Properties

Label 3025.2.a.p.1.3
Level $3025$
Weight $2$
Character 3025.1
Self dual yes
Analytic conductor $24.155$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3025,2,Mod(1,3025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,-1,9,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 605)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.210756\) of defining polynomial
Character \(\chi\) \(=\) 3025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.74483 q^{2} +0.210756 q^{3} +5.53407 q^{4} +0.578488 q^{6} +2.32331 q^{7} +9.70041 q^{8} -2.95558 q^{9} +1.16634 q^{12} +0.534070 q^{13} +6.37709 q^{14} +15.5578 q^{16} -2.42151 q^{17} -8.11256 q^{18} +4.95558 q^{19} +0.489652 q^{21} +4.53407 q^{23} +2.04442 q^{24} +1.46593 q^{26} -1.25517 q^{27} +12.8574 q^{28} -5.48965 q^{29} +1.04442 q^{31} +23.3026 q^{32} -6.64663 q^{34} -16.3564 q^{36} -7.48965 q^{37} +13.6022 q^{38} +0.112558 q^{39} +10.6022 q^{41} +1.34401 q^{42} -4.32331 q^{43} +12.4452 q^{46} -6.76855 q^{47} +3.27890 q^{48} -1.60221 q^{49} -0.510348 q^{51} +2.95558 q^{52} +4.53407 q^{53} -3.44523 q^{54} +22.5371 q^{56} +1.04442 q^{57} -15.0681 q^{58} -6.44523 q^{59} +6.79861 q^{61} +2.86675 q^{62} -6.86675 q^{63} +32.8461 q^{64} -0.721104 q^{67} -13.4008 q^{68} +0.955582 q^{69} +4.53407 q^{71} -28.6704 q^{72} -1.06814 q^{73} -20.5578 q^{74} +27.4245 q^{76} +0.308953 q^{78} +4.64663 q^{79} +8.60221 q^{81} +29.1012 q^{82} -13.6022 q^{83} +2.70977 q^{84} -11.8667 q^{86} -1.15698 q^{87} +12.7148 q^{89} +1.24081 q^{91} +25.0919 q^{92} +0.220117 q^{93} -18.5785 q^{94} +4.91116 q^{96} -4.75919 q^{97} -4.39779 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - q^{3} + 9 q^{4} + 5 q^{6} + q^{7} + 9 q^{8} + 2 q^{9} - 9 q^{12} - 6 q^{13} + 5 q^{14} + 13 q^{16} - 4 q^{17} - 20 q^{18} + 4 q^{19} - 17 q^{21} + 6 q^{23} + 17 q^{24} + 12 q^{26} - 13 q^{27}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.74483 1.94089 0.970443 0.241332i \(-0.0775843\pi\)
0.970443 + 0.241332i \(0.0775843\pi\)
\(3\) 0.210756 0.121680 0.0608400 0.998148i \(-0.480622\pi\)
0.0608400 + 0.998148i \(0.480622\pi\)
\(4\) 5.53407 2.76704
\(5\) 0 0
\(6\) 0.578488 0.236167
\(7\) 2.32331 0.878130 0.439065 0.898455i \(-0.355310\pi\)
0.439065 + 0.898455i \(0.355310\pi\)
\(8\) 9.70041 3.42961
\(9\) −2.95558 −0.985194
\(10\) 0 0
\(11\) 0 0
\(12\) 1.16634 0.336693
\(13\) 0.534070 0.148124 0.0740622 0.997254i \(-0.476404\pi\)
0.0740622 + 0.997254i \(0.476404\pi\)
\(14\) 6.37709 1.70435
\(15\) 0 0
\(16\) 15.5578 3.88945
\(17\) −2.42151 −0.587303 −0.293651 0.955913i \(-0.594870\pi\)
−0.293651 + 0.955913i \(0.594870\pi\)
\(18\) −8.11256 −1.91215
\(19\) 4.95558 1.13689 0.568444 0.822722i \(-0.307546\pi\)
0.568444 + 0.822722i \(0.307546\pi\)
\(20\) 0 0
\(21\) 0.489652 0.106851
\(22\) 0 0
\(23\) 4.53407 0.945419 0.472709 0.881218i \(-0.343276\pi\)
0.472709 + 0.881218i \(0.343276\pi\)
\(24\) 2.04442 0.417315
\(25\) 0 0
\(26\) 1.46593 0.287492
\(27\) −1.25517 −0.241558
\(28\) 12.8574 2.42982
\(29\) −5.48965 −1.01940 −0.509701 0.860351i \(-0.670244\pi\)
−0.509701 + 0.860351i \(0.670244\pi\)
\(30\) 0 0
\(31\) 1.04442 0.187583 0.0937915 0.995592i \(-0.470101\pi\)
0.0937915 + 0.995592i \(0.470101\pi\)
\(32\) 23.3026 4.11936
\(33\) 0 0
\(34\) −6.64663 −1.13989
\(35\) 0 0
\(36\) −16.3564 −2.72607
\(37\) −7.48965 −1.23129 −0.615646 0.788023i \(-0.711105\pi\)
−0.615646 + 0.788023i \(0.711105\pi\)
\(38\) 13.6022 2.20657
\(39\) 0.112558 0.0180238
\(40\) 0 0
\(41\) 10.6022 1.65579 0.827894 0.560885i \(-0.189539\pi\)
0.827894 + 0.560885i \(0.189539\pi\)
\(42\) 1.34401 0.207385
\(43\) −4.32331 −0.659299 −0.329650 0.944103i \(-0.606931\pi\)
−0.329650 + 0.944103i \(0.606931\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 12.4452 1.83495
\(47\) −6.76855 −0.987294 −0.493647 0.869662i \(-0.664337\pi\)
−0.493647 + 0.869662i \(0.664337\pi\)
\(48\) 3.27890 0.473268
\(49\) −1.60221 −0.228887
\(50\) 0 0
\(51\) −0.510348 −0.0714630
\(52\) 2.95558 0.409865
\(53\) 4.53407 0.622802 0.311401 0.950279i \(-0.399202\pi\)
0.311401 + 0.950279i \(0.399202\pi\)
\(54\) −3.44523 −0.468837
\(55\) 0 0
\(56\) 22.5371 3.01165
\(57\) 1.04442 0.138337
\(58\) −15.0681 −1.97854
\(59\) −6.44523 −0.839098 −0.419549 0.907733i \(-0.637812\pi\)
−0.419549 + 0.907733i \(0.637812\pi\)
\(60\) 0 0
\(61\) 6.79861 0.870472 0.435236 0.900316i \(-0.356665\pi\)
0.435236 + 0.900316i \(0.356665\pi\)
\(62\) 2.86675 0.364077
\(63\) −6.86675 −0.865129
\(64\) 32.8461 4.10576
\(65\) 0 0
\(66\) 0 0
\(67\) −0.721104 −0.0880968 −0.0440484 0.999029i \(-0.514026\pi\)
−0.0440484 + 0.999029i \(0.514026\pi\)
\(68\) −13.4008 −1.62509
\(69\) 0.955582 0.115039
\(70\) 0 0
\(71\) 4.53407 0.538095 0.269048 0.963127i \(-0.413291\pi\)
