Properties

Label 760.2.f.b.381.9
Level $760$
Weight $2$
Character 760.381
Analytic conductor $6.069$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(381,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.381"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 381.9
Character \(\chi\) \(=\) 760.381
Dual form 760.2.f.b.381.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.01061 - 0.989281i) q^{2} -0.530865i q^{3} +(0.0426469 + 1.99955i) q^{4} +1.00000i q^{5} +(-0.525175 + 0.536495i) q^{6} +1.59876 q^{7} +(1.93501 - 2.06294i) q^{8} +2.71818 q^{9} +(0.989281 - 1.01061i) q^{10} +4.08419i q^{11} +(1.06149 - 0.0226397i) q^{12} +4.29317i q^{13} +(-1.61572 - 1.58162i) q^{14} +0.530865 q^{15} +(-3.99636 + 0.170549i) q^{16} -7.51422 q^{17} +(-2.74701 - 2.68905i) q^{18} +1.00000i q^{19} +(-1.99955 + 0.0426469i) q^{20} -0.848726i q^{21} +(4.04041 - 4.12750i) q^{22} -7.97383 q^{23} +(-1.09514 - 1.02723i) q^{24} -1.00000 q^{25} +(4.24715 - 4.33870i) q^{26} -3.03558i q^{27} +(0.0681821 + 3.19679i) q^{28} +5.77844i q^{29} +(-0.536495 - 0.525175i) q^{30} +3.57200 q^{31} +(4.20747 + 3.78117i) q^{32} +2.16815 q^{33} +(7.59391 + 7.43368i) q^{34} +1.59876i q^{35} +(0.115922 + 5.43513i) q^{36} +1.10308i q^{37} +(0.989281 - 1.01061i) q^{38} +2.27909 q^{39} +(2.06294 + 1.93501i) q^{40} +2.90996 q^{41} +(-0.839628 + 0.857727i) q^{42} -4.31616i q^{43} +(-8.16652 + 0.174178i) q^{44} +2.71818i q^{45} +(8.05839 + 7.88835i) q^{46} +6.15476 q^{47} +(0.0905383 + 2.12153i) q^{48} -4.44396 q^{49} +(1.01061 + 0.989281i) q^{50} +3.98904i q^{51} +(-8.58438 + 0.183090i) q^{52} +11.5004i q^{53} +(-3.00304 + 3.06778i) q^{54} -4.08419 q^{55} +(3.09362 - 3.29815i) q^{56} +0.530865 q^{57} +(5.71650 - 5.83973i) q^{58} +6.91548i q^{59} +(0.0226397 + 1.06149i) q^{60} +4.61636i q^{61} +(-3.60989 - 3.53371i) q^{62} +4.34572 q^{63} +(-0.511452 - 7.98363i) q^{64} -4.29317 q^{65} +(-2.19115 - 2.14491i) q^{66} -10.2207i q^{67} +(-0.320458 - 15.0250i) q^{68} +4.23303i q^{69} +(1.58162 - 1.61572i) q^{70} +11.3535 q^{71} +(5.25972 - 5.60745i) q^{72} +15.1543 q^{73} +(1.09126 - 1.11478i) q^{74} +0.530865i q^{75} +(-1.99955 + 0.0426469i) q^{76} +6.52964i q^{77} +(-2.30326 - 2.25466i) q^{78} -3.08138 q^{79} +(-0.170549 - 3.99636i) q^{80} +6.54306 q^{81} +(-2.94082 - 2.87877i) q^{82} -3.40976i q^{83} +(1.69707 - 0.0361955i) q^{84} -7.51422i q^{85} +(-4.26989 + 4.36193i) q^{86} +3.06757 q^{87} +(8.42544 + 7.90295i) q^{88} -13.5566 q^{89} +(2.68905 - 2.74701i) q^{90} +6.86375i q^{91} +(-0.340059 - 15.9440i) q^{92} -1.89625i q^{93} +(-6.22004 - 6.08879i) q^{94} -1.00000 q^{95} +(2.00729 - 2.23360i) q^{96} +3.07007 q^{97} +(4.49110 + 4.39633i) q^{98} +11.1016i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} - 2 q^{4} - 6 q^{6} + 4 q^{7} + 8 q^{8} - 60 q^{9} + 4 q^{12} + 4 q^{14} - 6 q^{16} + 24 q^{17} - 14 q^{18} - 4 q^{20} - 4 q^{22} + 4 q^{23} + 2 q^{24} - 44 q^{25} + 18 q^{26} - 14 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.01061 0.989281i −0.714606 0.699527i
\(3\) 0.530865i 0.306495i −0.988188 0.153248i \(-0.951027\pi\)
0.988188 0.153248i \(-0.0489732\pi\)
\(4\) 0.0426469 + 1.99955i 0.0213234 + 0.999773i
\(5\) 1.00000i 0.447214i
\(6\) −0.525175 + 0.536495i −0.214402 + 0.219023i
\(7\) 1.59876 0.604275 0.302137 0.953264i \(-0.402300\pi\)
0.302137 + 0.953264i \(0.402300\pi\)
\(8\) 1.93501 2.06294i 0.684130 0.729360i
\(9\) 2.71818 0.906061
\(10\) 0.989281 1.01061i 0.312838 0.319582i
\(11\) 4.08419i 1.23143i 0.787970 + 0.615714i \(0.211132\pi\)
−0.787970 + 0.615714i \(0.788868\pi\)
\(12\) 1.06149 0.0226397i 0.306425 0.00653553i
\(13\) 4.29317i 1.19071i 0.803463 + 0.595355i \(0.202989\pi\)
−0.803463 + 0.595355i \(0.797011\pi\)
\(14\) −1.61572 1.58162i −0.431818 0.422707i
\(15\) 0.530865 0.137069
\(16\) −3.99636 + 0.170549i −0.999091 + 0.0426372i
\(17\) −7.51422 −1.82247 −0.911233 0.411891i \(-0.864869\pi\)
−0.911233 + 0.411891i \(0.864869\pi\)
\(18\) −2.74701 2.68905i −0.647476 0.633814i
\(19\) 1.00000i 0.229416i
\(20\) −1.99955 + 0.0426469i −0.447112 + 0.00953613i
\(21\) 0.848726i 0.185207i
\(22\) 4.04041 4.12750i 0.861418 0.879986i
\(23\) −7.97383 −1.66266 −0.831329 0.555781i \(-0.812419\pi\)
−0.831329 + 0.555781i \(0.812419\pi\)
\(24\) −1.09514 1.02723i −0.223545 0.209683i
\(25\) −1.00000 −0.200000
\(26\) 4.24715 4.33870i 0.832934 0.850889i
\(27\) 3.03558i 0.584198i
\(28\) 0.0681821 + 3.19679i 0.0128852 + 0.604137i
\(29\) 5.77844i 1.07303i 0.843891 + 0.536515i \(0.180260\pi\)
−0.843891 + 0.536515i \(0.819740\pi\)
\(30\) −0.536495 0.525175i −0.0979502 0.0958833i
\(31\) 3.57200 0.641551 0.320775 0.947155i \(-0.396057\pi\)
0.320775 + 0.947155i \(0.396057\pi\)
\(32\) 4.20747 + 3.78117i 0.743782 + 0.668422i
\(33\) 2.16815 0.377427
\(34\) 7.59391 + 7.43368i 1.30235 + 1.27486i
\(35\) 1.59876i 0.270240i
\(36\) 0.115922 + 5.43513i 0.0193203 + 0.905855i
\(37\) 1.10308i 0.181346i 0.995881 + 0.0906728i \(0.0289017\pi\)
−0.995881 + 0.0906728i \(0.971098\pi\)
\(38\) 0.989281 1.01061i 0.160483 0.163942i
\(39\) 2.27909 0.364947
\(40\) 2.06294 + 1.93501i 0.326180 + 0.305952i
\(41\) 2.90996 0.454459 0.227230 0.973841i \(-0.427033\pi\)
0.227230 + 0.973841i \(0.427033\pi\)
\(42\) −0.839628 + 0.857727i −0.129557 + 0.132350i
\(43\) 4.31616i 0.658208i −0.944294 0.329104i \(-0.893253\pi\)
0.944294 0.329104i \(-0.106747\pi\)
\(44\) −8.16652 + 0.174178i −1.23115 + 0.0262583i
\(45\) 2.71818i 0.405203i
\(46\) 8.05839 + 7.88835i 1.18815 + 1.16307i
\(47\) 6.15476 0.897764 0.448882 0.893591i \(-0.351822\pi\)
0.448882 + 0.893591i \(0.351822\pi\)
\(48\) 0.0905383 + 2.12153i 0.0130681 + 0.306216i
\(49\) −4.44396 −0.634852
\(50\) 1.01061 + 0.989281i 0.142921 + 0.139905i
\(51\) 3.98904i 0.558577i
\(52\) −8.58438 + 0.183090i −1.19044 + 0.0253900i
\(53\) 11.5004i 1.57971i 0.613296 + 0.789853i \(0.289843\pi\)
−0.613296 + 0.789853i \(0.710157\pi\)
\(54\) −3.00304 + 3.06778i −0.408663 + 0.417472i
\(55\) −4.08419 −0.550712
\(56\) 3.09362 3.29815i 0.413403 0.440734i
\(57\) 0.530865 0.0703148
\(58\) 5.71650 5.83973i 0.750614 0.766794i
\(59\) 6.91548i 0.900319i 0.892948 + 0.450159i \(0.148633\pi\)
−0.892948 + 0.450159i \(0.851367\pi\)
\(60\) 0.0226397 + 1.06149i 0.00292278 + 0.137038i
\(61\) 4.61636i 0.591064i 0.955333 + 0.295532i \(0.0954969\pi\)
−0.955333 + 0.295532i \(0.904503\pi\)
\(62\) −3.60989 3.53371i −0.458456 0.448782i
\(63\) 4.34572 0.547510
\(64\) −0.511452 7.98363i −0.0639315 0.997954i
\(65\) −4.29317 −0.532502
\(66\) −2.19115 2.14491i −0.269711 0.264020i
\(67\) 10.2207i 1.24866i −0.781162 0.624328i \(-0.785373\pi\)
0.781162 0.624328i \(-0.214627\pi\)
\(68\) −0.320458 15.0250i −0.0388613 1.82205i
