.1606i − 1.38365i −0.722066 0.691824i \(-0.756807\pi\)
0.722066 0.691824i \(-0.243193\pi\)
\(684\) 0 0
\(685\) 2.57962i 0.0985623i
\(686\) 0 0
\(687\) −6.97034 −0.265935
\(688\) 0 0
\(689\) −49.3733 −1.88097
\(690\) 0 0
\(691\) − 21.7649i − 0.827976i −0.910282 0.413988i \(-0.864136\pi\)
0.910282 0.413988i \(-0.135864\pi\)
\(692\) 0 0
\(693\) 17.7487i 0.674219i
\(694\) 0 0
\(695\) 13.5951 0.515691
\(696\) 0 0
\(697\) −21.8661 −0.828237
\(698\) 0 0
\(699\) − 8.91860i − 0.337332i
\(700\) 0 0
\(701\) 9.06451i 0.342362i 0.985240 + 0.171181i \(0.0547583\pi\)
−0.985240 + 0.171181i \(0.945242\pi\)
\(702\) 0 0
\(703\) 1.10308 0.0416035
\(704\) 0 0
\(705\) 3.26735 0.123055
\(706\) 0 0
\(707\) 16.9032i 0.635709i
\(708\) 0 0
\(709\) − 21.2734i − 0.798938i −0.916747 0.399469i \(-0.869195\pi\)
0.916747 0.399469i \(-0.130805\pi\)
\(710\) 0 0
\(711\) 8.37576 0.314116
\(712\) 0 0
\(713\) −28.4825 −1.06668
\(714\) 0 0
\(715\) 17.5341i 0.655738i
\(716\) 0 0
\(717\) 6.74682i 0.251965i
\(718\) 0 0
\(719\) −38.8544 −1.44902 −0.724512 0.689262i \(-0.757935\pi\)
−0.724512 + 0.689262i \(0.757935\pi\)
\(720\) 0 0
\(721\) 16.9397 0.630867
\(722\) 0 0
\(723\) − 1.47913i − 0.0550095i
\(724\) 0 0
\(725\) − 5.77844i − 0.214606i
\(726\) 0 0
\(727\) −22.3400 −0.828546 −0.414273 0.910153i \(-0.635964\pi\)
−0.414273 + 0.910153i \(0.635964\pi\)
\(728\) 0 0
\(729\) 12.9508 0.479659
\(730\) 0 0
\(731\) − 32.4326i − 1.19956i
\(732\) 0 0
\(733\) 7.54019i 0.278503i 0.990257 + 0.139252i \(0.0444697\pi\)
−0.990257 + 0.139252i \(0.955530\pi\)
\(734\) 0 0
\(735\) 2.35915 0.0870184
\(736\) 0 0
\(737\) 41.7432 1.53763
\(738\) 0 0
\(739\) 20.2897i 0.746369i 0.927757 + 0.373184i \(0.121734\pi\)
−0.927757 + 0.373184i \(0.878266\pi\)
\(740\) 0 0
\(741\) 2.27909i 0.0837245i
\(742\) 0 0
\(743\) 40.5952 1.48929 0.744647 0.667458i \(-0.232618\pi\)
0.744647 + 0.667458i \(0.232618\pi\)
\(744\) 0 0
\(745\) 1.38602 0.0507798
\(746\) 0 0
\(747\) 9.26835i 0.339111i
\(748\) 0 0
\(749\) − 3.23968i − 0.118376i
\(750\) 0 0
\(751\) 41.1087 1.50008 0.750038 0.661394i \(-0.230035\pi\)
0.750038 + 0.661394i \(0.230035\pi\)
\(752\) 0 0
\(753\) 10.1558 0.370098
\(754\) 0 0
\(755\) − 17.6513i − 0.642396i
\(756\) 0 0
\(757\) 23.1182i 0.840245i 0.907467 + 0.420123i \(0.138013\pi\)
−0.907467 + 0.420123i \(0.861987\pi\)
\(758\) 0 0
\(759\) 17.2885 0.627532
\(760\) 0 0
\(761\) −19.5773 −0.709676 −0.354838 0.934928i \(-0.615464\pi\)
−0.354838 + 0.934928i \(0.615464\pi\)
\(762\) 0 0
\(763\) − 15.8251i − 0.572906i
