Defining parameters
| Level: | \( N \) | \(=\) | \( 3040 = 2^{5} \cdot 5 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3040.f (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(960\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3040, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 496 | 72 | 424 |
| Cusp forms | 464 | 72 | 392 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3040, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 3040.2.f.a | $28$ | $24.275$ | None | \(0\) | \(0\) | \(0\) | \(-4\) | ||
| 3040.2.f.b | $44$ | $24.275$ | None | \(0\) | \(0\) | \(0\) | \(-4\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(3040, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3040, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(608, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 3}\)