\(69\) 4.23303i 0.509596i
\(70\) 1.58162 1.61572i 0.189040 0.193115i
\(71\) 11.3535 1.34741 0.673704 0.739001i \(-0.264702\pi\)
0.673704 + 0.739001i \(0.264702\pi\)
\(72\) 5.25972 5.60745i 0.619864 0.660844i
\(73\) 15.1543 1.77368 0.886840 0.462078i \(-0.152896\pi\)
0.886840 + 0.462078i \(0.152896\pi\)
\(74\) 1.09126 1.11478i 0.126856 0.129591i
\(75\) 0.530865i 0.0612990i
\(76\) −1.99955 + 0.0426469i −0.229364 + 0.00489193i
\(77\) 6.52964i 0.744121i
\(78\) −2.30326 2.25466i −0.260793 0.255290i
\(79\) −3.08138 −0.346683 −0.173341 0.984862i \(-0.555456\pi\)
−0.173341 + 0.984862i \(0.555456\pi\)
\(80\) −0.170549 3.99636i −0.0190679 0.446807i
\(81\) 6.54306 0.727007
\(82\) −2.94082 2.87877i −0.324759 0.317907i
\(83\) 3.40976i 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599202\pi\)
\(84\) 1.69707 0.0361955i 0.185165 0.00394925i
\(85\) 7.51422i 0.815032i
\(86\) −4.26989 + 4.36193i −0.460434 + 0.470359i
\(87\) 3.06757 0.328878
\(88\) 8.42544 + 7.90295i 0.898155 + 0.842458i
\(89\) −13.5566 −1.43699 −0.718497 0.695530i \(-0.755170\pi\)
−0.718497 + 0.695530i \(0.755170\pi\)
\(90\) 2.68905 2.74701i 0.283450 0.289560i
\(91\) 6.86375i 0.719516i
\(92\) −0.340059 15.9440i −0.0354536 1.66228i
\(93\) 1.89625i 0.196632i
\(94\) −6.22004 6.08879i −0.641548 0.628010i
\(95\) −1.00000 −0.102598
\(96\) 2.00729 2.23360i 0.204868 0.227966i
\(97\) 3.07007 0.311718 0.155859 0.987779i \(-0.450185\pi\)
0.155859 + 0.987779i \(0.450185\pi\)
\(98\) 4.49110 + 4.39633i 0.453669 + 0.444096i
\(99\) 11.1016i 1.11575i
\(100\) −0.0426469 1.99955i −0.00426469 0.199955i
\(101\) 10.5727i 1.05202i −0.850478 0.526010i \(-0.823687\pi\)
0.850478 0.526010i \(-0.176313\pi\)
\(102\) 3.94628 4.03134i 0.390740 0.399162i
\(103\) 10.5955 1.04401 0.522004 0.852943i \(-0.325185\pi\)
0.522004 + 0.852943i \(0.325185\pi\)
\(104\) 8.85655 + 8.30733i 0.868456 + 0.814601i
\(105\) 0.848726 0.0828272
\(106\) 11.3772 11.6224i 1.10505 1.12887i
\(107\) 2.02637i 0.195897i −0.995191 0.0979484i \(-0.968772\pi\)
0.995191 0.0979484i \(-0.0312280\pi\)
\(108\) 6.06979 0.129458i 0.584065 0.0124571i
\(109\) 9.89833i 0.948088i 0.880501 + 0.474044i \(0.157206\pi\)
−0.880501 + 0.474044i \(0.842794\pi\)
\(110\) 4.12750 + 4.04041i 0.393542 + 0.385238i
\(111\) 0.585588 0.0555815
\(112\) −6.38923 + 0.272667i −0.603725 + 0.0257646i
\(113\) −10.9289 −1.02811 −0.514054 0.857758i \(-0.671857\pi\)
−0.514054 + 0.857758i \(0.671857\pi\)
\(114\) −0.536495 0.525175i −0.0502474 0.0491871i
\(115\) 7.97383i 0.743563i
\(116\) −11.5543 + 0.246433i −1.07279 + 0.0228807i
\(117\) 11.6696i 1.07886i
\(118\) 6.84135 6.98882i 0.629797 0.643373i
\(119\) −12.0134 −1.10127
\(120\) 1.02723 1.09514i 0.0937729 0.0999724i
\(121\) −5.68058 −0.516416
\(122\) 4.56688 4.66532i 0.413466 0.422378i
\(123\) 1.54480i 0.139290i
\(124\) 0.152335 + 7.14238i 0.0136801 + 0.641405i
\(125\) 1.00000i 0.0894427i
\(126\) −4.39181 4.29914i −0.391254 0.382998i
\(127\) 4.07012 0.361165 0.180583 0.983560i \(-0.442202\pi\)
0.180583 + 0.983560i \(0.442202\pi\)
\(128\) −7.38118 + 8.57427i −0.652410 + 0.757866i
\(129\) −2.29130 −0.201737
\(130\) 4.33870 + 4.24715i 0.380529 + 0.372500i
\(131\) 17.8997i 1.56390i −0.623338 0.781952i \(-0.714224\pi\)
0.623338 0.781952i \(-0.285776\pi\)
\(132\) 0.0924649 + 4.33532i 0.00804804 + 0.377341i
\(133\) 1.59876i 0.138630i
\(134\) −10.1111 + 10.3291i −0.873469 + 0.892297i
\(135\) 3.03558 0.261261
\(136\) −14.5401 + 15.5014i −1.24680 + 1.32923i
\(137\) 2.57962 0.220392 0.110196 0.993910i \(-0.464852\pi\)
0.110196 + 0.993910i \(0.464852\pi\)
\(138\) 4.18765 4.27792i 0.356477 0.364161i
\(139\) 13.5951i 1.15312i 0.817055 + 0.576560i \(0.195605\pi\)
−0.817055 + 0.576560i \(0.804395\pi\)
\(140\) −3.19679 + 0.0681821i −0.270178 + 0.00576244i
\(141\) 3.26735i 0.275160i
\(142\) −11.4739 11.2318i −0.962866 0.942548i
\(143\) −17.5341 −1.46627
\(144\) −10.8628 + 0.463583i −0.905237 + 0.0386319i
\(145\) −5.77844 −0.479874
\(146\) −15.3150 14.9919i −1.26748 1.24074i
\(147\) 2.35915i 0.194579i
\(148\) −2.20566 + 0.0470430i −0.181304 + 0.00386691i
\(149\) 1.38602i 0.113547i −0.998387 0.0567735i \(-0.981919\pi\)
0.998387 0.0567735i \(-0.0180813\pi\)
\(150\) 0.525175 0.536495i 0.0428803 0.0438046i
\(151\) 17.6513 1.43644 0.718220 0.695816i \(-0.244957\pi\)
0.718220 + 0.695816i \(0.244957\pi\)
\(152\) 2.06294 + 1.93501i 0.167327 + 0.156950i
\(153\) −20.4250 −1.65127
\(154\) 6.45964 6.59889i 0.520533 0.531753i
\(155\) 3.57200i 0.286910i
\(156\) 0.0971962 + 4.55715i 0.00778192 + 0.364864i
\(157\) 12.4964i 0.997325i 0.866796 + 0.498662i \(0.166175\pi\)
−0.866796 + 0.498662i \(0.833825\pi\)
\(158\) 3.11406 + 3.04835i 0.247742 + 0.242514i
\(159\) 6.10518 0.484172
\(160\) −3.78117 + 4.20747i −0.298928 + 0.332629i
\(161\) −12.7482 −1.00470
\(162\) −6.61245 6.47293i −0.519523 0.508561i
\(163\) 10.6418i 0.833533i −0.909013 0.416767i \(-0.863163\pi\)
0.909013 0.416767i \(-0.136837\pi\)
\(164\) 0.124101 + 5.81860i 0.00969064 + 0.454356i
\(165\) 2.16815i 0.168790i
\(166\) −3.37321 + 3.44592i −0.261812 + 0.267456i
\(167\) 9.32577 0.721650 0.360825 0.932634i \(-0.382495\pi\)
0.360825 + 0.932634i \(0.382495\pi\)
\(168\) −1.75087 1.64230i −0.135083 0.126706i
\(169\) −5.43128 −0.417791
\(170\) −7.43368 + 7.59391i −0.570137 + 0.582427i
\(171\) 2.71818i 0.207865i
\(172\) 8.63035 0.184071i 0.658058 0.0140353i
\(173\) 14.2559i 1.08386i −0.840424 0.541929i \(-0.817694\pi\)
0.840424 0.541929i \(-0.182306\pi\)
\(174\) −3.10011 3.03469i −0.235019 0.230059i
\(175\) −1.59876 −0.120855
\(176\) −0.696553 16.3219i −0.0525046 1.23031i
\(177\) 3.67119 0.275943
\(178\) 13.7003 + 13.4113i 1.02688 + 1.00522i
\(179\) 15.8824i 1.18711i −0.804794 0.593554i \(-0.797724\pi\)
0.804794 0.593554i \(-0.202276\pi\)
\(180\) −5.43513 + 0.115922i −0.405111 + 0.00864031i
\(181\) 9.70924i 0.721682i 0.932627 + 0.360841i \(0.117510\pi\)
−0.932627 + 0.360841i \(0.882490\pi\)
\(182\) 6.79017 6.93654i 0.503321 0.514171i
\(183\) 2.45066 0.181158
\(184\) −15.4295 + 16.4495i −1.13747 + 1.21268i
\(185\) −1.10308 −0.0811002
\(186\) −1.87593 + 1.91636i −0.137550 + 0.140514i
\(187\) 30.6895i 2.24424i
\(188\) 0.262481 + 12.3067i 0.0191434 + 0.897560i
\(189\) 4.85317i 0.353016i
\(190\) 1.01061 + 0.989281i 0.0733170 + 0.0717700i
\(191\) 5.34269 0.386584 0.193292 0.981141i \(-0.438084\pi\)
0.193292 + 0.981141i \(0.438084\pi\)
\(192\) −4.23823 + 0.271512i −0.305868 + 0.0195947i
\(193\) −6.68316 −0.481065 −0.240532 0.970641i \(-0.577322\pi\)
−0.240532 + 0.970641i \(0.577322\pi\)
\(194\) −3.10263 3.03716i −0.222756 0.218055i
\(195\) 2.27909i 0.163209i
\(196\) −0.189521 8.88591i −0.0135372 0.634708i