0.269048 + 0.963127i \(0.413291\pi\)
\(72\) −28.6704 −3.37883
\(73\) −1.06814 −0.125016 −0.0625082 0.998044i \(-0.519910\pi\)
−0.0625082 + 0.998044i \(0.519910\pi\)
\(74\) −20.5578 −2.38979
\(75\) 0 0
\(76\) 27.4245 3.14581
\(77\) 0 0
\(78\) 0.308953 0.0349821
\(79\) 4.64663 0.522787 0.261393 0.965232i \(-0.415818\pi\)
0.261393 + 0.965232i \(0.415818\pi\)
\(80\) 0 0
\(81\) 8.60221 0.955801
\(82\) 29.1012 3.21369
\(83\) −13.6022 −1.49304 −0.746518 0.665365i \(-0.768276\pi\)
−0.746518 + 0.665365i \(0.768276\pi\)
\(84\) 2.70977 0.295660
\(85\) 0 0
\(86\) −11.8667 −1.27962
\(87\) −1.15698 −0.124041
\(88\) 0 0
\(89\) 12.7148 1.34776 0.673881 0.738840i \(-0.264626\pi\)
0.673881 + 0.738840i \(0.264626\pi\)
\(90\) 0 0
\(91\) 1.24081 0.130073
\(92\) 25.0919 2.61601
\(93\) 0.220117 0.0228251
\(94\) −18.5785 −1.91622
\(95\) 0 0
\(96\) 4.91116 0.501244
\(97\) −4.75919 −0.483222 −0.241611 0.970373i \(-0.577676\pi\)
−0.241611 + 0.970373i \(0.577676\pi\)
\(98\) −4.39779 −0.444244
\(99\) 0 0
\(100\) 0 0
\(101\) −6.57849 −0.654584 −0.327292 0.944923i \(-0.606136\pi\)
−0.327292 + 0.944923i \(0.606136\pi\)
\(102\) −1.40082 −0.138701
\(103\) −16.3564 −1.61164 −0.805822 0.592158i \(-0.798276\pi\)
−0.805822 + 0.592158i \(0.798276\pi\)
\(104\) 5.18070 0.508009
\(105\) 0 0
\(106\) 12.4452 1.20879
\(107\) −10.2108 −0.987111 −0.493556 0.869714i \(-0.664303\pi\)
−0.493556 + 0.869714i \(0.664303\pi\)
\(108\) −6.94622 −0.668400
\(109\) −12.0919 −1.15819 −0.579095 0.815260i \(-0.696594\pi\)
−0.579095 + 0.815260i \(0.696594\pi\)
\(110\) 0 0
\(111\) −1.57849 −0.149823
\(112\) 36.1456 3.41544
\(113\) 10.8430 1.02003 0.510013 0.860167i \(-0.329641\pi\)
0.510013 + 0.860167i \(0.329641\pi\)
\(114\) 2.86675 0.268495
\(115\) 0 0
\(116\) −30.3801 −2.82072
\(117\) −1.57849 −0.145931
\(118\) −17.6910 −1.62859
\(119\) −5.62593 −0.515728
\(120\) 0 0
\(121\) 0 0
\(122\) 18.6610 1.68949
\(123\) 2.23448 0.201476
\(124\) 5.77988 0.519049
\(125\) 0 0
\(126\) −18.8480 −1.67912
\(127\) 8.12192 0.720704 0.360352 0.932816i \(-0.382657\pi\)
0.360352 + 0.932816i \(0.382657\pi\)
\(128\) 43.5515 3.84944
\(129\) −0.911164 −0.0802235
\(130\) 0 0
\(131\) 5.79861 0.506627 0.253313 0.967384i \(-0.418480\pi\)
0.253313 + 0.967384i \(0.418480\pi\)
\(132\) 0 0
\(133\) 11.5134 0.998336
\(134\) −1.97930 −0.170986
\(135\) 0 0
\(136\) −23.4897 −2.01422
\(137\) −8.86675 −0.757537 −0.378769 0.925491i \(-0.623652\pi\)
−0.378769 + 0.925491i \(0.623652\pi\)
\(138\) 2.62291 0.223277
\(139\) −16.8667 −1.43062 −0.715309 0.698808i \(-0.753714\pi\)
−0.715309 + 0.698808i \(0.753714\pi\)
\(140\) 0 0
\(141\) −1.42651 −0.120134
\(142\) 12.4452 1.04438
\(143\) 0 0
\(144\) −45.9823 −3.83186
\(145\) 0 0
\(146\) −2.93186 −0.242642
\(147\) −0.337675 −0.0278510
\(148\) −41.4483 −3.40703
\(149\) 4.46593 0.365863 0.182932 0.983126i \(-0.441441\pi\)
0.182932 + 0.983126i \(0.441441\pi\)
\(150\) 0 0
\(151\) −11.5134 −0.936945 −0.468473 0.883478i \(-0.655196\pi\)
−0.468473 + 0.883478i \(0.655196\pi\)
\(152\) 48.0712 3.89909
\(153\) 7.15698 0.578607
\(154\) 0 0
\(155\) 0 0
\(156\) 0.622906 0.0498724
\(157\) 5.91116 0.471762 0.235881 0.971782i \(-0.424202\pi\)
0.235881 + 0.971782i \(0.424202\pi\)
\(158\) 12.7542 1.01467
\(159\) 0.955582 0.0757826
\(160\) 0 0
\(161\) 10.5341 0.830201
\(162\) 23.6116 1.85510
\(163\) −23.4990 −1.84058 −0.920292 0.391231i \(-0.872049\pi\)
−0.920292 + 0.391231i \(0.872049\pi\)
\(164\) 58.6734 4.58162
\(165\) 0 0
\(166\) −37.3357 −2.89781
\(167\) −14.2345 −1.10150 −0.550748 0.834671i \(-0.685658\pi\)
−0.550748 + 0.834671i \(0.685658\pi\)
\(168\) 4.74983 0.366457
\(169\) −12.7148 −0.978059
\(170\) 0 0
\(171\) −14.6466 −1.12006
\(172\) −23.9255 −1.82430
\(173\) 6.44523 0.490022 0.245011 0.969520i \(-0.421208\pi\)
0.245011 + 0.969520i \(0.421208\pi\)
\(174\) −3.17570 −0.240749
\(175\) 0 0
\(176\) 0 0
\(177\) −1.35837 −0.102101
\(178\) 34.8998 2.61585
\(179\) 16.9793 1.26909 0.634546 0.772885i \(-0.281187\pi\)
0.634546 + 0.772885i \(0.281187\pi\)
\(180\) 0 0
\(181\) 4.48965 0.333713 0.166857 0.985981i \(-0.446638\pi\)
0.166857 + 0.985981i \(0.446638\pi\)
\(182\) 3.40582 0.252456
\(183\) 1.43285 0.105919
\(184\) 43.9823 3.24242
\(185\) 0 0
\(186\) 0.604184 0.0443009
\(187\) 0 0
\(188\) −37.4576 −2.73188
\(189\) −2.91616 −0.212120
\(190\) 0 0
\(191\) −2.75919 −0.199648 −0.0998239 0.995005i \(-0.531828\pi\)
−0.0998239 + 0.995005i \(0.531828\pi\)
\(192\) 6.92250 0.499588
\(193\) −11.8036 −0.849642 −0.424821 0.905277i \(-0.639663\pi\)
−0.424821 + 0.905277i \(0.639663\pi\)
\(194\) −13.0631 −0.937879
\(195\) 0 0
\(196\) −8.86675 −0.633339
\(197\) 6.51035 0.463843 0.231922 0.972734i \(-0.425499\pi\)
0.231922 + 0.972734i \(0.425499\pi\)
\(198\) 0 0
