Defining parameters
Level: | \( N \) | \(=\) | \( 3025 = 5^{2} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3025.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 41 \) | ||
Sturm bound: | \(660\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3025))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 366 | 186 | 180 |
Cusp forms | 295 | 159 | 136 |
Eisenstein series | 71 | 27 | 44 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(37\) |
\(+\) | \(-\) | \(-\) | \(40\) |
\(-\) | \(+\) | \(-\) | \(44\) |
\(-\) | \(-\) | \(+\) | \(38\) |
Plus space | \(+\) | \(75\) | |
Minus space | \(-\) | \(84\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3025))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3025))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3025)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 2}\)