\(197\) 1.87200i 0.133374i −0.997774 0.0666872i \(-0.978757\pi\)
0.997774 0.0666872i \(-0.0212429\pi\)
\(198\) 10.9826 11.2193i 0.780497 0.797321i
\(199\) 11.7535 0.833184 0.416592 0.909094i \(-0.363224\pi\)
0.416592 + 0.909094i \(0.363224\pi\)
\(200\) −1.93501 + 2.06294i −0.136826 + 0.145872i
\(201\) −5.42580 −0.382707
\(202\) −10.4593 + 10.6848i −0.735917 + 0.751780i
\(203\) 9.23835i 0.648405i
\(204\) −7.97626 + 0.170120i −0.558450 + 0.0119108i
\(205\) 2.90996i 0.203240i
\(206\) −10.7079 10.4819i −0.746054 0.730312i
\(207\) −21.6743 −1.50647
\(208\) −0.732194 17.1571i −0.0507685 1.18963i
\(209\) −4.08419 −0.282509
\(210\) −0.857727 0.839628i −0.0591888 0.0579399i
\(211\) 16.3391i 1.12483i −0.826856 0.562413i \(-0.809873\pi\)
0.826856 0.562413i \(-0.190127\pi\)
\(212\) −22.9956 + 0.490458i −1.57935 + 0.0336848i
\(213\) 6.02715i 0.412974i
\(214\) −2.00465 + 2.04786i −0.137035 + 0.139989i
\(215\) 4.31616 0.294360
\(216\) −6.26223 5.87389i −0.426091 0.399668i
\(217\) 5.71078 0.387673
\(218\) 9.79223 10.0033i 0.663214 0.677510i
\(219\) 8.04490i 0.543624i
\(220\) −0.174178 8.16652i −0.0117431 0.550586i
\(221\) 32.2598i 2.17003i
\(222\) −0.591798 0.579310i −0.0397189 0.0388808i
\(223\) 14.1309 0.946278 0.473139 0.880988i \(-0.343121\pi\)
0.473139 + 0.880988i \(0.343121\pi\)
\(224\) 6.72673 + 6.04518i 0.449449 + 0.403911i
\(225\) −2.71818 −0.181212
\(226\) 11.0448 + 10.8118i 0.734692 + 0.719190i
\(227\) 14.1373i 0.938324i 0.883112 + 0.469162i \(0.155444\pi\)
−0.883112 + 0.469162i \(0.844556\pi\)
\(228\) 0.0226397 + 1.06149i 0.00149935 + 0.0702988i
\(229\) 13.1301i 0.867665i 0.900994 + 0.433832i \(0.142839\pi\)
−0.900994 + 0.433832i \(0.857161\pi\)
\(230\) −7.88835 + 8.05839i −0.520143 + 0.531355i
\(231\) 3.46636 0.228069
\(232\) 11.9206 + 11.1814i 0.782625 + 0.734092i
\(233\) −16.8001 −1.10061 −0.550306 0.834963i \(-0.685489\pi\)
−0.550306 + 0.834963i \(0.685489\pi\)
\(234\) 11.5445 11.7934i 0.754689 0.770957i
\(235\) 6.15476i 0.401492i
\(236\) −13.8278 + 0.294924i −0.900114 + 0.0191979i
\(237\) 1.63580i 0.106257i
\(238\) 12.1408 + 11.8847i 0.786974 + 0.770369i
\(239\) −12.7091 −0.822083 −0.411042 0.911617i \(-0.634835\pi\)
−0.411042 + 0.911617i \(0.634835\pi\)
\(240\) −2.12153 + 0.0905383i −0.136944 + 0.00584423i
\(241\) −2.78627 −0.179479 −0.0897396 0.995965i \(-0.528603\pi\)
−0.0897396 + 0.995965i \(0.528603\pi\)
\(242\) 5.74082 + 5.61969i 0.369034 + 0.361247i
\(243\) 12.5802i 0.807022i
\(244\) −9.23062 + 0.196873i −0.590930 + 0.0126035i
\(245\) 4.44396i 0.283915i
\(246\) −1.52824 + 1.56118i −0.0974368 + 0.0995371i
\(247\) −4.29317 −0.273168
\(248\) 6.91187 7.36883i 0.438904 0.467921i
\(249\) −1.81012 −0.114712
\(250\) −0.989281 + 1.01061i −0.0625676 + 0.0639163i
\(251\) 19.1306i 1.20752i 0.797168 + 0.603758i \(0.206331\pi\)
−0.797168 + 0.603758i \(0.793669\pi\)
\(252\) 0.185331 + 8.68947i 0.0116748 + 0.547385i
\(253\) 32.5666i 2.04744i
\(254\) −4.11329 4.02650i −0.258091 0.252645i
\(255\) −3.98904 −0.249803
\(256\) 15.9418 1.36315i 0.996364 0.0851968i
\(257\) 15.3571 0.957952 0.478976 0.877828i \(-0.341008\pi\)
0.478976 + 0.877828i \(0.341008\pi\)
\(258\) 2.31560 + 2.26674i 0.144163 + 0.141121i
\(259\) 1.76356i 0.109583i
\(260\) −0.183090 8.58438i −0.0113548 0.532381i
\(261\) 15.7069i 0.972231i
\(262\) −17.7078 + 18.0895i −1.09399 + 1.11758i
\(263\) −30.6398 −1.88933 −0.944665 0.328037i \(-0.893613\pi\)
−0.944665 + 0.328037i \(0.893613\pi\)
\(264\) 4.19540 4.47277i 0.258209 0.275280i
\(265\) −11.5004 −0.706466
\(266\) 1.58162 1.61572i 0.0969755 0.0990659i
\(267\) 7.19671i 0.440432i
\(268\) 20.4367 0.435880i 1.24837 0.0266256i
\(269\) 21.9765i 1.33993i 0.742394 + 0.669964i \(0.233690\pi\)
−0.742394 + 0.669964i \(0.766310\pi\)
\(270\) −3.06778 3.00304i −0.186699 0.182759i
\(271\) 2.44649 0.148614 0.0743069 0.997235i \(-0.476326\pi\)
0.0743069 + 0.997235i \(0.476326\pi\)
\(272\) 30.0296 1.28154i 1.82081 0.0777048i
\(273\) 3.64372 0.220528
\(274\) −2.60698 2.55197i −0.157494 0.154170i
\(275\) 4.08419i 0.246286i
\(276\) −8.46413 + 0.180525i −0.509481 + 0.0108663i
\(277\) 27.0414i 1.62476i −0.583127 0.812381i \(-0.698171\pi\)
0.583127 0.812381i \(-0.301829\pi\)
\(278\) 13.4494 13.7393i 0.806639 0.824026i
\(279\) 9.70936 0.581284
\(280\) 3.29815 + 3.09362i 0.197102 + 0.184879i
\(281\) 15.9317 0.950404 0.475202 0.879877i \(-0.342375\pi\)
0.475202 + 0.879877i \(0.342375\pi\)
\(282\) −3.23232 + 3.30200i −0.192482 + 0.196631i
\(283\) 4.15406i 0.246933i 0.992349 + 0.123467i \(0.0394012\pi\)
−0.992349 + 0.123467i \(0.960599\pi\)
\(284\) 0.484190 + 22.7018i 0.0287314 + 1.34710i
\(285\) 0.530865i 0.0314457i
\(286\) 17.7201 + 17.3461i 1.04781 + 1.02570i
\(287\) 4.65233 0.274618
\(288\) 11.4367 + 10.2779i 0.673912 + 0.605631i
\(289\) 39.4635 2.32138
\(290\) 5.83973 + 5.71650i 0.342921 + 0.335685i
\(291\) 1.62979i 0.0955401i
\(292\) 0.646284 + 30.3017i 0.0378209 + 1.77328i
\(293\) 21.0272i 1.22842i 0.789141 + 0.614212i \(0.210526\pi\)
−0.789141 + 0.614212i \(0.789474\pi\)
\(294\) 2.33386 2.38417i 0.136113 0.139047i
\(295\) −6.91548 −0.402635
\(296\) 2.27559 + 2.13448i 0.132266 + 0.124064i
\(297\) 12.3979 0.719398
\(298\) −1.37116 + 1.40072i −0.0794293 + 0.0811414i
\(299\) 34.2330i 1.97974i
\(300\) −1.06149 + 0.0226397i −0.0612851 + 0.00130711i
\(301\) 6.90050i 0.397738i
\(302\) −17.8385 17.4621i −1.02649 1.00483i
\(303\) −5.61266 −0.322439
\(304\) −0.170549 3.99636i −0.00978164 0.229207i
\(305\) −4.61636 −0.264332
\(306\) 20.6416 + 20.2061i 1.18000 + 1.15511i
\(307\) 16.6865i 0.952348i 0.879351 + 0.476174i \(0.157977\pi\)
−0.879351 + 0.476174i \(0.842023\pi\)
\(308\) −13.0563 + 0.278469i −0.743952 + 0.0158672i
\(309\) 5.62479i 0.319983i
\(310\) 3.53371 3.60989i 0.200701 0.205028i
\(311\) −9.12451 −0.517403 −0.258702 0.965957i \(-0.583295\pi\)
−0.258702 + 0.965957i \(0.583295\pi\)
\(312\) 4.41007 4.70163i 0.249671 0.266178i
\(313\) −23.5688 −1.33219 −0.666093 0.745869i \(-0.732035\pi\)
−0.666093 + 0.745869i \(0.732035\pi\)
\(314\) 12.3625 12.6290i 0.697656 0.712694i
\(315\) 4.34572i 0.244854i
\(316\) −0.131411 6.16137i −0.00739247 0.346604i
\(317\) 13.6522i 0.766786i −0.923585 0.383393i \(-0.874756\pi\)
0.923585 0.383393i \(-0.125244\pi\)
\(318\) −6.16993 6.03974i −0.345992 0.338692i
\(319\) −23.6002 −1.32136
\(320\) 7.98363 0.511452i 0.446299 0.0285910i
\(321\) −1.07573 −0.0600414
\(322\) 12.8834 + 12.6116i 0.717966 + 0.702816i
\(323\) 7.51422i 0.418102i
\(324\) 0.279041 + 13.0831i 0.0155023 + 0.726842i
\(325\) 4.29317i 0.238142i
\(326\) −10.5278 + 10.7547i −0.583079 + 0.595648i
\(327\) 5.25468 0.290584
\(328\) 5.63081 6.00308i 0.310909 0.331464i
\(329\) 9.83999 0.542496