\(199\) 23.9586 1.69838 0.849190 0.528087i \(-0.177090\pi\)
0.849190 + 0.528087i \(0.177090\pi\)
\(200\) 0 0
\(201\) −0.151977 −0.0107196
\(202\) −18.0568 −1.27047
\(203\) −12.7542 −0.895168
\(204\) −2.82430 −0.197741
\(205\) 0 0
\(206\) −44.8955 −3.12802
\(207\) −13.4008 −0.931421
\(208\) 8.30895 0.576122
\(209\) 0 0
\(210\) 0 0
\(211\) −16.8667 −1.16115 −0.580577 0.814205i \(-0.697173\pi\)
−0.580577 + 0.814205i \(0.697173\pi\)
\(212\) 25.0919 1.72332
\(213\) 0.955582 0.0654754
\(214\) −28.0267 −1.91587
\(215\) 0 0
\(216\) −12.1757 −0.828451
\(217\) 2.42651 0.164722
\(218\) −33.1901 −2.24791
\(219\) −0.225117 −0.0152120
\(220\) 0 0
\(221\) −1.29326 −0.0869939
\(222\) −4.33268 −0.290790
\(223\) 25.0174 1.67529 0.837644 0.546216i \(-0.183932\pi\)
0.837644 + 0.546216i \(0.183932\pi\)
\(224\) 54.1393 3.61733
\(225\) 0 0
\(226\) 29.7622 1.97975
\(227\) −4.00936 −0.266111 −0.133055 0.991109i \(-0.542479\pi\)
−0.133055 + 0.991109i \(0.542479\pi\)
\(228\) 5.77988 0.382782
\(229\) −17.3327 −1.14538 −0.572688 0.819774i \(-0.694099\pi\)
−0.572688 + 0.819774i \(0.694099\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −53.2519 −3.49616
\(233\) −2.11256 −0.138398 −0.0691992 0.997603i \(-0.522044\pi\)
−0.0691992 + 0.997603i \(0.522044\pi\)
\(234\) −4.33268 −0.283236
\(235\) 0 0
\(236\) −35.6684 −2.32181
\(237\) 0.979304 0.0636127
\(238\) −15.4422 −1.00097
\(239\) −23.9349 −1.54822 −0.774110 0.633052i \(-0.781802\pi\)
−0.774110 + 0.633052i \(0.781802\pi\)
\(240\) 0 0
\(241\) −14.5134 −0.934889 −0.467444 0.884023i \(-0.654825\pi\)
−0.467444 + 0.884023i \(0.654825\pi\)
\(242\) 0 0
\(243\) 5.57849 0.357860
\(244\) 37.6240 2.40863
\(245\) 0 0
\(246\) 6.13325 0.391042
\(247\) 2.64663 0.168401
\(248\) 10.1313 0.643337
\(249\) −2.86675 −0.181673
\(250\) 0 0
\(251\) 28.8066 1.81826 0.909129 0.416514i \(-0.136748\pi\)
0.909129 + 0.416514i \(0.136748\pi\)
\(252\) −38.0011 −2.39384
\(253\) 0 0
\(254\) 22.2933 1.39880
\(255\) 0 0
\(256\) 53.8491 3.36557
\(257\) 27.6497 1.72474 0.862369 0.506280i \(-0.168980\pi\)
0.862369 + 0.506280i \(0.168980\pi\)
\(258\) −2.50099 −0.155705
\(259\) −17.4008 −1.08123
\(260\) 0 0
\(261\) 16.2251 1.00431
\(262\) 15.9162 0.983304
\(263\) −3.13325 −0.193205 −0.0966024 0.995323i \(-0.530798\pi\)
−0.0966024 + 0.995323i \(0.530798\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 31.6022 1.93766
\(267\) 2.67971 0.163996
\(268\) −3.99064 −0.243767
\(269\) 18.0030 1.09766 0.548832 0.835933i \(-0.315073\pi\)
0.548832 + 0.835933i \(0.315073\pi\)
\(270\) 0 0
\(271\) 20.3327 1.23512 0.617561 0.786523i \(-0.288121\pi\)
0.617561 + 0.786523i \(0.288121\pi\)
\(272\) −37.6734 −2.28428
\(273\) 0.261509 0.0158272
\(274\) −24.3377 −1.47029
\(275\) 0 0
\(276\) 5.28826 0.318316
\(277\) 25.4897 1.53152 0.765762 0.643124i \(-0.222362\pi\)
0.765762 + 0.643124i \(0.222362\pi\)
\(278\) −46.2963 −2.77667
\(279\) −3.08686 −0.184806
\(280\) 0 0
\(281\) 18.2726 1.09005 0.545025 0.838420i \(-0.316520\pi\)
0.545025 + 0.838420i \(0.316520\pi\)
\(282\) −3.91553 −0.233166
\(283\) 11.0538 0.657079 0.328539 0.944490i \(-0.393444\pi\)
0.328539 + 0.944490i \(0.393444\pi\)
\(284\) 25.0919 1.48893
\(285\) 0 0
\(286\) 0 0
\(287\) 24.6323 1.45400
\(288\) −68.8728 −4.05837
\(289\) −11.1363 −0.655075
\(290\) 0 0
\(291\) −1.00303 −0.0587985
\(292\) −5.91116 −0.345925
\(293\) −27.1393 −1.58550 −0.792748 0.609550i \(-0.791350\pi\)
−0.792748 + 0.609550i \(0.791350\pi\)
\(294\) −0.926860 −0.0540556
\(295\) 0 0
\(296\) −72.6527 −4.22285
\(297\) 0 0
\(298\) 12.2582 0.710098
\(299\) 2.42151 0.140040
\(300\) 0 0
\(301\) −10.0444 −0.578951
\(302\) −31.6022 −1.81850
\(303\) −1.38646 −0.0796498
\(304\) 77.0979 4.42187
\(305\) 0 0
\(306\) 19.6447 1.12301
\(307\) −11.7385 −0.669951 −0.334976 0.942227i \(-0.608728\pi\)
−0.334976 + 0.942227i \(0.608728\pi\)
\(308\) 0 0
\(309\) −3.44721 −0.196105
\(310\) 0 0
\(311\) 10.6416 0.603431 0.301716 0.953398i \(-0.402441\pi\)
0.301716 + 0.953398i \(0.402441\pi\)
\(312\) 1.09186 0.0618146
\(313\) 27.1807 1.53634 0.768172 0.640244i \(-0.221167\pi\)
0.768172 + 0.640244i \(0.221167\pi\)
\(314\) 16.2251 0.915636
\(315\) 0 0
\(316\) 25.7148 1.44657
\(317\) −4.97930 −0.279666 −0.139833 0.990175i \(-0.544657\pi\)
−0.139833 + 0.990175i \(0.544657\pi\)
\(318\) 2.62291 0.147085
\(319\) 0 0
\(320\) 0 0
\(321\) −2.15198 −0.120112
\(322\) 28.9142 1.61132
\(323\) −12.0000 −0.667698
\(324\) 47.6052 2.64474
\(325\) 0 0
\(326\) −64.5007 −3.57236
\(327\) −2.54843 −0.140929
\(328\) 102.846 5.67871
\(329\) −15.7255 −0.866973
\(330\) 0 0
\(331\) 7.55477 0.415247 0.207624 0.978209i \(-0.433427\pi\)
0.207624 + 0.978209i \(0.433427\pi\)
\(332\) −75.2756 −4.13128
\(333\) 22.1363 1.21306