\(764\) 0 0
\(765\) − 20.4250i − 0.738468i
\(766\) 0 0
\(767\) 29.6893 1.07202
\(768\) 0 0
\(769\) 37.2201 1.34219 0.671095 0.741371i \(-0.265824\pi\)
0.671095 + 0.741371i \(0.265824\pi\)
\(770\) 0 0
\(771\) 8.15257i 0.293608i
\(772\) 0 0
\(773\) − 7.99430i − 0.287535i −0.989611 0.143768i \(-0.954078\pi\)
0.989611 0.143768i \(-0.0459218\pi\)
\(774\) 0 0
\(775\) 3.57200 0.128310
\(776\) 0 0
\(777\) 0.936214 0.0335865
\(778\) 0 0
\(779\) − 2.90996i − 0.104260i
\(780\) 0 0
\(781\) 46.3696i 1.65924i
\(782\) 0 0
\(783\) −17.5409 −0.626862
\(784\) 0 0
\(785\) −12.4964 −0.446017
\(786\) 0 0
\(787\) − 34.8314i − 1.24160i −0.783967 0.620802i \(-0.786807\pi\)
0.783967 0.620802i \(-0.213193\pi\)
\(788\) 0 0
\(789\) 16.2656i 0.579070i
\(790\) 0 0
\(791\) 17.4728 0.621260
\(792\) 0 0
\(793\) −19.8188 −0.703786
\(794\) 0 0
\(795\) − 6.10518i − 0.216528i
\(796\) 0 0
\(797\) 10.7193i 0.379697i 0.981813 + 0.189849i \(0.0607998\pi\)
−0.981813 + 0.189849i \(0.939200\pi\)
\(798\) 0 0
\(799\) 46.2482 1.63615
\(800\) 0 0
\(801\) −36.8492 −1.30200
\(802\) 0 0
\(803\) − 61.8931i − 2.18416i
\(804\) 0 0
\(805\) − 12.7482i − 0.449316i
\(806\) 0 0
\(807\) −11.6665 −0.410681
\(808\) 0 0
\(809\) 28.7727 1.01159 0.505797 0.862652i \(-0.331198\pi\)
0.505797 + 0.862652i \(0.331198\pi\)
\(810\) 0 0
\(811\) − 17.7551i − 0.623465i −0.950170 0.311733i \(-0.899091\pi\)
0.950170 0.311733i \(-0.100909\pi\)
\(812\) 0 0
\(813\) − 1.29876i − 0.0455494i
\(814\) 0 0
\(815\) −10.6418 −0.372767
\(816\) 0 0
\(817\) 4.31616 0.151003
\(818\) 0 0
\(819\) − 18.6569i − 0.651925i
\(820\) 0 0
\(821\) − 44.3665i − 1.54840i −0.632939 0.774202i \(-0.718152\pi\)
0.632939 0.774202i \(-0.281848\pi\)
\(822\) 0 0
\(823\) −52.3287 −1.82406 −0.912032 0.410118i \(-0.865487\pi\)
−0.912032 + 0.410118i \(0.865487\pi\)
\(824\) 0 0
\(825\) −2.16815 −0.0754854
\(826\) 0 0
\(827\) − 36.8109i − 1.28004i −0.768358 0.640021i \(-0.778926\pi\)
0.768358 0.640021i \(-0.221074\pi\)
\(828\) 0 0
\(829\) − 6.63815i − 0.230553i −0.993333 0.115276i \(-0.963225\pi\)
0.993333 0.115276i \(-0.0367753\pi\)
\(830\) 0 0
\(831\) 14.3553 0.497981
\(832\) 0 0
\(833\) 33.3929 1.15700
\(834\) 0 0
\(835\) − 9.32577i − 0.322732i
\(836\) 0 0
\(837\) − 10.8431i − 0.374793i
\(838\) 0 0
\(839\) −34.1930 −1.18047 −0.590236 0.807231i \(-0.700965\pi\)
−0.590236 + 0.807231i \(0.700965\pi\)
\(840\) 0 0
\(841\) −4.39042 −0.151394
\(842\) 0 0
\(843\) 8.45757i 0.291294i
\(844\) 0 0
\(845\) − 5.43128i − 0.186842i
\(846\) 0 0
\(847\) 9.08188 0.312057