\(330\) 2.14491 2.19115i 0.118073 0.120619i
\(331\) 22.6976i 1.24757i −0.781595 0.623786i \(-0.785594\pi\)
0.781595 0.623786i \(-0.214406\pi\)
\(332\) 6.81797 0.145416i 0.374185 0.00798072i
\(333\) 2.99838i 0.164310i
\(334\) −9.42467 9.22581i −0.515695 0.504814i
\(335\) 10.2207 0.558416
\(336\) 0.144749 + 3.39182i 0.00789671 + 0.185039i
\(337\) 35.6697 1.94305 0.971527 0.236930i \(-0.0761413\pi\)
0.971527 + 0.236930i \(0.0761413\pi\)
\(338\) 5.48889 + 5.37307i 0.298556 + 0.292256i
\(339\) 5.80179i 0.315110i
\(340\) 15.0250 0.320458i 0.814846 0.0173793i
\(341\) 14.5887i 0.790024i
\(342\) 2.68905 2.74701i 0.145407 0.148541i
\(343\) −18.2962 −0.987900
\(344\) −8.90398 8.35182i −0.480070 0.450300i
\(345\) −4.23303 −0.227898
\(346\) −14.1031 + 14.4071i −0.758188 + 0.774531i
\(347\) 6.33393i 0.340023i −0.985442 0.170012i \(-0.945619\pi\)
0.985442 0.170012i \(-0.0543805\pi\)
\(348\) 0.130822 + 6.13375i 0.00701282 + 0.328804i
\(349\) 17.8252i 0.954159i −0.878860 0.477079i \(-0.841695\pi\)
0.878860 0.477079i \(-0.158305\pi\)
\(350\) 1.61572 + 1.58162i 0.0863637 + 0.0845413i
\(351\) 13.0323 0.695611
\(352\) −15.4430 + 17.1841i −0.823114 + 0.915914i
\(353\) 27.7834 1.47876 0.739381 0.673287i \(-0.235118\pi\)
0.739381 + 0.673287i \(0.235118\pi\)
\(354\) −3.71012 3.63183i −0.197191 0.193030i
\(355\) 11.3535i 0.602579i
\(356\) −0.578145 27.1070i −0.0306416 1.43667i
\(357\) 6.37752i 0.337534i
\(358\) −15.7122 + 16.0509i −0.830414 + 0.848314i
\(359\) 9.93716 0.524463 0.262232 0.965005i \(-0.415542\pi\)
0.262232 + 0.965005i \(0.415542\pi\)
\(360\) 5.60745 + 5.25972i 0.295539 + 0.277211i
\(361\) −1.00000 −0.0526316
\(362\) 9.60516 9.81221i 0.504836 0.515718i
\(363\) 3.01562i 0.158279i
\(364\) −13.7244 + 0.292717i −0.719352 + 0.0153426i
\(365\) 15.1543i 0.793213i
\(366\) −2.47665 2.42439i −0.129457 0.126725i
\(367\) −6.50515 −0.339566 −0.169783 0.985481i \(-0.554307\pi\)
−0.169783 + 0.985481i \(0.554307\pi\)
\(368\) 31.8663 1.35993i 1.66115 0.0708910i
\(369\) 7.90980 0.411768
\(370\) 1.11478 + 1.09126i 0.0579547 + 0.0567318i
\(371\) 18.3864i 0.954576i
\(372\) 3.79164 0.0808692i 0.196587 0.00419287i
\(373\) 18.1569i 0.940129i 0.882632 + 0.470065i \(0.155769\pi\)
−0.882632 + 0.470065i \(0.844231\pi\)
\(374\) −30.3605 + 31.0150i −1.56990 + 1.60375i
\(375\) −0.530865 −0.0274138
\(376\) 11.9095 12.6969i 0.614188 0.654793i
\(377\) −24.8078 −1.27767
\(378\) −4.80115 + 4.90464i −0.246944 + 0.252267i
\(379\) 30.5842i 1.57101i −0.618858 0.785503i \(-0.712404\pi\)
0.618858 0.785503i \(-0.287596\pi\)
\(380\) −0.0426469 1.99955i −0.00218774 0.102575i
\(381\) 2.16069i 0.110695i
\(382\) −5.39935 5.28542i −0.276255 0.270426i
\(383\) 32.9375 1.68303 0.841514 0.540236i \(-0.181665\pi\)
0.841514 + 0.540236i \(0.181665\pi\)
\(384\) 4.55178 + 3.91841i 0.232282 + 0.199961i
\(385\) −6.52964 −0.332781
\(386\) 6.75404 + 6.61153i 0.343772 + 0.336518i
\(387\) 11.7321i 0.596376i
\(388\) 0.130929 + 6.13874i 0.00664691 + 0.311647i
\(389\) 13.4993i 0.684444i −0.939619 0.342222i \(-0.888821\pi\)
0.939619 0.342222i \(-0.111179\pi\)
\(390\) 2.25466 2.30326i 0.114169 0.116630i
\(391\) 59.9171 3.03014
\(392\) −8.59913 + 9.16764i −0.434322 + 0.463036i
\(393\) −9.50233 −0.479329
\(394\) −1.85193 + 1.89185i −0.0932990 + 0.0953101i
\(395\) 3.08138i 0.155041i
\(396\) −22.1981 + 0.473447i −1.11550 + 0.0237916i
\(397\) 29.6811i 1.48965i 0.667259 + 0.744826i \(0.267467\pi\)
−0.667259 + 0.744826i \(0.732533\pi\)
\(398\) −11.8782 11.6275i −0.595398 0.582835i
\(399\) 0.848726 0.0424894
\(400\) 3.99636 0.170549i 0.199818 0.00852744i
\(401\) 5.56949 0.278127 0.139064 0.990283i \(-0.455591\pi\)
0.139064 + 0.990283i \(0.455591\pi\)
\(402\) 5.48335 + 5.36764i 0.273485 + 0.267714i
\(403\) 15.3352i 0.763901i
\(404\) 21.1405 0.450892i 1.05178 0.0224327i
\(405\) 6.54306i 0.325127i
\(406\) 9.13932 9.33633i 0.453577 0.463354i
\(407\) −4.50519 −0.223314
\(408\) 8.22915 + 7.71884i 0.407404 + 0.382139i
\(409\) −29.9040 −1.47866 −0.739330 0.673343i \(-0.764858\pi\)
−0.739330 + 0.673343i \(0.764858\pi\)
\(410\) 2.87877 2.94082i 0.142172 0.145237i
\(411\) 1.36943i 0.0675491i
\(412\) 0.451866 + 21.1862i 0.0222618 + 1.04377i
\(413\) 11.0562i 0.544040i
\(414\) 21.9042 + 21.4420i 1.07653 + 1.05382i
\(415\) 3.40976 0.167379
\(416\) −16.2332 + 18.0634i −0.795897 + 0.885629i
\(417\) 7.21715 0.353425
\(418\) 4.12750 + 4.04041i 0.201883 + 0.197623i
\(419\) 0.927860i 0.0453289i 0.999743 + 0.0226645i \(0.00721494\pi\)
−0.999743 + 0.0226645i \(0.992785\pi\)
\(420\) 0.0361955 + 1.69707i 0.00176616 + 0.0828083i
\(421\) 36.2436i 1.76641i −0.468990 0.883204i \(-0.655382\pi\)
0.468990 0.883204i \(-0.344618\pi\)
\(422\) −16.1639 + 16.5123i −0.786847 + 0.803808i
\(423\) 16.7298 0.813429
\(424\) 23.7247 + 22.2535i 1.15217 + 1.08072i
\(425\) 7.51422 0.364493
\(426\) −5.96255 + 6.09107i −0.288886 + 0.295114i
\(427\) 7.38045i 0.357165i
\(428\) 4.05182 0.0864185i 0.195852 0.00417719i
\(429\) 9.30824i 0.449406i
\(430\) −4.36193 4.26989i −0.210351 0.205912i
\(431\) 14.2580 0.686785 0.343392 0.939192i \(-0.388424\pi\)
0.343392 + 0.939192i \(0.388424\pi\)
\(432\) 0.517715 + 12.1313i 0.0249086 + 0.583667i
\(433\) 8.82519 0.424112 0.212056 0.977258i \(-0.431984\pi\)
0.212056 + 0.977258i \(0.431984\pi\)
\(434\) −5.77134 5.64956i −0.277033 0.271188i
\(435\) 3.06757i 0.147079i
\(436\) −19.7922 + 0.422133i −0.947873 + 0.0202165i
\(437\) 7.97383i 0.381440i
\(438\) −7.95866 + 8.13022i −0.380280 + 0.388477i
\(439\) −20.6663 −0.986351 −0.493175 0.869930i \(-0.664164\pi\)
−0.493175 + 0.869930i \(0.664164\pi\)
\(440\) −7.90295 + 8.42544i −0.376758 + 0.401667i
\(441\) −12.0795 −0.575215
\(442\) −31.9140 + 32.6019i −1.51799 + 1.55072i
\(443\) 11.4417i 0.543612i −0.962352 0.271806i \(-0.912379\pi\)
0.962352 0.271806i \(-0.0876209\pi\)
\(444\) 0.0249735 + 1.17091i 0.00118519 + 0.0555689i
\(445\) 13.5566i 0.642643i
\(446\) −14.2808 13.9795i −0.676216 0.661947i
\(447\) −0.735789 −0.0348016
\(448\) −0.817690 12.7639i −0.0386322 0.603038i
\(449\) 28.4103 1.34077 0.670383 0.742015i \(-0.266130\pi\)
0.670383 + 0.742015i \(0.266130\pi\)
\(450\) 2.74701 + 2.68905i 0.129495 + 0.126763i
\(451\) 11.8848i 0.559634i
\(452\) −0.466085 21.8529i −0.0219228 1.02787i
\(453\) 9.37045i 0.440262i
\(454\) 13.9857 14.2872i 0.656383 0.670532i
\(455\) −6.86375 −0.321777
\(456\) 1.02723 1.09514i 0.0481045 0.0512848i
\(457\) −35.1259 −1.64312 −0.821561 0.570121i \(-0.806896\pi\)
−0.821561 + 0.570121i \(0.806896\pi\)
\(458\) 12.9894 13.2694i 0.606955 0.620038i
\(459\) 22.8100i 1.06468i
\(460\) 15.9440 0.340059i 0.743394 0.0158553i
\(461\) 30.0315i 1.39871i −0.714777 0.699353i \(-0.753472\pi\)