\(334\) −39.0712 −2.13788
\(335\) 0 0
\(336\) 7.61791 0.415591
\(337\) −3.69105 −0.201064 −0.100532 0.994934i \(-0.532054\pi\)
−0.100532 + 0.994934i \(0.532054\pi\)
\(338\) −34.8998 −1.89830
\(339\) 2.28523 0.124117
\(340\) 0 0
\(341\) 0 0
\(342\) −40.2024 −2.17390
\(343\) −19.9856 −1.07912
\(344\) −41.9379 −2.26114
\(345\) 0 0
\(346\) 17.6910 0.951077
\(347\) 15.7655 0.846338 0.423169 0.906051i \(-0.360918\pi\)
0.423169 + 0.906051i \(0.360918\pi\)
\(348\) −6.40279 −0.343226
\(349\) −10.5578 −0.565146 −0.282573 0.959246i \(-0.591188\pi\)
−0.282573 + 0.959246i \(0.591188\pi\)
\(350\) 0 0
\(351\) −0.670351 −0.0357807
\(352\) 0 0
\(353\) 24.5528 1.30681 0.653407 0.757007i \(-0.273339\pi\)
0.653407 + 0.757007i \(0.273339\pi\)
\(354\) −3.72849 −0.198167
\(355\) 0 0
\(356\) 70.3644 3.72931
\(357\) −1.18570 −0.0627538
\(358\) 46.6052 2.46316
\(359\) −16.6704 −0.879827 −0.439914 0.898040i \(-0.644991\pi\)
−0.439914 + 0.898040i \(0.644991\pi\)
\(360\) 0 0
\(361\) 5.55779 0.292515
\(362\) 12.3233 0.647699
\(363\) 0 0
\(364\) 6.86675 0.359915
\(365\) 0 0
\(366\) 3.93291 0.205577
\(367\) −15.2789 −0.797552 −0.398776 0.917048i \(-0.630565\pi\)
−0.398776 + 0.917048i \(0.630565\pi\)
\(368\) 70.5401 3.67716
\(369\) −31.3357 −1.63127
\(370\) 0 0
\(371\) 10.5341 0.546902
\(372\) 1.21814 0.0631578
\(373\) −17.8461 −0.924033 −0.462017 0.886871i \(-0.652874\pi\)
−0.462017 + 0.886871i \(0.652874\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −65.6577 −3.38604
\(377\) −2.93186 −0.150998
\(378\) −8.00436 −0.411700
\(379\) 1.89244 0.0972082 0.0486041 0.998818i \(-0.484523\pi\)
0.0486041 + 0.998818i \(0.484523\pi\)
\(380\) 0 0
\(381\) 1.71174 0.0876952
\(382\) −7.57349 −0.387493
\(383\) −5.31698 −0.271685 −0.135842 0.990730i \(-0.543374\pi\)
−0.135842 + 0.990730i \(0.543374\pi\)
\(384\) 9.17873 0.468400
\(385\) 0 0
\(386\) −32.3988 −1.64906
\(387\) 12.7779 0.649538
\(388\) −26.3377 −1.33709
\(389\) −26.8273 −1.36020 −0.680100 0.733120i \(-0.738064\pi\)
−0.680100 + 0.733120i \(0.738064\pi\)
\(390\) 0 0
\(391\) −10.9793 −0.555247
\(392\) −15.5421 −0.784994
\(393\) 1.22209 0.0616463
\(394\) 17.8698 0.900266
\(395\) 0 0
\(396\) 0 0
\(397\) −31.5972 −1.58582 −0.792909 0.609340i \(-0.791435\pi\)
−0.792909 + 0.609340i \(0.791435\pi\)
\(398\) 65.7622 3.29636
\(399\) 2.42651 0.121478
\(400\) 0 0
\(401\) −3.13628 −0.156618 −0.0783092 0.996929i \(-0.524952\pi\)
−0.0783092 + 0.996929i \(0.524952\pi\)
\(402\) −0.417150 −0.0208056
\(403\) 0.557793 0.0277856
\(404\) −36.4058 −1.81126
\(405\) 0 0
\(406\) −35.0080 −1.73742
\(407\) 0 0
\(408\) −4.95058 −0.245090
\(409\) 0.424538 0.0209921 0.0104960 0.999945i \(-0.496659\pi\)
0.0104960 + 0.999945i \(0.496659\pi\)
\(410\) 0 0
\(411\) −1.86872 −0.0921771
\(412\) −90.5175 −4.45947
\(413\) −14.9743 −0.736837
\(414\) −36.7829 −1.80778
\(415\) 0 0
\(416\) 12.4452 0.610178
\(417\) −3.55477 −0.174078
\(418\) 0 0
\(419\) 6.71174 0.327890 0.163945 0.986469i \(-0.447578\pi\)
0.163945 + 0.986469i \(0.447578\pi\)
\(420\) 0 0
\(421\) 2.77988 0.135483 0.0677416 0.997703i \(-0.478421\pi\)
0.0677416 + 0.997703i \(0.478421\pi\)
\(422\) −46.2963 −2.25367
\(423\) 20.0050 0.972676
\(424\) 43.9823 2.13597
\(425\) 0 0
\(426\) 2.62291 0.127080
\(427\) 15.7953 0.764388
\(428\) −56.5070 −2.73137
\(429\) 0 0
\(430\) 0 0
\(431\) 16.1964 0.780153 0.390076 0.920782i \(-0.372449\pi\)
0.390076 + 0.920782i \(0.372449\pi\)
\(432\) −19.5277 −0.939529
\(433\) −7.82733 −0.376157 −0.188079 0.982154i \(-0.560226\pi\)
−0.188079 + 0.982154i \(0.560226\pi\)
\(434\) 6.66035 0.319707
\(435\) 0 0
\(436\) −66.9172 −3.20475
\(437\) 22.4690 1.07484
\(438\) −0.617907 −0.0295247
\(439\) 20.7355 0.989650 0.494825 0.868993i \(-0.335232\pi\)
0.494825 + 0.868993i \(0.335232\pi\)
\(440\) 0 0
\(441\) 4.73546 0.225498
\(442\) −3.54977 −0.168845
\(443\) −5.30262 −0.251935 −0.125968 0.992034i \(-0.540204\pi\)
−0.125968 + 0.992034i \(0.540204\pi\)
\(444\) −8.73546 −0.414567
\(445\) 0 0
\(446\) 68.6684 3.25154
\(447\) 0.941221 0.0445182
\(448\) 76.3117 3.60539
\(449\) −30.0030 −1.41593 −0.707965 0.706247i \(-0.750387\pi\)
−0.707965 + 0.706247i \(0.750387\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 60.0061 2.82245
\(453\) −2.42651 −0.114007
\(454\) −11.0050 −0.516490
\(455\) 0 0
\(456\) 10.1313 0.474441
\(457\) −37.5134 −1.75480 −0.877401 0.479758i \(-0.840724\pi\)
−0.877401 + 0.479758i \(0.840724\pi\)
\(458\) −47.5752 −2.22304
\(459\) 3.03942 0.141868
\(460\) 0 0
\(461\) 15.7829 0.735083 0.367542 0.930007i \(-0.380200\pi\)
0.367542 + 0.930007i \(0.380200\pi\)
\(462\) 0 0
\(463\) 16.5672 0.769941 0.384970 0.922929i \(-0.374212\pi\)
0.384970 + 0.922929i \(0.374212\pi\)
\(464\) −85.4069 −3.96491
\(465\) 0 0
\(466\) −5.79861 −0.268615