\(848\) 0 0
\(849\) 2.20524 0.0756838
\(850\) 0 0
\(851\) 8.79578i 0.301516i
\(852\) 0 0
\(853\) 27.3027i 0.934826i 0.884039 + 0.467413i \(0.154814\pi\)
−0.884039 + 0.467413i \(0.845186\pi\)
\(854\) 0 0
\(855\) 2.71818 0.0929599
\(856\) 0 0
\(857\) 8.87790 0.303263 0.151632 0.988437i \(-0.451547\pi\)
0.151632 + 0.988437i \(0.451547\pi\)
\(858\) 0 0
\(859\) 36.8942i 1.25881i 0.777076 + 0.629407i \(0.216702\pi\)
−0.777076 + 0.629407i \(0.783298\pi\)
\(860\) 0 0
\(861\) − 2.46976i − 0.0841691i
\(862\) 0 0
\(863\) 25.5457 0.869587 0.434793 0.900530i \(-0.356821\pi\)
0.434793 + 0.900530i \(0.356821\pi\)
\(864\) 0 0
\(865\) 14.2559 0.484716
\(866\) 0 0
\(867\) 20.9498i 0.711493i
\(868\) 0 0
\(869\) − 12.5849i − 0.426915i
\(870\) 0 0
\(871\) −43.8791 −1.48679
\(872\) 0 0
\(873\) 8.34501 0.282436
\(874\) 0 0
\(875\) 1.59876i 0.0540480i
\(876\) 0 0
\(877\) 22.6731i 0.765615i 0.923828 + 0.382808i \(0.125043\pi\)
−0.923828 + 0.382808i \(0.874957\pi\)
\(878\) 0 0
\(879\) −11.1626 −0.376506
\(880\) 0 0
\(881\) 32.3070 1.08845 0.544225 0.838939i \(-0.316824\pi\)
0.544225 + 0.838939i \(0.316824\pi\)
\(882\) 0 0
\(883\) 23.7637i 0.799711i 0.916578 + 0.399856i \(0.130940\pi\)
−0.916578 + 0.399856i \(0.869060\pi\)
\(884\) 0 0
\(885\) 3.67119i 0.123406i
\(886\) 0 0
\(887\) 40.8668 1.37217 0.686087 0.727520i \(-0.259327\pi\)
0.686087 + 0.727520i \(0.259327\pi\)
\(888\) 0 0
\(889\) 6.50715 0.218243
\(890\) 0 0
\(891\) − 26.7231i − 0.895257i
\(892\) 0 0
\(893\) 6.15476i 0.205961i
\(894\) 0 0
\(895\) −15.8824 −0.530891
\(896\) 0 0
\(897\) −18.1731 −0.606782
\(898\) 0 0
\(899\) − 20.6406i − 0.688403i
\(900\) 0 0
\(901\) − 86.4168i − 2.87896i
\(902\) 0 0
\(903\) 3.66324 0.121905
\(904\) 0 0
\(905\) −9.70924 −0.322746
\(906\) 0 0
\(907\) − 6.07897i − 0.201849i −0.994894 0.100925i \(-0.967820\pi\)
0.994894 0.100925i \(-0.0321801\pi\)
\(908\) 0 0
\(909\) − 28.7385i − 0.953195i
\(910\) 0 0
\(911\) −36.8291 −1.22020 −0.610102 0.792323i \(-0.708871\pi\)
−0.610102 + 0.792323i \(0.708871\pi\)
\(912\) 0 0
\(913\) 13.9261 0.460887
\(914\) 0 0
\(915\) − 2.45066i − 0.0810164i
\(916\) 0 0
\(917\) − 28.6173i − 0.945028i
\(918\) 0 0
\(919\) −21.5592 −0.711171 −0.355586 0.934644i \(-0.615719\pi\)
−0.355586 + 0.934644i \(0.615719\pi\)
\(920\) 0 0
\(921\) 8.85827 0.291890
\(922\) 0 0
\(923\) − 48.7423i − 1.60437i
\(924\) 0 0
\(925\) − 1.10308i − 0.0362691i
\(926\) 0 0
\(927\) −28.8006 −0.945934
\(928\) 0 0
\(929\) −36.9410 −1.21200 −0.605998 0.795466i \(-0.707226\pi\)