0.714777 0.699353i \(-0.246528\pi\)
\(462\) −3.50312 3.42920i −0.162980 0.159541i
\(463\) −2.07091 −0.0962432 −0.0481216 0.998841i \(-0.515323\pi\)
−0.0481216 + 0.998841i \(0.515323\pi\)
\(464\) −0.985506 23.0928i −0.0457510 1.07205i
\(465\) 1.89625 0.0879366
\(466\) 16.9783 + 16.6200i 0.786505 + 0.769909i
\(467\) 40.1423i 1.85756i −0.370628 0.928781i \(-0.620858\pi\)
0.370628 0.928781i \(-0.379142\pi\)
\(468\) −23.3339 + 0.497672i −1.07861 + 0.0230049i
\(469\) 16.3404i 0.754531i
\(470\) 6.08879 6.22004i 0.280855 0.286909i
\(471\) 6.63393 0.305675
\(472\) 14.2662 + 13.3815i 0.656656 + 0.615935i
\(473\) 17.6280 0.810536
\(474\) 1.61826 1.65315i 0.0743293 0.0759316i
\(475\) 1.00000i 0.0458831i
\(476\) −0.512336 24.0214i −0.0234829 1.10102i
\(477\) 31.2603i 1.43131i
\(478\) 12.8439 + 12.5729i 0.587466 + 0.575070i
\(479\) −26.0532 −1.19040 −0.595200 0.803577i \(-0.702927\pi\)
−0.595200 + 0.803577i \(0.702927\pi\)
\(480\) 2.23360 + 2.00729i 0.101949 + 0.0916198i
\(481\) −4.73571 −0.215930
\(482\) 2.81582 + 2.75640i 0.128257 + 0.125551i
\(483\) 6.76759i 0.307936i
\(484\) −0.242259 11.3586i −0.0110118 0.516299i
\(485\) 3.07007i 0.139405i
\(486\) −12.4454 + 12.7137i −0.564534 + 0.576703i
\(487\) −7.11676 −0.322491 −0.161245 0.986914i \(-0.551551\pi\)
−0.161245 + 0.986914i \(0.551551\pi\)
\(488\) 9.52328 + 8.93271i 0.431099 + 0.404365i
\(489\) −5.64938 −0.255474
\(490\) −4.39633 + 4.49110i −0.198606 + 0.202887i
\(491\) 37.1832i 1.67805i 0.544090 + 0.839027i \(0.316875\pi\)
−0.544090 + 0.839027i \(0.683125\pi\)
\(492\) 3.08889 0.0658807i 0.139258 0.00297013i
\(493\) 43.4205i 1.95556i
\(494\) 4.33870 + 4.24715i 0.195207 + 0.191088i
\(495\) −11.1016 −0.498978
\(496\) −14.2750 + 0.609201i −0.640967 + 0.0273539i
\(497\) 18.1515 0.814204
\(498\) 1.82932 + 1.79072i 0.0819738 + 0.0802441i
\(499\) 10.4518i 0.467888i 0.972250 + 0.233944i \(0.0751633\pi\)
−0.972250 + 0.233944i \(0.924837\pi\)
\(500\) 1.99955 0.0426469i 0.0894224 0.00190723i
\(501\) 4.95073i 0.221182i
\(502\) 18.9256 19.3335i 0.844690 0.862898i
\(503\) −30.2318 −1.34797 −0.673985 0.738745i \(-0.735419\pi\)
−0.673985 + 0.738745i \(0.735419\pi\)
\(504\) 8.40903 8.96497i 0.374568 0.399331i
\(505\) 10.5727 0.470478
\(506\) −32.2175 + 32.9120i −1.43224 + 1.46312i
\(507\) 2.88328i 0.128051i
\(508\) 0.173578 + 8.13840i 0.00770128 + 0.361083i
\(509\) 12.5208i 0.554975i −0.960729 0.277488i \(-0.910498\pi\)
0.960729 0.277488i \(-0.0895017\pi\)
\(510\) 4.03134 + 3.94628i 0.178511 + 0.174744i
\(511\) 24.2281 1.07179
\(512\) −17.4594 14.3933i −0.771605 0.636102i
\(513\) 3.03558 0.134024
\(514\) −15.5200 15.1925i −0.684558 0.670114i
\(515\) 10.5955i 0.466894i
\(516\) −0.0977167 4.58155i −0.00430174 0.201692i
\(517\) 25.1372i 1.10553i
\(518\) 1.74466 1.78227i 0.0766559 0.0783083i
\(519\) −7.56797 −0.332197
\(520\) −8.30733 + 8.85655i −0.364301 + 0.388385i
\(521\) 15.0001 0.657168 0.328584 0.944475i \(-0.393429\pi\)
0.328584 + 0.944475i \(0.393429\pi\)
\(522\) 15.5385 15.8734i 0.680102 0.694762i
\(523\) 23.4506i 1.02543i 0.858560 + 0.512713i \(0.171359\pi\)
−0.858560 + 0.512713i \(0.828641\pi\)
\(524\) 35.7913 0.763366i 1.56355 0.0333478i
\(525\) 0.848726i 0.0370414i
\(526\) 30.9647 + 30.3113i 1.35013 + 1.32164i
\(527\) −26.8408 −1.16920
\(528\) −8.66472 + 0.369775i −0.377084 + 0.0160924i
\(529\) 40.5819 1.76443
\(530\) 11.6224 + 11.3772i 0.504845 + 0.494192i
\(531\) 18.7975i 0.815743i
\(532\) −3.19679 + 0.0681821i −0.138599 + 0.00295607i
\(533\) 12.4929i 0.541129i
\(534\) 7.11957 7.27304i 0.308094 0.314735i
\(535\) 2.02637 0.0876077
\(536\) −21.0847 19.7772i −0.910719 0.854243i
\(537\) −8.43142 −0.363843
\(538\) 21.7409 22.2095i 0.937316 0.957521i
\(539\) 18.1500i 0.781775i
\(540\) 0.129458 + 6.06979i 0.00557099 + 0.261202i
\(541\) 6.30059i 0.270884i 0.990785 + 0.135442i \(0.0432454\pi\)
−0.990785 + 0.135442i \(0.956755\pi\)
\(542\) −2.47244 2.42027i −0.106200 0.103959i
\(543\) 5.15429 0.221192
\(544\) −31.6158 28.4125i −1.35552 1.21818i
\(545\) −9.89833 −0.423998
\(546\) −3.68237 3.60466i −0.157591 0.154265i
\(547\) 2.94592i 0.125958i −0.998015 0.0629792i \(-0.979940\pi\)
0.998015 0.0629792i \(-0.0200602\pi\)
\(548\) 0.110013 + 5.15807i 0.00469952 + 0.220342i
\(549\) 12.5481i 0.535540i
\(550\) −4.04041 + 4.12750i −0.172284 + 0.175997i
\(551\) −5.77844 −0.246170
\(552\) 8.73248 + 8.19096i 0.371679 + 0.348630i
\(553\) −4.92639 −0.209492
\(554\) −26.7516 + 27.3282i −1.13657 + 1.16106i
\(555\) 0.585588i 0.0248568i
\(556\) −27.1840 + 0.579788i −1.15286 + 0.0245885i
\(557\) 1.01592i 0.0430460i −0.999768 0.0215230i \(-0.993148\pi\)
0.999768 0.0215230i \(-0.00685151\pi\)
\(558\) −9.81233 9.60528i −0.415389 0.406624i
\(559\) 18.5300 0.783735
\(560\) −0.272667 6.38923i −0.0115223 0.269994i
\(561\) −16.2920 −0.687848
\(562\) −16.1006 15.7609i −0.679165 0.664834i
\(563\) 20.8276i 0.877781i −0.898541 0.438890i \(-0.855372\pi\)
0.898541 0.438890i \(-0.144628\pi\)
\(564\) 6.53321 0.139342i 0.275098 0.00586736i
\(565\) 10.9289i 0.459784i
\(566\) 4.10953 4.19811i 0.172736 0.176460i
\(567\) 10.4608 0.439312
\(568\) 21.9691 23.4215i 0.921802 0.982745i
\(569\) 21.6656 0.908269 0.454135 0.890933i \(-0.349948\pi\)
0.454135 + 0.890933i \(0.349948\pi\)
\(570\) 0.525175 0.536495i 0.0219971 0.0224713i
\(571\) 11.1870i 0.468160i 0.972217 + 0.234080i \(0.0752078\pi\)
−0.972217 + 0.234080i \(0.924792\pi\)
\(572\) −0.747774 35.0602i −0.0312660 1.46594i
\(573\) 2.83625i 0.118486i
\(574\) −4.70167 4.60246i −0.196244 0.192103i
\(575\) 7.97383 0.332532
\(576\) −1.39022 21.7010i −0.0579259 0.904207i
\(577\) −7.17954 −0.298888 −0.149444 0.988770i \(-0.547748\pi\)
−0.149444 + 0.988770i \(0.547748\pi\)
\(578\) −39.8821 39.0405i −1.65887 1.62387i
\(579\) 3.54786i 0.147444i
\(580\) −0.246433 11.5543i −0.0102326 0.479765i
\(581\) 5.45139i 0.226162i
\(582\) −1.61232 + 1.64708i −0.0668329 + 0.0682735i
\(583\) −46.9699 −1.94530
\(584\) 29.3238 31.2625i 1.21343 1.29365i
\(585\) −11.6696 −0.482479
\(586\) 20.8018 21.2502i 0.859316 0.877839i
\(587\) 21.8913i 0.903550i 0.892132 + 0.451775i \(0.149209\pi\)
−0.892132 + 0.451775i \(0.850791\pi\)
\(588\) −4.71722 + 0.100610i −0.194535 + 0.00414909i
\(589\) 3.57200i 0.147182i
\(590\) 6.98882 + 6.84135i 0.287725 + 0.281654i
\(591\) −0.993778 −0.0408786
\(592\) −0.188129 4.40831i −0.00773206 0.181181i
\(593\) −15.5372 −0.638036 −0.319018 0.947749i \(-0.603353\pi\)
−0.319018 + 0.947749i \(0.603353\pi\)
\(594\) −12.5294 12.2650i −0.514086 0.503239i
\(595\) 12.0134i 0.492503i
\(596\) 2.77141 0.0591094i 0.113521 0.00242121i
\(597\) 6.23953i 0.255367i
\(598\) −33.8660 + 34.5960i −1.38488 + 1.41474i
