Properties

Label 3025.2
Level 3025
Weight 2
Dimension 326177
Nonzero newspaces 42
Sturm bound 1452000
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 42 \)
Sturm bound: \(1452000\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3025))\).

Total New Old
Modular forms 367480 331938 35542
Cusp forms 358521 326177 32344
Eisenstein series 8959 5761 3198

Trace form

\( 326177 q - 592 q^{2} - 591 q^{3} - 588 q^{4} - 725 q^{5} - 941 q^{6} - 577 q^{7} - 560 q^{8} - 562 q^{9} - 715 q^{10} - 1045 q^{11} - 1047 q^{12} - 571 q^{13} - 541 q^{14} - 710 q^{15} - 888 q^{16} - 557 q^{17}+ \cdots - 910 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3025))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3025.2.a \(\chi_{3025}(1, \cdot)\) 3025.2.a.a 1 1
3025.2.a.b 1
3025.2.a.c 1
3025.2.a.d 1
3025.2.a.e 1
3025.2.a.f 1
3025.2.a.g 1
3025.2.a.h 2
3025.2.a.i 2
3025.2.a.j 2
3025.2.a.k 2
3025.2.a.l 2
3025.2.a.m 2
3025.2.a.n 2
3025.2.a.o 2
3025.2.a.p 3
3025.2.a.q 3
3025.2.a.r 3
3025.2.a.s 3
3025.2.a.t 3
3025.2.a.u 3
3025.2.a.v 4
3025.2.a.w 4
3025.2.a.x 4
3025.2.a.y 4
3025.2.a.z 4
3025.2.a.ba 4
3025.2.a.bb 4
3025.2.a.bc 4
3025.2.a.bd 4
3025.2.a.be 4
3025.2.a.bf 6
3025.2.a.bg 6
3025.2.a.bh 6
3025.2.a.bi 8
3025.2.a.bj 8
3025.2.a.bk 8
3025.2.a.bl 8
3025.2.a.bm 8
3025.2.a.bn 8
3025.2.a.bo 12
3025.2.b \(\chi_{3025}(1574, \cdot)\) n/a 154 1
3025.2.e \(\chi_{3025}(1693, \cdot)\) n/a 308 2
3025.2.g \(\chi_{3025}(1116, \cdot)\) n/a 1048 4
3025.2.h \(\chi_{3025}(251, \cdot)\) n/a 636 4
3025.2.i \(\chi_{3025}(606, \cdot)\) n/a 1052 4
3025.2.j \(\chi_{3025}(81, \cdot)\) n/a 1048 4
3025.2.k \(\chi_{3025}(1291, \cdot)\) n/a 1048 4
3025.2.l \(\chi_{3025}(366, \cdot)\) n/a 1048 4
3025.2.n \(\chi_{3025}(1219, \cdot)\) n/a 1048 4
3025.2.t \(\chi_{3025}(269, \cdot)\) n/a 1048 4
3025.2.y \(\chi_{3025}(364, \cdot)\) n/a 1056 4
3025.2.z \(\chi_{3025}(124, \cdot)\) n/a 616 4
3025.2.ba \(\chi_{3025}(614, \cdot)\) n/a 1048 4
3025.2.bb \(\chi_{3025}(9, \cdot)\) n/a 1048 4
3025.2.be \(\chi_{3025}(276, \cdot)\) n/a 2060 10
3025.2.bg \(\chi_{3025}(233, \cdot)\) n/a 2096 8
3025.2.bh \(\chi_{3025}(112, \cdot)\) n/a 2096 8
3025.2.bm \(\chi_{3025}(602, \cdot)\) n/a 2096 8
3025.2.bn \(\chi_{3025}(118, \cdot)\) n/a 1232 8
3025.2.bo \(\chi_{3025}(403, \cdot)\) n/a 2096 8
3025.2.bp \(\chi_{3025}(362, \cdot)\) n/a 2096 8
3025.2.bs \(\chi_{3025}(199, \cdot)\) n/a 1960 10
3025.2.bv \(\chi_{3025}(32, \cdot)\) n/a 3920 20
3025.2.bw \(\chi_{3025}(31, \cdot)\) n/a 13120 40
3025.2.bx \(\chi_{3025}(141, \cdot)\) n/a 13120 40
3025.2.by \(\chi_{3025}(56, \cdot)\) n/a 13120 40
3025.2.bz \(\chi_{3025}(26, \cdot)\) n/a 8240 40
3025.2.ca \(\chi_{3025}(16, \cdot)\) n/a 13120 40
3025.2.cb \(\chi_{3025}(36, \cdot)\) n/a 13120 40
3025.2.cd \(\chi_{3025}(14, \cdot)\) n/a 13120 40
3025.2.ci \(\chi_{3025}(169, \cdot)\) n/a 13120 40
3025.2.cj \(\chi_{3025}(4, \cdot)\) n/a 13120 40
3025.2.ck \(\chi_{3025}(49, \cdot)\) n/a 7840 40
3025.2.cl \(\chi_{3025}(34, \cdot)\) n/a 13120 40
3025.2.ct \(\chi_{3025}(104, \cdot)\) n/a 13120 40
3025.2.cv \(\chi_{3025}(17, \cdot)\) n/a 26240 80
3025.2.cw \(\chi_{3025}(87, \cdot)\) n/a 26240 80
3025.2.cx \(\chi_{3025}(2, \cdot)\) n/a 26240 80
3025.2.cy \(\chi_{3025}(7, \cdot)\) n/a 15680 80
3025.2.dd \(\chi_{3025}(13, \cdot)\) n/a 26240 80
3025.2.de \(\chi_{3025}(28, \cdot)\) n/a 26240 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3025))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3025)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(605))\)\(^{\oplus 2}\)