−0.605998 + 0.795466i \(0.707226\pi\)
\(930\) 0 0
\(931\) 4.44396i 0.145645i
\(932\) 0 0
\(933\) 4.84388i 0.158582i
\(934\) 0 0
\(935\) −30.6895 −1.00365
\(936\) 0 0
\(937\) −55.5587 −1.81502 −0.907512 0.420026i \(-0.862021\pi\)
−0.907512 + 0.420026i \(0.862021\pi\)
\(938\) 0 0
\(939\) − 12.5118i − 0.408308i
\(940\) 0 0
\(941\) − 3.59643i − 0.117240i −0.998280 0.0586201i \(-0.981330\pi\)
0.998280 0.0586201i \(-0.0186701\pi\)
\(942\) 0 0
\(943\) 23.2035 0.755610
\(944\) 0 0
\(945\) 4.85317 0.157874
\(946\) 0 0
\(947\) 29.4296i 0.956334i 0.878269 + 0.478167i \(0.158699\pi\)
−0.878269 + 0.478167i \(0.841301\pi\)
\(948\) 0 0
\(949\) 65.0600i 2.11194i
\(950\) 0 0
\(951\) 7.24749 0.235016
\(952\) 0 0
\(953\) 54.0253 1.75005 0.875026 0.484077i \(-0.160844\pi\)
0.875026 + 0.484077i \(0.160844\pi\)
\(954\) 0 0
\(955\) − 5.34269i − 0.172885i
\(956\) 0 0
\(957\) 12.5285i 0.404990i
\(958\) 0 0
\(959\) −4.12420 −0.133177
\(960\) 0 0
\(961\) −18.2408 −0.588413
\(962\) 0 0
\(963\) 5.50805i 0.177494i
\(964\) 0 0
\(965\) − 6.68316i − 0.215139i
\(966\) 0 0
\(967\) 4.11964 0.132479 0.0662394 0.997804i \(-0.478900\pi\)
0.0662394 + 0.997804i \(0.478900\pi\)
\(968\) 0 0
\(969\) −3.98904 −0.128146
\(970\) 0 0
\(971\) 22.6082i 0.725531i 0.931881 + 0.362765i \(0.118167\pi\)
−0.931881 + 0.362765i \(0.881833\pi\)
\(972\) 0 0
\(973\) 21.7353i 0.696801i
\(974\) 0 0
\(975\) 2.27909 0.0729894
\(976\) 0 0
\(977\) 33.7930 1.08113 0.540567 0.841301i \(-0.318210\pi\)
0.540567 + 0.841301i \(0.318210\pi\)
\(978\) 0 0
\(979\) 55.3676i 1.76956i
\(980\) 0 0
\(981\) 26.9055i 0.859026i
\(982\) 0 0
\(983\) −54.5710 −1.74054 −0.870272 0.492572i \(-0.836057\pi\)
−0.870272 + 0.492572i \(0.836057\pi\)
\(984\) 0 0
\(985\) 1.87200 0.0596468
\(986\) 0 0
\(987\) 5.22371i 0.166272i
\(988\) 0 0
\(989\) 34.4163i 1.09437i
\(990\) 0 0
\(991\) −33.8783 −1.07618 −0.538090 0.842888i \(-0.680854\pi\)
−0.538090 + 0.842888i \(0.680854\pi\)
\(992\) 0 0
\(993\) −12.0493 −0.382374
\(994\) 0 0
\(995\) − 11.7535i − 0.372611i
\(996\) 0 0
\(997\) − 41.4264i − 1.31199i −0.754767 0.655993i \(-0.772250\pi\)
0.754767 0.655993i \(-0.227750\pi\)
\(998\) 0 0
\(999\) −3.34850 −0.105942
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.f.b.1521.25 44
4.3 odd 2 760.2.f.b.381.9 44
8.3 odd 2 760.2.f.b.381.10 yes 44
8.5 even 2 inner 3040.2.f.b.1521.20 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.9 44 4.3 odd 2
760.2.f.b.381.10 yes 44 8.3 odd 2
3040.2.f.b.1521.20 44 8.5 even 2 inner
3040.2.f.b.1521.25 44 1.1 even 1 trivial