\(599\) −33.3360 −1.36207 −0.681037 0.732249i \(-0.738471\pi\)
−0.681037 + 0.732249i \(0.738471\pi\)
\(600\) 1.09514 + 1.02723i 0.0447090 + 0.0419365i
\(601\) 0.180219 0.00735130 0.00367565 0.999993i \(-0.498830\pi\)
0.00367565 + 0.999993i \(0.498830\pi\)
\(602\) −6.82654 + 6.97369i −0.278229 + 0.284226i
\(603\) 27.7817i 1.13136i
\(604\) 0.752772 + 35.2945i 0.0306299 + 1.43611i
\(605\) 5.68058i 0.230948i
\(606\) 5.67219 + 5.55250i 0.230417 + 0.225555i
\(607\) −21.7657 −0.883441 −0.441720 0.897153i \(-0.645632\pi\)
−0.441720 + 0.897153i \(0.645632\pi\)
\(608\) −3.78117 + 4.20747i −0.153347 + 0.170635i
\(609\) 4.90432 0.198733
\(610\) 4.66532 + 4.56688i 0.188893 + 0.184907i
\(611\) 26.4234i 1.06898i
\(612\) −0.871063 40.8408i −0.0352107 1.65089i
\(613\) 0.0959402i 0.00387499i −0.999998 0.00193749i \(-0.999383\pi\)
0.999998 0.00193749i \(-0.000616724\pi\)
\(614\) 16.5076 16.8635i 0.666194 0.680554i
\(615\) 1.54480 0.0622922
\(616\) 13.4703 + 12.6349i 0.542732 + 0.509076i
\(617\) 46.4973 1.87191 0.935956 0.352117i \(-0.114538\pi\)
0.935956 + 0.352117i \(0.114538\pi\)
\(618\) −5.56450 + 5.68445i −0.223837 + 0.228662i
\(619\) 6.37072i 0.256061i −0.991770 0.128030i \(-0.959135\pi\)
0.991770 0.128030i \(-0.0408655\pi\)
\(620\) −7.14238 + 0.152335i −0.286845 + 0.00611791i
\(621\) 24.2052i 0.971322i
\(622\) 9.22128 + 9.02670i 0.369739 + 0.361938i
\(623\) −21.6737 −0.868339
\(624\) −9.10808 + 0.388696i −0.364615 + 0.0155603i
\(625\) 1.00000 0.0400000
\(626\) 23.8187 + 23.3161i 0.951988 + 0.931900i
\(627\) 2.16815i 0.0865876i
\(628\) −24.9872 + 0.532934i −0.997098 + 0.0212664i
\(629\) 8.28880i 0.330496i
\(630\) 4.29914 4.39181i 0.171282 0.174974i
\(631\) −28.9645 −1.15306 −0.576530 0.817076i \(-0.695594\pi\)
−0.576530 + 0.817076i \(0.695594\pi\)
\(632\) −5.96252 + 6.35671i −0.237176 + 0.252856i
\(633\) −8.67383 −0.344754
\(634\) −13.5059 + 13.7970i −0.536387 + 0.547950i
\(635\) 4.07012i 0.161518i
\(636\) 0.260367 + 12.2076i 0.0103242 + 0.484062i
\(637\) 19.0787i 0.755925i
\(638\) 23.8505 + 23.3473i 0.944252 + 0.924327i
\(639\) 30.8608 1.22083
\(640\) −8.57427 7.38118i −0.338928 0.291767i
\(641\) 23.1989 0.916301 0.458151 0.888875i \(-0.348512\pi\)
0.458151 + 0.888875i \(0.348512\pi\)
\(642\) 1.08714 + 1.06420i 0.0429060 + 0.0420006i
\(643\) 2.62001i 0.103323i 0.998665 + 0.0516616i \(0.0164517\pi\)
−0.998665 + 0.0516616i \(0.983548\pi\)
\(644\) −0.543673 25.4907i −0.0214237 1.00447i
\(645\) 2.29130i 0.0902197i
\(646\) −7.43368 + 7.59391i −0.292474 + 0.298779i
\(647\) −6.48788 −0.255065 −0.127532 0.991834i \(-0.540706\pi\)
−0.127532 + 0.991834i \(0.540706\pi\)
\(648\) 12.6609 13.4980i 0.497367 0.530250i
\(649\) −28.2441 −1.10868
\(650\) −4.24715 + 4.33870i −0.166587 + 0.170178i
\(651\) 3.03165i 0.118820i
\(652\) 21.2788 0.453841i 0.833344 0.0177738i
\(653\) 26.3459i 1.03099i −0.856891 0.515497i \(-0.827607\pi\)
0.856891 0.515497i \(-0.172393\pi\)
\(654\) −5.31041 5.19835i −0.207653 0.203272i
\(655\) 17.8997 0.699399
\(656\) −11.6293 + 0.496290i −0.454046 + 0.0193769i
\(657\) 41.1922 1.60706
\(658\) −9.94435 9.73451i −0.387671 0.379491i
\(659\) 17.9787i 0.700350i 0.936684 + 0.350175i \(0.113878\pi\)
−0.936684 + 0.350175i \(0.886122\pi\)
\(660\) −4.33532 + 0.0924649i −0.168752 + 0.00359919i
\(661\) 20.4574i 0.795700i −0.917450 0.397850i \(-0.869756\pi\)
0.917450 0.397850i \(-0.130244\pi\)
\(662\) −22.4543 + 22.9383i −0.872710 + 0.891522i
\(663\) −17.1256 −0.665103
\(664\) −7.03414 6.59793i −0.272977 0.256049i
\(665\) −1.59876 −0.0619973
\(666\) 2.96624 3.03018i 0.114939 0.117417i
\(667\) 46.0763i 1.78408i
\(668\) 0.397715 + 18.6473i 0.0153881 + 0.721486i
\(669\) 7.50162i 0.290029i
\(670\) −10.3291 10.1111i −0.399047 0.390627i
\(671\) −18.8541 −0.727853
\(672\) 3.20918 3.57099i 0.123797 0.137754i
\(673\) −26.5170 −1.02215 −0.511077 0.859535i \(-0.670753\pi\)
−0.511077 + 0.859535i \(0.670753\pi\)
\(674\) −36.0480 35.2874i −1.38852 1.35922i
\(675\) 3.03558i 0.116840i
\(676\) −0.231627 10.8601i −0.00890874 0.417696i
\(677\) 24.0962i 0.926092i 0.886334 + 0.463046i \(0.153244\pi\)
−0.886334 + 0.463046i \(0.846756\pi\)
\(678\) 5.73960 5.86332i 0.220428 0.225180i
\(679\) 4.90831 0.188363
\(680\) −15.5014 14.5401i −0.594451 0.557588i
\(681\) 7.50498 0.287592
\(682\) 14.4323 14.7434i 0.552643 0.564556i
\(683\) 36.1606i 1.38365i 0.722066 + 0.691824i \(0.243193\pi\)
−0.722066 + 0.691824i \(0.756807\pi\)
\(684\) −5.43513 + 0.115922i −0.207817 + 0.00443239i
\(685\) 2.57962i 0.0985623i
\(686\) 18.4902 + 18.1000i 0.705959 + 0.691063i
\(687\) 6.97034 0.265935
\(688\) 0.736115 + 17.2489i 0.0280641 + 0.657609i
\(689\) −49.3733 −1.88097
\(690\) 4.27792 + 4.18765i 0.162858 + 0.159421i
\(691\) 21.7649i 0.827976i 0.910282 + 0.413988i \(0.135864\pi\)
−0.910282 + 0.413988i \(0.864136\pi\)
\(692\) 28.5054 0.607970i 1.08361 0.0231116i
\(693\) 17.7487i 0.674219i
\(694\) −6.26604 + 6.40111i −0.237856 + 0.242983i
\(695\) −13.5951 −0.515691
\(696\) 5.93579 6.32822i 0.224996 0.239871i
\(697\) −21.8661 −0.828237
\(698\) −17.6341 + 18.0142i −0.667460 + 0.681848i
\(699\) 8.91860i 0.337332i
\(700\) −0.0681821 3.19679i −0.00257704 0.120827i
\(701\) 9.06451i 0.342362i 0.985240 + 0.171181i \(0.0547583\pi\)
−0.985240 + 0.171181i \(0.945242\pi\)
\(702\) −13.1705 12.8926i −0.497088 0.486599i
\(703\) −1.10308 −0.0416035
\(704\) 32.6067 2.08887i 1.22891 0.0787271i
\(705\) 3.26735 0.123055
\(706\) −28.0781 27.4856i −1.05673 1.03443i
\(707\) 16.9032i 0.635709i
\(708\) 0.156565 + 7.34070i 0.00588406 + 0.275880i
\(709\) 21.2734i 0.798938i −0.916747 0.399469i \(-0.869195\pi\)
0.916747 0.399469i \(-0.130805\pi\)
\(710\) 11.2318 11.4739i 0.421520 0.430607i
\(711\) −8.37576 −0.314116
\(712\) −26.2321 + 27.9664i −0.983091 + 1.04809i
\(713\) −28.4825 −1.06668
\(714\) 6.30915 6.44515i 0.236114 0.241204i
\(715\) 17.5341i 0.655738i
\(716\) 31.7576 0.677335i 1.18684 0.0253132i
\(717\) 6.74682i 0.251965i
\(718\) −10.0426 9.83064i −0.374785 0.366876i
\(719\) 38.8544 1.44902 0.724512 0.689262i \(-0.242065\pi\)
0.724512 + 0.689262i \(0.242065\pi\)
\(720\) −0.463583 10.8628i −0.0172767 0.404834i
\(721\) 16.9397 0.630867
\(722\) 1.01061 + 0.989281i 0.0376108 + 0.0368172i
\(723\) 1.47913i 0.0550095i
\(724\) −19.4141 + 0.414069i −0.721518 + 0.0153887i
\(725\) 5.77844i 0.214606i
\(726\) 2.98330 3.04760i 0.110720 0.113107i
\(727\) 22.3400 0.828546 0.414273 0.910153i \(-0.364036\pi\)
0.414273 + 0.910153i \(0.364036\pi\)
\(728\) 14.1595 + 13.2814i 0.524786 + 0.492243i
\(729\) 12.9508 0.479659
\(730\) 14.9919 15.3150i 0.554874 0.566835i
\(731\) 32.4326i 1.19956i
\(732\) 0.104513 + 4.90021i 0.00386292 + 0.181117i