\(467\) −3.70041 −0.171234 −0.0856172 0.996328i \(-0.527286\pi\)
−0.0856172 + 0.996328i \(0.527286\pi\)
\(468\) −8.73546 −0.403797
\(469\) −1.67535 −0.0773605
\(470\) 0 0
\(471\) 1.24581 0.0574040
\(472\) −62.5214 −2.87778
\(473\) 0 0
\(474\) 2.68802 0.123465
\(475\) 0 0
\(476\) −31.1343 −1.42704
\(477\) −13.4008 −0.613581
\(478\) −65.6971 −3.00492
\(479\) 1.26454 0.0577781 0.0288890 0.999583i \(-0.490803\pi\)
0.0288890 + 0.999583i \(0.490803\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) −39.8367 −1.81451
\(483\) 2.22012 0.101019
\(484\) 0 0
\(485\) 0 0
\(486\) 15.3120 0.694566
\(487\) −21.6022 −0.978890 −0.489445 0.872034i \(-0.662801\pi\)
−0.489445 + 0.872034i \(0.662801\pi\)
\(488\) 65.9492 2.98538
\(489\) −4.95256 −0.223962
\(490\) 0 0
\(491\) 25.5371 1.15247 0.576237 0.817283i \(-0.304521\pi\)
0.576237 + 0.817283i \(0.304521\pi\)
\(492\) 12.3658 0.557491
\(493\) 13.2933 0.598698
\(494\) 7.26454 0.326847
\(495\) 0 0
\(496\) 16.2488 0.729594
\(497\) 10.5341 0.472518
\(498\) −7.86872 −0.352606
\(499\) 24.3614 1.09057 0.545283 0.838252i \(-0.316422\pi\)
0.545283 + 0.838252i \(0.316422\pi\)
\(500\) 0 0
\(501\) −3.00000 −0.134030
\(502\) 79.0692 3.52903
\(503\) 12.4960 0.557169 0.278584 0.960412i \(-0.410135\pi\)
0.278584 + 0.960412i \(0.410135\pi\)
\(504\) −66.6102 −2.96706
\(505\) 0 0
\(506\) 0 0
\(507\) −2.67971 −0.119010
\(508\) 44.9473 1.99421
\(509\) 24.4483 1.08365 0.541825 0.840491i \(-0.317734\pi\)
0.541825 + 0.840491i \(0.317734\pi\)
\(510\) 0 0
\(511\) −2.48163 −0.109781
\(512\) 60.7034 2.68274
\(513\) −6.22012 −0.274625
\(514\) 75.8935 3.34752
\(515\) 0 0
\(516\) −5.04245 −0.221981
\(517\) 0 0
\(518\) −47.7622 −2.09855
\(519\) 1.35837 0.0596259
\(520\) 0 0
\(521\) −0.0394184 −0.00172695 −0.000863476 1.00000i \(-0.500275\pi\)
−0.000863476 1.00000i \(0.500275\pi\)
\(522\) 44.5351 1.94925
\(523\) 21.0919 0.922283 0.461141 0.887327i \(-0.347440\pi\)
0.461141 + 0.887327i \(0.347440\pi\)
\(524\) 32.0899 1.40185
\(525\) 0 0
\(526\) −8.60024 −0.374988
\(527\) −2.52907 −0.110168
\(528\) 0 0
\(529\) −2.44221 −0.106183
\(530\) 0 0
\(531\) 19.0494 0.826674
\(532\) 63.7158 2.76243
\(533\) 5.66232 0.245263
\(534\) 7.35534 0.318297
\(535\) 0 0
\(536\) −6.99500 −0.302138
\(537\) 3.57849 0.154423
\(538\) 49.4152 2.13044
\(539\) 0 0
\(540\) 0 0
\(541\) −33.4402 −1.43771 −0.718854 0.695161i \(-0.755333\pi\)
−0.718854 + 0.695161i \(0.755333\pi\)
\(542\) 55.8097 2.39723
\(543\) 0.946221 0.0406062
\(544\) −56.4276 −2.41931
\(545\) 0 0
\(546\) 0.717796 0.0307188
\(547\) −32.8066 −1.40271 −0.701355 0.712812i \(-0.747421\pi\)
−0.701355 + 0.712812i \(0.747421\pi\)
\(548\) −49.0692 −2.09613
\(549\) −20.0938 −0.857584
\(550\) 0 0
\(551\) −27.2044 −1.15895
\(552\) 9.26953 0.394538
\(553\) 10.7956 0.459075
\(554\) 69.9647 2.97251
\(555\) 0 0
\(556\) −93.3418 −3.95857
\(557\) −28.3327 −1.20049 −0.600247 0.799815i \(-0.704931\pi\)
−0.600247 + 0.799815i \(0.704931\pi\)
\(558\) −8.47290 −0.358687
\(559\) −2.30895 −0.0976583
\(560\) 0 0
\(561\) 0 0
\(562\) 50.1550 2.11566
\(563\) −29.0361 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(564\) −7.89441 −0.332415
\(565\) 0 0
\(566\) 30.3407 1.27531
\(567\) 19.9856 0.839318
\(568\) 43.9823 1.84546
\(569\) 28.7098 1.20358 0.601788 0.798656i \(-0.294455\pi\)
0.601788 + 0.798656i \(0.294455\pi\)
\(570\) 0 0
\(571\) 0.824301 0.0344959 0.0172480 0.999851i \(-0.494510\pi\)
0.0172480 + 0.999851i \(0.494510\pi\)
\(572\) 0 0
\(573\) −0.581515 −0.0242931
\(574\) 67.6113 2.82204
\(575\) 0 0
\(576\) −97.0792 −4.04497
\(577\) 31.5421 1.31311 0.656557 0.754276i \(-0.272012\pi\)
0.656557 + 0.754276i \(0.272012\pi\)
\(578\) −30.5672 −1.27143
\(579\) −2.48768 −0.103384
\(580\) 0 0
\(581\) −31.6022 −1.31108
\(582\) −2.75313 −0.114121
\(583\) 0 0
\(584\) −10.3614 −0.428758
\(585\) 0 0
\(586\) −74.4927 −3.07726
\(587\) 26.7735 1.10506 0.552531 0.833492i \(-0.313662\pi\)
0.552531 + 0.833492i \(0.313662\pi\)
\(588\) −1.86872 −0.0770647
\(589\) 5.17570 0.213261
\(590\) 0 0
\(591\) 1.37209 0.0564404
\(592\) −116.522 −4.78904
\(593\) 11.0731 0.454719 0.227360 0.973811i \(-0.426991\pi\)
0.227360 + 0.973811i \(0.426991\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24.7148 1.01236
\(597\) 5.04942 0.206659
\(598\) 6.64663 0.271801
\(599\) −11.9349 −0.487646 −0.243823 0.969820i \(-0.578402\pi\)
−0.243823 + 0.969820i \(0.578402\pi\)
\(600\) 0 0
\(601\) 5.26454 0.214745 0.107372 0.994219i \(-0.465756\pi\)
0.107372 + 0.994219i \(0.465756\pi\)
\(602\) −27.5702 −1.12368
\(603\) 2.13128 0.0867925
\(604\) −63.7158 −2.59256
\(605\) 0 0
\(606\) −3.80558 −0.154591
\(607\) −35.8461 −1.45495 −0.727473 0.686136i \(-0.759305\pi\)
−0.727473 + 0.686136i \(0.759305\pi\)