\(733\) 7.54019i 0.278503i 0.990257 + 0.139252i \(0.0444697\pi\)
−0.990257 + 0.139252i \(0.955530\pi\)
\(734\) 6.57414 + 6.43542i 0.242656 + 0.237536i
\(735\) −2.35915 −0.0870184
\(736\) −33.5496 30.1504i −1.23665 1.11136i
\(737\) 41.7432 1.53763
\(738\) −7.99369 7.82501i −0.294252 0.288043i
\(739\) 20.2897i 0.746369i −0.927757 0.373184i \(-0.878266\pi\)
0.927757 0.373184i \(-0.121734\pi\)
\(740\) −0.0470430 2.20566i −0.00172933 0.0810817i
\(741\) 2.27909i 0.0837245i
\(742\) 18.1894 18.5814i 0.667752 0.682146i
\(743\) −40.5952 −1.48929 −0.744647 0.667458i \(-0.767382\pi\)
−0.744647 + 0.667458i \(0.767382\pi\)
\(744\) −3.91186 3.66927i −0.143416 0.134522i
\(745\) 1.38602 0.0507798
\(746\) 17.9623 18.3495i 0.657646 0.671822i
\(747\) 9.26835i 0.339111i
\(748\) 61.3650 1.30881i 2.24373 0.0478549i
\(749\) 3.23968i 0.118376i
\(750\) 0.536495 + 0.525175i 0.0195900 + 0.0191767i
\(751\) −41.1087 −1.50008 −0.750038 0.661394i \(-0.769965\pi\)
−0.750038 + 0.661394i \(0.769965\pi\)
\(752\) −24.5967 + 1.04969i −0.896948 + 0.0382781i
\(753\) 10.1558 0.370098
\(754\) 25.0709 + 24.5419i 0.913029 + 0.893764i
\(755\) 17.6513i 0.642396i
\(756\) 9.70413 0.206973i 0.352936 0.00752752i
\(757\) 23.1182i 0.840245i 0.907467 + 0.420123i \(0.138013\pi\)
−0.907467 + 0.420123i \(0.861987\pi\)
\(758\) −30.2564 + 30.9086i −1.09896 + 1.12265i
\(759\) −17.2885 −0.627532
\(760\) −1.93501 + 2.06294i −0.0701903 + 0.0748307i
\(761\) −19.5773 −0.709676 −0.354838 0.934928i \(-0.615464\pi\)
−0.354838 + 0.934928i \(0.615464\pi\)
\(762\) −2.13753 + 2.18360i −0.0774344 + 0.0791036i
\(763\) 15.8251i 0.572906i
\(764\) 0.227849 + 10.6830i 0.00824329 + 0.386496i
\(765\) 20.4250i 0.738468i
\(766\) −33.2868 32.5844i −1.20270 1.17732i
\(767\) −29.6893 −1.07202
\(768\) −0.723648 8.46296i −0.0261124 0.305381i
\(769\) 37.2201 1.34219 0.671095 0.741371i \(-0.265824\pi\)
0.671095 + 0.741371i \(0.265824\pi\)
\(770\) 6.59889 + 6.45964i 0.237807 + 0.232789i
\(771\) 8.15257i 0.293608i
\(772\) −0.285016 13.3633i −0.0102580 0.480955i
\(773\) 7.99430i 0.287535i −0.989611 0.143768i \(-0.954078\pi\)
0.989611 0.143768i \(-0.0459218\pi\)
\(774\) −11.6063 + 11.8565i −0.417181 + 0.426174i
\(775\) −3.57200 −0.128310
\(776\) 5.94062 6.33337i 0.213256 0.227355i
\(777\) 0.936214 0.0335865
\(778\) −13.3546 + 13.6425i −0.478787 + 0.489108i
\(779\) 2.90996i 0.104260i
\(780\) −4.55715 + 0.0971962i −0.163172 + 0.00348018i
\(781\) 46.3696i 1.65924i
\(782\) −60.5526 59.2748i −2.16535 2.11966i
\(783\) 17.5409 0.626862
\(784\) 17.7597 0.757913i 0.634275 0.0270683i
\(785\) −12.4964 −0.446017
\(786\) 9.60310 + 9.40047i 0.342531 + 0.335304i
\(787\) 34.8314i 1.24160i 0.783967 + 0.620802i \(0.213193\pi\)
−0.783967 + 0.620802i \(0.786807\pi\)
\(788\) 3.74314 0.0798349i 0.133344 0.00284400i
\(789\) 16.2656i 0.579070i
\(790\) −3.04835 + 3.11406i −0.108456 + 0.110793i
\(791\) −17.4728 −0.621260
\(792\) 22.9019 + 21.4817i 0.813783 + 0.763318i
\(793\) −19.8188 −0.703786
\(794\) 29.3629 29.9959i 1.04205 1.06451i
\(795\) 6.10518i 0.216528i
\(796\) 0.501250 + 23.5017i 0.0177663 + 0.832995i
\(797\) 10.7193i 0.379697i 0.981813 + 0.189849i \(0.0607998\pi\)
−0.981813 + 0.189849i \(0.939200\pi\)
\(798\) −0.857727 0.839628i −0.0303632 0.0297225i
\(799\) −46.2482 −1.63615
\(800\) −4.20747 3.78117i −0.148756 0.133684i
\(801\) −36.8492 −1.30200
\(802\) −5.62856 5.50979i −0.198751 0.194558i
\(803\) 61.8931i 2.18416i
\(804\) −0.231394 10.8491i −0.00816062 0.382620i
\(805\) 12.7482i 0.449316i
\(806\) 15.1708 15.4978i 0.534370 0.545888i
\(807\) 11.6665 0.410681
\(808\) −21.8108 20.4583i −0.767302 0.719719i
\(809\) 28.7727 1.01159 0.505797 0.862652i \(-0.331198\pi\)
0.505797 + 0.862652i \(0.331198\pi\)
\(810\) 6.47293 6.61245i 0.227435 0.232338i
\(811\) 17.7551i 0.623465i 0.950170 + 0.311733i \(0.100909\pi\)
−0.950170 + 0.311733i \(0.899091\pi\)
\(812\) −18.4725 + 0.393987i −0.648258 + 0.0138262i
\(813\) 1.29876i 0.0455494i
\(814\) 4.55297 + 4.45690i 0.159582 + 0.156214i
\(815\) 10.6418 0.372767
\(816\) −0.680325 15.9416i −0.0238161 0.558069i
\(817\) 4.31616 0.151003
\(818\) 30.2212 + 29.5835i 1.05666 + 1.03436i
\(819\) 18.6569i 0.651925i
\(820\) −5.81860 + 0.124101i −0.203194 + 0.00433378i
\(821\) 44.3665i 1.54840i −0.632939 0.774202i \(-0.718152\pi\)
0.632939 0.774202i \(-0.281848\pi\)
\(822\) −1.35475 + 1.38396i −0.0472524 + 0.0482710i
\(823\) 52.3287 1.82406 0.912032 0.410118i \(-0.134513\pi\)
0.912032 + 0.410118i \(0.134513\pi\)
\(824\) 20.5025 21.8579i 0.714237 0.761457i
\(825\) −2.16815 −0.0754854
\(826\) 10.9377 11.1734i 0.380571 0.388774i
\(827\) 36.8109i 1.28004i 0.768358 + 0.640021i \(0.221074\pi\)
−0.768358 + 0.640021i \(0.778926\pi\)
\(828\) −0.924342 43.3388i −0.0321231 1.50613i
\(829\) 6.63815i 0.230553i −0.993333 0.115276i \(-0.963225\pi\)
0.993333 0.115276i \(-0.0367753\pi\)
\(830\) −3.44592 3.37321i −0.119610 0.117086i
\(831\) −14.3553 −0.497981
\(832\) 34.2751 2.19575i 1.18827 0.0761239i
\(833\) 33.3929 1.15700
\(834\) −7.29369 7.13979i −0.252560 0.247231i
\(835\) 9.32577i 0.322732i
\(836\) −0.174178 8.16652i −0.00602406 0.282445i
\(837\) 10.8431i 0.374793i
\(838\) 0.917914 0.937701i 0.0317088 0.0323923i
\(839\) 34.1930 1.18047 0.590236 0.807231i \(-0.299035\pi\)
0.590236 + 0.807231i \(0.299035\pi\)
\(840\) 1.64230 1.75087i 0.0566646 0.0604108i
\(841\) −4.39042 −0.151394
\(842\) −35.8551 + 36.6280i −1.23565 + 1.26229i
\(843\) 8.45757i 0.291294i
\(844\) 32.6707 0.696810i 1.12457 0.0239852i
\(845\) 5.43128i 0.186842i
\(846\) −16.9072 16.5504i −0.581281 0.569016i
\(847\) −9.08188 −0.312057
\(848\) −1.96138 45.9599i −0.0673542 1.57827i
\(849\) 2.20524 0.0756838
\(850\) −7.59391 7.43368i −0.260469 0.254973i
\(851\) 8.79578i 0.301516i
\(852\) 12.0516 0.257039i 0.412880 0.00880602i
\(853\) 27.3027i 0.934826i 0.884039 + 0.467413i \(0.154814\pi\)
−0.884039 + 0.467413i \(0.845186\pi\)
\(854\) 7.30134 7.45873i 0.249847 0.255232i
\(855\) −2.71818 −0.0929599
\(856\) −4.18029 3.92106i −0.142879 0.134019i
\(857\) 8.87790 0.303263 0.151632 0.988437i \(-0.451547\pi\)
0.151632 + 0.988437i \(0.451547\pi\)
\(858\) 9.20846 9.40696i 0.314372 0.321148i
\(859\) 36.8942i 1.25881i −0.777076 0.629407i \(-0.783298\pi\)
0.777076 0.629407i \(-0.216702\pi\)
\(860\) 0.184071 + 8.63035i 0.00627676 + 0.294293i
\(861\) 2.46976i 0.0841691i
\(862\) −14.4092 14.1052i −0.490780 0.480425i
\(863\) −25.5457 −0.869587 −0.434793 0.900530i \(-0.643179\pi\)
−0.434793 + 0.900530i \(0.643179\pi\)
\(864\) 11.4780 12.7721i 0.390491 0.434516i
\(865\) 14.2559 0.484716
\(866\) −8.91879 8.73060i −0.303073 0.296678i
\(867\) 20.9498i 0.711493i
\(868\) 0.243547 + 11.4190i 0.00826652 + 0.387585i