\(608\) 115.478 4.68325
\(609\) −2.68802 −0.108924
\(610\) 0 0
\(611\) −3.61488 −0.146242
\(612\) 39.6072 1.60103
\(613\) −6.55779 −0.264867 −0.132433 0.991192i \(-0.542279\pi\)
−0.132433 + 0.991192i \(0.542279\pi\)
\(614\) −32.2201 −1.30030
\(615\) 0 0
\(616\) 0 0
\(617\) −17.7986 −0.716545 −0.358272 0.933617i \(-0.616634\pi\)
−0.358272 + 0.933617i \(0.616634\pi\)
\(618\) −9.46198 −0.380617
\(619\) 44.8905 1.80430 0.902150 0.431422i \(-0.141988\pi\)
0.902150 + 0.431422i \(0.141988\pi\)
\(620\) 0 0
\(621\) −5.69105 −0.228374
\(622\) 29.2094 1.17119
\(623\) 29.5404 1.18351
\(624\) 1.75116 0.0701025
\(625\) 0 0
\(626\) 74.6063 2.98187
\(627\) 0 0
\(628\) 32.7128 1.30538
\(629\) 18.1363 0.723141
\(630\) 0 0
\(631\) 21.9112 0.872270 0.436135 0.899881i \(-0.356347\pi\)
0.436135 + 0.899881i \(0.356347\pi\)
\(632\) 45.0742 1.79296
\(633\) −3.55477 −0.141289
\(634\) −13.6673 −0.542799
\(635\) 0 0
\(636\) 5.28826 0.209693
\(637\) −0.855693 −0.0339038
\(638\) 0 0
\(639\) −13.4008 −0.530128
\(640\) 0 0
\(641\) 35.7335 1.41139 0.705694 0.708517i \(-0.250635\pi\)
0.705694 + 0.708517i \(0.250635\pi\)
\(642\) −5.90680 −0.233123
\(643\) −0.412150 −0.0162536 −0.00812681 0.999967i \(-0.502587\pi\)
−0.00812681 + 0.999967i \(0.502587\pi\)
\(644\) 58.2963 2.29720
\(645\) 0 0
\(646\) −32.9379 −1.29592
\(647\) 16.5484 0.650586 0.325293 0.945613i \(-0.394537\pi\)
0.325293 + 0.945613i \(0.394537\pi\)
\(648\) 83.4450 3.27803
\(649\) 0 0
\(650\) 0 0
\(651\) 0.511402 0.0200434
\(652\) −130.045 −5.09296
\(653\) −11.0080 −0.430777 −0.215389 0.976528i \(-0.569102\pi\)
−0.215389 + 0.976528i \(0.569102\pi\)
\(654\) −6.99500 −0.273526
\(655\) 0 0
\(656\) 164.947 6.44010
\(657\) 3.15698 0.123165
\(658\) −43.1637 −1.68269
\(659\) 42.9980 1.67497 0.837483 0.546464i \(-0.184026\pi\)
0.837483 + 0.546464i \(0.184026\pi\)
\(660\) 0 0
\(661\) 19.4927 0.758177 0.379089 0.925360i \(-0.376238\pi\)
0.379089 + 0.925360i \(0.376238\pi\)
\(662\) 20.7365 0.805948
\(663\) −0.272562 −0.0105854
\(664\) −131.947 −5.12054
\(665\) 0 0
\(666\) 60.7602 2.35441
\(667\) −24.8905 −0.963763
\(668\) −78.7746 −3.04788
\(669\) 5.27256 0.203849
\(670\) 0 0
\(671\) 0 0
\(672\) 11.4102 0.440157
\(673\) 6.80663 0.262376 0.131188 0.991357i \(-0.458121\pi\)
0.131188 + 0.991357i \(0.458121\pi\)
\(674\) −10.1313 −0.390242
\(675\) 0 0
\(676\) −70.3644 −2.70632
\(677\) 1.02070 0.0392285 0.0196143 0.999808i \(-0.493756\pi\)
0.0196143 + 0.999808i \(0.493756\pi\)
\(678\) 6.27256 0.240896
\(679\) −11.0571 −0.424332
\(680\) 0 0
\(681\) −0.844996 −0.0323803
\(682\) 0 0
\(683\) −2.09820 −0.0802853 −0.0401426 0.999194i \(-0.512781\pi\)
−0.0401426 + 0.999194i \(0.512781\pi\)
\(684\) −81.0555 −3.09923
\(685\) 0 0
\(686\) −54.8571 −2.09445
\(687\) −3.65296 −0.139369
\(688\) −67.2612 −2.56431
\(689\) 2.42151 0.0922523
\(690\) 0 0
\(691\) 11.9950 0.456311 0.228156 0.973625i \(-0.426730\pi\)
0.228156 + 0.973625i \(0.426730\pi\)
\(692\) 35.6684 1.35591
\(693\) 0 0
\(694\) 43.2736 1.64264
\(695\) 0 0
\(696\) −11.2231 −0.425412
\(697\) −25.6734 −0.972449
\(698\) −28.9793 −1.09688
\(699\) −0.445234 −0.0168403
\(700\) 0 0
\(701\) 29.3594 1.10889 0.554445 0.832220i \(-0.312931\pi\)
0.554445 + 0.832220i \(0.312931\pi\)
\(702\) −1.84000 −0.0694462
\(703\) −37.1156 −1.39984
\(704\) 0 0
\(705\) 0 0
\(706\) 67.3931 2.53637
\(707\) −15.2839 −0.574810
\(708\) −7.51732 −0.282518
\(709\) −37.5451 −1.41004 −0.705018 0.709189i \(-0.749061\pi\)
−0.705018 + 0.709189i \(0.749061\pi\)
\(710\) 0 0
\(711\) −13.7335 −0.515046
\(712\) 123.338 4.62230
\(713\) 4.73546 0.177345
\(714\) −3.25454 −0.121798
\(715\) 0 0
\(716\) 93.9647 3.51162
\(717\) −5.04442 −0.188387
\(718\) −45.7572 −1.70764
\(719\) −3.99500 −0.148988 −0.0744942 0.997221i \(-0.523734\pi\)
−0.0744942 + 0.997221i \(0.523734\pi\)
\(720\) 0 0
\(721\) −38.0011 −1.41523
\(722\) 15.2552 0.567739
\(723\) −3.05878 −0.113757
\(724\) 24.8461 0.923396
\(725\) 0 0
\(726\) 0 0
\(727\) 25.4990 0.945706 0.472853 0.881141i \(-0.343224\pi\)
0.472853 + 0.881141i \(0.343224\pi\)
\(728\) 12.0364 0.446098
\(729\) −24.6309 −0.912257
\(730\) 0 0
\(731\) 10.4690 0.387208
\(732\) 7.92947 0.293082
\(733\) 36.2024 1.33717 0.668584 0.743637i \(-0.266901\pi\)
0.668584 + 0.743637i \(0.266901\pi\)
\(734\) −41.9379 −1.54796
\(735\) 0 0
\(736\) 105.656 3.89452
\(737\) 0 0
\(738\) −86.0111 −3.16611
\(739\) −6.06011 −0.222925 −0.111462 0.993769i \(-0.535553\pi\)
−0.111462 + 0.993769i \(0.535553\pi\)
\(740\) 0 0
\(741\) 0.557793 0.0204910
\(742\) 28.9142 1.06147
\(743\) −36.2869 −1.33124 −0.665619 0.746292i \(-0.731832\pi\)
−0.665619 + 0.746292i \(0.731832\pi\)
\(744\) 2.13523 0.0782812
\(745\) 0 0
\(746\) −48.9843 −1.79344
\(747\) 40.2024 1.47093
\(748\) 0 0
\(749\) −23.7228 −0.866812
\(750\) 0 0
\(751\) −15.7335 −0.574123 −0.287062 0.957912i \(-0.592678\pi\)
−0.287062 + 0.957912i \(0.592678\pi\)
\(752\) −105.304 −3.84003
\(753\) 6.07117 0.221246
\(754\) −8.04744 −0.293071
\(755\) 0 0
\(756\) −16.1383 −0.586943
\(757\) 25.1393 0.913704 0.456852 0.889543i \(-0.348977\pi\)
0.456852 + 0.889543i \(0.348977\pi\)
\(758\) 5.19442 0.188670
\(759\) 0 0
\(760\) 0 0
\(761\) −15.4709 −0.560821 −0.280410 0.959880i \(-0.590471\pi\)
−0.280410 + 0.959880i \(0.590471\pi\)
\(762\) 4.69844 0.170206
\(763\) −28.0932 −1.01704
\(764\) −15.2695 −0.552432
\(765\) 0 0
\(766\) −14.5942 −0.527309
\(767\) −3.44221 −0.124291
\(768\) 11.3490 0.409522
\(769\) 17.3220 0.624647 0.312323 0.949976i \(-0.398893\pi\)
0.312323 + 0.949976i \(0.398893\pi\)
\(770\) 0 0
\(771\) 5.82733 0.209866
\(772\) −65.3220 −2.35099
\(773\) 22.6991 0.816429 0.408214 0.912886i \(-0.366152\pi\)
0.408214 + 0.912886i \(0.366152\pi\)
\(774\) 35.0731 1.26068
\(775\) 0 0
\(776\) −46.1661 −1.65726
\(777\) −3.66732 −0.131565
\(778\) −73.6363 −2.63999
\(779\) 52.5401 1.88245
\(780\) 0 0
\(781\) 0 0
\(782\) −30.1363 −1.07767
\(783\) 6.89047 0.246245
\(784\) −24.9269 −0.890245
\(785\) 0 0
\(786\) 3.35443 0.119648
\(787\) −3.10122 −0.110547 −0.0552734 0.998471i \(-0.517603\pi\)
−0.0552734 + 0.998471i \(0.517603\pi\)
\(788\) 36.0287 1.28347
\(789\) −0.660352 −0.0235091
\(790\) 0 0
\(791\) 25.1918 0.895716
\(792\) 0 0
\(793\) 3.63093 0.128938
\(794\) −86.7288 −3.07789
\(795\) 0 0
\(796\) 132.589 4.69948
\(797\) 19.0919 0.676268 0.338134 0.941098i \(-0.390204\pi\)
0.338134 + 0.941098i \(0.390204\pi\)
\(798\) 6.66035 0.235774
\(799\) 16.3901 0.579841
\(800\) 0 0
\(801\) −37.5795 −1.32781
\(802\) −8.60855 −0.303978
\(803\) 0 0
\(804\) −0.841051 −0.0296616
\(805\) 0 0
\(806\) 1.53104 0.0539287
\(807\) 3.79424 0.133564
\(808\) −63.8140 −2.24497
\(809\) 4.46896 0.157120 0.0785601 0.996909i \(-0.474968\pi\)
0.0785601 + 0.996909i \(0.474968\pi\)
\(810\) 0 0
\(811\) −4.86675 −0.170895 −0.0854473 0.996343i \(-0.527232\pi\)
−0.0854473 + 0.996343i \(0.527232\pi\)
\(812\) −70.5826 −2.47696
\(813\) 4.28523 0.150290
\(814\) 0 0
\(815\) 0 0
\(816\) −7.93989 −0.277952
\(817\) −21.4245 −0.749550
\(818\) 1.16528 0.0407432
\(819\) −3.66732 −0.128147
\(820\) 0 0
\(821\) 17.0050 0.593479 0.296739 0.954959i \(-0.404101\pi\)
0.296739 + 0.954959i \(0.404101\pi\)
\(822\) −5.12931 −0.178905
\(823\) 21.7479 0.758082 0.379041 0.925380i \(-0.376254\pi\)
0.379041 + 0.925380i \(0.376254\pi\)
\(824\) −158.664 −5.52731
\(825\) 0 0
\(826\) −41.1019 −1.43012
\(827\) 20.7084 0.720103 0.360051 0.932932i \(-0.382759\pi\)
0.360051 + 0.932932i \(0.382759\pi\)
\(828\) −74.1611 −2.57727
\(829\) 11.3090 0.392776 0.196388 0.980526i \(-0.437079\pi\)
0.196388 + 0.980526i \(0.437079\pi\)
\(830\) 0 0
\(831\) 5.37209 0.186356
\(832\) 17.5421 0.608163
\(833\) 3.87977 0.134426
\(834\) −9.75721 −0.337865
\(835\) 0 0
\(836\) 0 0
\(837\) −1.31093 −0.0453122
\(838\) 18.4226 0.636397
\(839\) −43.5084 −1.50208 −0.751038 0.660259i \(-0.770446\pi\)
−0.751038 + 0.660259i \(0.770446\pi\)
\(840\) 0 0
\(841\) 1.13628 0.0391821
\(842\) 7.63029 0.262957
\(843\) 3.85105 0.132637
\(844\) −93.3418 −3.21296
\(845\) 0 0
\(846\) 54.9102 1.88785
\(847\) 0 0
\(848\) 70.5401 2.42236
\(849\) 2.32965 0.0799533
\(850\) 0 0
\(851\) −33.9586 −1.16409
\(852\) 5.28826 0.181173
\(853\) 1.11559 0.0381969 0.0190985 0.999818i \(-0.493920\pi\)
0.0190985 + 0.999818i \(0.493920\pi\)
\(854\) 43.3553 1.48359
\(855\) 0 0
\(856\) −99.0485 −3.38541
\(857\) −7.80361 −0.266566 −0.133283 0.991078i \(-0.542552\pi\)
−0.133283 + 0.991078i \(0.542552\pi\)
\(858\) 0 0
\(859\) 30.5341 1.04181 0.520905 0.853615i \(-0.325595\pi\)
0.520905 + 0.853615i \(0.325595\pi\)
\(860\) 0 0
\(861\) 5.19140 0.176922
\(862\) 44.4563 1.51419
\(863\) 4.28959 0.146019 0.0730097 0.997331i \(-0.476740\pi\)
0.0730097 + 0.997331i \(0.476740\pi\)
\(864\) −29.2488 −0.995066
\(865\) 0 0
\(866\) −21.4847 −0.730078
\(867\) −2.34704 −0.0797095
\(868\) 13.4285 0.455792
\(869\) 0 0
\(870\) 0 0
\(871\) −0.385120 −0.0130493
\(872\) −117.296 −3.97214
\(873\) 14.0662 0.476068
\(874\) 61.6734 2.08613
\(875\) 0 0
\(876\) −1.24581 −0.0420921
\(877\) −11.3644 −0.383749 −0.191875 0.981419i \(-0.561457\pi\)
−0.191875 + 0.981419i \(0.561457\pi\)
\(878\) 56.9152 1.92080
\(879\) −5.71977 −0.192923
\(880\) 0 0
\(881\) −11.3277 −0.381639 −0.190820 0.981625i \(-0.561115\pi\)
−0.190820 + 0.981625i \(0.561115\pi\)
\(882\) 12.9980 0.437666
\(883\) −31.2883 −1.05293 −0.526467 0.850196i \(-0.676484\pi\)
−0.526467 + 0.850196i \(0.676484\pi\)
\(884\) −7.15698 −0.240715
\(885\) 0 0
\(886\) −14.5548 −0.488977
\(887\) 28.2819 0.949614 0.474807 0.880090i \(-0.342518\pi\)