\(869\) 12.5849i 0.426915i
\(870\) 3.03469 3.10011i 0.102886 0.105103i
\(871\) 43.8791 1.48679
\(872\) 20.4197 + 19.1534i 0.691498 + 0.648616i
\(873\) 8.34501 0.282436
\(874\) −7.88835 + 8.05839i −0.266828 + 0.272579i
\(875\) 1.59876i 0.0540480i
\(876\) 16.0861 0.343090i 0.543500 0.0115919i
\(877\) 22.6731i 0.765615i 0.923828 + 0.382808i \(0.125043\pi\)
−0.923828 + 0.382808i \(0.874957\pi\)
\(878\) 20.8855 + 20.4448i 0.704852 + 0.689979i
\(879\) 11.1626 0.376506
\(880\) 16.3219 0.696553i 0.550211 0.0234808i
\(881\) 32.3070 1.08845 0.544225 0.838939i \(-0.316824\pi\)
0.544225 + 0.838939i \(0.316824\pi\)
\(882\) 12.2076 + 11.9500i 0.411052 + 0.402378i
\(883\) 23.7637i 0.799711i −0.916578 0.399856i \(-0.869060\pi\)
0.916578 0.399856i \(-0.130940\pi\)
\(884\) 64.5050 1.37578i 2.16954 0.0462725i
\(885\) 3.67119i 0.123406i
\(886\) −11.3191 + 11.5630i −0.380271 + 0.388468i
\(887\) −40.8668 −1.37217 −0.686087 0.727520i \(-0.740673\pi\)
−0.686087 + 0.727520i \(0.740673\pi\)
\(888\) 1.13312 1.20803i 0.0380250 0.0405389i
\(889\) 6.50715 0.218243
\(890\) −13.4113 + 13.7003i −0.449546 + 0.459237i
\(891\) 26.7231i 0.895257i
\(892\) 0.602640 + 28.2555i 0.0201779 + 0.946062i
\(893\) 6.15476i 0.205961i
\(894\) 0.743592 + 0.727902i 0.0248694 + 0.0243447i
\(895\) 15.8824 0.530891
\(896\) −11.8007 + 13.7082i −0.394235 + 0.457959i
\(897\) −18.1731 −0.606782
\(898\) −28.7116 28.1058i −0.958120 0.937903i
\(899\) 20.6406i 0.688403i
\(900\) −0.115922 5.43513i −0.00386407 0.181171i
\(901\) 86.4168i 2.87896i
\(902\) 11.7574 12.0109i 0.391479 0.399918i
\(903\) −3.66324 −0.121905
\(904\) −21.1476 + 22.5458i −0.703360 + 0.749861i
\(905\) −9.70924 −0.322746
\(906\) −9.27000 + 9.46982i −0.307975 + 0.314614i
\(907\) 6.07897i 0.201849i 0.994894 + 0.100925i \(0.0321801\pi\)
−0.994894 + 0.100925i \(0.967820\pi\)
\(908\) −28.2681 + 0.602910i −0.938110 + 0.0200083i
\(909\) 28.7385i 0.953195i
\(910\) 6.93654 + 6.79017i 0.229944 + 0.225092i
\(911\) 36.8291 1.22020 0.610102 0.792323i \(-0.291129\pi\)
0.610102 + 0.792323i \(0.291129\pi\)
\(912\) −2.12153 + 0.0905383i −0.0702508 + 0.00299802i
\(913\) 13.9261 0.460887
\(914\) 35.4984 + 34.7494i 1.17418 + 1.14941i
\(915\) 2.45066i 0.0810164i
\(916\) −26.2543 + 0.559960i −0.867467 + 0.0185016i
\(917\) 28.6173i 0.945028i
\(918\) 22.5655 23.0520i 0.744774 0.760828i
\(919\) 21.5592 0.711171 0.355586 0.934644i \(-0.384281\pi\)
0.355586 + 0.934644i \(0.384281\pi\)
\(920\) −16.4495 15.4295i −0.542325 0.508694i
\(921\) 8.85827 0.291890
\(922\) −29.7096 + 30.3500i −0.978433 + 0.999524i
\(923\) 48.7423i 1.60437i
\(924\) 0.147829 + 6.93113i 0.00486322 + 0.228018i
\(925\) 1.10308i 0.0362691i
\(926\) 2.09287 + 2.04871i 0.0687759 + 0.0673247i
\(927\) 28.8006 0.945934
\(928\) −21.8493 + 24.3126i −0.717237 + 0.798101i
\(929\) −36.9410 −1.21200 −0.605998 0.795466i \(-0.707226\pi\)
−0.605998 + 0.795466i \(0.707226\pi\)
\(930\) −1.91636 1.87593i −0.0628400 0.0615140i
\(931\) 4.44396i 0.145645i
\(932\) −0.716473 33.5926i −0.0234689 1.10036i
\(933\) 4.84388i 0.158582i
\(934\) −39.7120 + 40.5680i −1.29942 + 1.32743i
\(935\) 30.6895 1.00365
\(936\) 24.0737 + 22.5808i 0.786874 + 0.738078i
\(937\) −55.5587 −1.81502 −0.907512 0.420026i \(-0.862021\pi\)
−0.907512 + 0.420026i \(0.862021\pi\)
\(938\) −16.1653 + 16.5137i −0.527815 + 0.539192i
\(939\) 12.5118i 0.408308i
\(940\) −12.3067 + 0.262481i −0.401401 + 0.00856120i
\(941\) 3.59643i 0.117240i −0.998280 0.0586201i \(-0.981330\pi\)
0.998280 0.0586201i \(-0.0186701\pi\)
\(942\) −6.70428 6.56282i −0.218437 0.213828i
\(943\) −23.2035 −0.755610
\(944\) −1.17943 27.6368i −0.0383870 0.899500i
\(945\) 4.85317 0.157874
\(946\) −17.8149 17.4390i −0.579214 0.566992i
\(947\) 29.4296i 0.956334i −0.878269 0.478167i \(-0.841301\pi\)
0.878269 0.478167i \(-0.158699\pi\)
\(948\) −3.27085 + 0.0697617i −0.106232 + 0.00226576i
\(949\) 65.0600i 2.11194i
\(950\) −0.989281 + 1.01061i −0.0320965 + 0.0327884i
\(951\) −7.24749 −0.235016
\(952\) −23.2462 + 24.7830i −0.753412 + 0.803222i
\(953\) 54.0253 1.75005 0.875026 0.484077i \(-0.160844\pi\)
0.875026 + 0.484077i \(0.160844\pi\)
\(954\) 30.9252 31.5918i 1.00124 1.02282i
\(955\) 5.34269i 0.172885i
\(956\) −0.542003 25.4124i −0.0175296 0.821897i
\(957\) 12.5285i 0.404990i
\(958\) 26.3295 + 25.7739i 0.850667 + 0.832717i
\(959\) 4.12420 0.133177
\(960\) −0.271512 4.23823i −0.00876302 0.136788i
\(961\) −18.2408 −0.588413
\(962\) 4.78594 + 4.68495i 0.154305 + 0.151049i
\(963\) 5.50805i 0.177494i
\(964\) −0.118826 5.57127i −0.00382711 0.179438i
\(965\) 6.68316i 0.215139i
\(966\) 6.69505 6.83937i 0.215410 0.220053i
\(967\) −4.11964 −0.132479 −0.0662394 0.997804i \(-0.521100\pi\)
−0.0662394 + 0.997804i \(0.521100\pi\)
\(968\) −10.9920 + 11.7187i −0.353296 + 0.376653i
\(969\) −3.98904 −0.128146
\(970\) 3.03716 3.10263i 0.0975174 0.0996194i
\(971\) 22.6082i 0.725531i −0.931881 0.362765i \(-0.881833\pi\)
0.931881 0.362765i \(-0.118167\pi\)
\(972\) 25.1547 0.536508i 0.806839 0.0172085i
\(973\) 21.7353i 0.696801i
\(974\) 7.19223 + 7.04047i 0.230454 + 0.225591i
\(975\) −2.27909 −0.0729894
\(976\) −0.787314 18.4486i −0.0252013 0.590527i
\(977\) 33.7930 1.08113 0.540567 0.841301i \(-0.318210\pi\)
0.540567 + 0.841301i \(0.318210\pi\)
\(978\) 5.70930 + 5.58882i 0.182563 + 0.178711i
\(979\) 55.3676i 1.76956i
\(980\) 8.88591 0.189521i 0.283850 0.00605403i
\(981\) 26.9055i 0.859026i
\(982\) 36.7846 37.5775i 1.17384 1.19915i
\(983\) 54.5710 1.74054 0.870272 0.492572i \(-0.163943\pi\)
0.870272 + 0.492572i \(0.163943\pi\)
\(984\) −3.18682 2.98920i −0.101592 0.0952922i
\(985\) 1.87200 0.0596468
\(986\) −42.9551 + 43.8810i −1.36797 + 1.39746i
\(987\) 5.22371i 0.166272i
\(988\) −0.183090 8.58438i −0.00582487 0.273106i
\(989\) 34.4163i 1.09437i
\(990\) 11.2193 + 10.9826i 0.356573 + 0.349049i
\(991\) 33.8783 1.07618 0.538090 0.842888i \(-0.319146\pi\)
0.538090 + 0.842888i \(0.319146\pi\)
\(992\) 15.0291 + 13.5063i 0.477174 + 0.428827i
\(993\) −12.0493 −0.382374
\(994\) −18.3440 17.9569i −0.581835 0.569558i
\(995\) 11.7535i 0.372611i
\(996\) −0.0771961 3.61942i −0.00244605 0.114686i
\(997\) 41.4264i 1.31199i −0.754767 0.655993i \(-0.772250\pi\)
0.754767 0.655993i \(-0.227750\pi\)
\(998\) 10.3398 10.5627i 0.327300 0.334356i
\(999\) 3.34850 0.105942
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.f.b.381.9 44
4.3 odd 2 3040.2.f.b.1521.25 44
8.3 odd 2 3040.2.f.b.1521.20 44
8.5 even 2 inner 760.2.f.b.381.10 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.9 44 1.1 even 1 trivial
760.2.f.b.381.10 yes 44 8.5 even 2 inner
3040.2.f.b.1521.20 44 8.3 odd 2
3040.2.f.b.1521.25 44 4.3 odd 2