0.474807 + 0.880090i \(0.342518\pi\)
\(888\) −15.3120 −0.513836
\(889\) 18.8698 0.632872
\(890\) 0 0
\(891\) 0 0
\(892\) 138.448 4.63558
\(893\) −33.5421 −1.12244
\(894\) 2.58349 0.0864048
\(895\) 0 0
\(896\) 101.184 3.38031
\(897\) 0.510348 0.0170400
\(898\) −82.3531 −2.74816
\(899\) −5.73349 −0.191223
\(900\) 0 0
\(901\) −10.9793 −0.365774
\(902\) 0 0
\(903\) −2.11692 −0.0704467
\(904\) 105.182 3.49829
\(905\) 0 0
\(906\) −6.66035 −0.221275
\(907\) −33.6166 −1.11622 −0.558110 0.829767i \(-0.688473\pi\)
−0.558110 + 0.829767i \(0.688473\pi\)
\(908\) −22.1881 −0.736338
\(909\) 19.4433 0.644892
\(910\) 0 0
\(911\) 7.53104 0.249515 0.124757 0.992187i \(-0.460185\pi\)
0.124757 + 0.992187i \(0.460185\pi\)
\(912\) 16.2488 0.538053
\(913\) 0 0
\(914\) −102.968 −3.40587
\(915\) 0 0
\(916\) −95.9202 −3.16929
\(917\) 13.4720 0.444884
\(918\) 8.34267 0.275349
\(919\) 40.0424 1.32088 0.660439 0.750880i \(-0.270370\pi\)
0.660439 + 0.750880i \(0.270370\pi\)
\(920\) 0 0
\(921\) −2.47396 −0.0815196
\(922\) 43.3213 1.42671
\(923\) 2.42151 0.0797050
\(924\) 0 0
\(925\) 0 0
\(926\) 45.4740 1.49437
\(927\) 48.3427 1.58778
\(928\) −127.923 −4.19929
\(929\) 51.3407 1.68443 0.842217 0.539139i \(-0.181250\pi\)
0.842217 + 0.539139i \(0.181250\pi\)
\(930\) 0 0
\(931\) −7.93989 −0.260219
\(932\) −11.6910 −0.382953
\(933\) 2.24279 0.0734255
\(934\) −10.1570 −0.332346
\(935\) 0 0
\(936\) −15.3120 −0.500488
\(937\) 35.8510 1.17120 0.585601 0.810599i \(-0.300858\pi\)
0.585601 + 0.810599i \(0.300858\pi\)
\(938\) −4.59855 −0.150148
\(939\) 5.72849 0.186942
\(940\) 0 0
\(941\) −0.607210 −0.0197945 −0.00989724 0.999951i \(-0.503150\pi\)
−0.00989724 + 0.999951i \(0.503150\pi\)
\(942\) 3.41954 0.111415
\(943\) 48.0712 1.56541
\(944\) −100.274 −3.26363
\(945\) 0 0
\(946\) 0 0
\(947\) 26.3851 0.857401 0.428701 0.903447i \(-0.358972\pi\)
0.428701 + 0.903447i \(0.358972\pi\)
\(948\) 5.41954 0.176018
\(949\) −0.570462 −0.0185180
\(950\) 0 0
\(951\) −1.04942 −0.0340297
\(952\) −54.5738 −1.76875
\(953\) 35.3594 1.14540 0.572702 0.819764i \(-0.305895\pi\)
0.572702 + 0.819764i \(0.305895\pi\)
\(954\) −36.7829 −1.19089
\(955\) 0 0
\(956\) −132.457 −4.28398
\(957\) 0 0
\(958\) 3.47093 0.112141
\(959\) −20.6002 −0.665216
\(960\) 0 0
\(961\) −29.9092 −0.964813
\(962\) −10.9793 −0.353987
\(963\) 30.1787 0.972496
\(964\) −80.3180 −2.58687
\(965\) 0 0
\(966\) 6.09384 0.196066
\(967\) 3.86872 0.124410 0.0622048 0.998063i \(-0.480187\pi\)
0.0622048 + 0.998063i \(0.480187\pi\)
\(968\) 0 0
\(969\) −2.52907 −0.0812455
\(970\) 0 0
\(971\) 24.1076 0.773648 0.386824 0.922153i \(-0.373572\pi\)
0.386824 + 0.922153i \(0.373572\pi\)
\(972\) 30.8717 0.990212
\(973\) −39.1868 −1.25627
\(974\) −59.2943 −1.89991
\(975\) 0 0
\(976\) 105.771 3.38566
\(977\) −10.8143 −0.345980 −0.172990 0.984924i \(-0.555343\pi\)
−0.172990 + 0.984924i \(0.555343\pi\)
\(978\) −13.5939 −0.434685
\(979\) 0 0
\(980\) 0 0
\(981\) 35.7385 1.14104
\(982\) 70.0949 2.23682
\(983\) 38.7084 1.23461 0.617304 0.786725i \(-0.288225\pi\)
0.617304 + 0.786725i \(0.288225\pi\)
\(984\) 21.6754 0.690985
\(985\) 0 0
\(986\) 36.4877 1.16200
\(987\) −3.31423 −0.105493
\(988\) 14.6466 0.465971
\(989\) −19.6022 −0.623314
\(990\) 0 0
\(991\) 61.4533 1.95213 0.976064 0.217485i \(-0.0697854\pi\)
0.976064 + 0.217485i \(0.0697854\pi\)
\(992\) 24.3377 0.772722
\(993\) 1.59221 0.0505273
\(994\) 28.9142 0.917102
\(995\) 0 0
\(996\) −15.8648 −0.502695
\(997\) 38.3377 1.21417 0.607083 0.794638i \(-0.292339\pi\)
0.607083 + 0.794638i \(0.292339\pi\)
\(998\) 66.8678 2.11666
\(999\) 9.40082 0.297429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3025.2.a.p.1.3 3
5.4 even 2 605.2.a.h.1.1 yes 3
11.10 odd 2 3025.2.a.u.1.1 3
15.14 odd 2 5445.2.a.bb.1.3 3
20.19 odd 2 9680.2.a.cb.1.2 3
55.4 even 10 605.2.g.o.511.1 12
55.9 even 10 605.2.g.o.81.3 12
55.14 even 10 605.2.g.o.251.1 12
55.19 odd 10 605.2.g.p.251.3 12
55.24 odd 10 605.2.g.p.81.1 12
55.29 odd 10 605.2.g.p.511.3 12
55.39 odd 10 605.2.g.p.366.1 12
55.49 even 10 605.2.g.o.366.3 12
55.54 odd 2 605.2.a.g.1.3 3
165.164 even 2 5445.2.a.bd.1.1 3
220.219 even 2 9680.2.a.bz.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
605.2.a.g.1.3 3 55.54 odd 2
605.2.a.h.1.1 yes 3 5.4 even 2
605.2.g.o.81.3 12 55.9 even 10
605.2.g.o.251.1 12 55.14 even 10
605.2.g.o.366.3 12 55.49 even 10
605.2.g.o.511.1 12 55.4 even 10
605.2.g.p.81.1 12 55.24 odd 10
605.2.g.p.251.3 12 55.19 odd 10
605.2.g.p.366.1 12 55.39 odd 10
605.2.g.p.511.3 12 55.29 odd 10
3025.2.a.p.1.3 3 1.1 even 1 trivial
3025.2.a.u.1.1 3 11.10 odd 2
5445.2.a.bb.1.3 3 15.14 odd 2
5445.2.a.bd.1.1 3 165.164 even 2
9680.2.a.bz.1.2 3 220.219 even 2
9680.2.a.cb.1.2 3 20.19 odd 2