Properties

Label 3025.2.a
Level $3025$
Weight $2$
Character orbit 3025.a
Rep. character $\chi_{3025}(1,\cdot)$
Character field $\Q$
Dimension $159$
Newform subspaces $41$
Sturm bound $660$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 41 \)
Sturm bound: \(660\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3025))\).

Total New Old
Modular forms 366 186 180
Cusp forms 295 159 136
Eisenstein series 71 27 44

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(37\)
\(+\)\(-\)\(-\)\(40\)
\(-\)\(+\)\(-\)\(44\)
\(-\)\(-\)\(+\)\(38\)
Plus space\(+\)\(75\)
Minus space\(-\)\(84\)

Trace form

\( 159 q + q^{2} - 2 q^{3} + 147 q^{4} + 2 q^{6} - 6 q^{7} + 3 q^{8} + 133 q^{9} - 12 q^{12} - 2 q^{13} + 4 q^{14} + 123 q^{16} + 12 q^{17} + 11 q^{18} - 8 q^{19} + 6 q^{21} + 14 q^{23} + 16 q^{24} - 4 q^{26}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3025))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 11
3025.2.a.a 3025.a 1.a $1$ $24.155$ \(\Q\) None 11.2.a.a \(-2\) \(1\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+2q^{4}-2q^{6}-2q^{7}+\cdots\)
3025.2.a.b 3025.a 1.a $1$ $24.155$ \(\Q\) None 121.2.a.a \(-1\) \(-2\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}-q^{4}+2q^{6}+2q^{7}+3q^{8}+\cdots\)
3025.2.a.c 3025.a 1.a $1$ $24.155$ \(\Q\) None 605.2.a.a \(-1\) \(3\) \(0\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}-q^{4}-3q^{6}-3q^{7}+3q^{8}+\cdots\)
3025.2.a.d 3025.a 1.a $1$ $24.155$ \(\Q\) \(\Q(\sqrt{-11}) \) 121.2.a.b \(0\) \(1\) \(0\) \(0\) $+$ $+$ $N(\mathrm{U}(1))$ \(q+q^{3}-2q^{4}-2q^{9}-2q^{12}+4q^{16}+\cdots\)
3025.2.a.e 3025.a 1.a $1$ $24.155$ \(\Q\) None 121.2.a.a \(1\) \(-2\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}-q^{4}-2q^{6}-2q^{7}-3q^{8}+\cdots\)
3025.2.a.f 3025.a 1.a $1$ $24.155$ \(\Q\) None 55.2.a.a \(1\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-3q^{8}-3q^{9}+2q^{13}+\cdots\)
3025.2.a.g 3025.a 1.a $1$ $24.155$ \(\Q\) None 605.2.a.a \(1\) \(3\) \(0\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+3q^{3}-q^{4}+3q^{6}+3q^{7}-3q^{8}+\cdots\)
3025.2.a.h 3025.a 1.a $2$ $24.155$ \(\Q(\sqrt{13}) \) None 275.2.a.e \(-1\) \(1\) \(0\) \(-5\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(1-\beta )q^{3}+(1+\beta )q^{4}+3q^{6}+\cdots\)
3025.2.a.i 3025.a 1.a $2$ $24.155$ \(\Q(\sqrt{5}) \) None 275.2.a.d \(-1\) \(3\) \(0\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(1+\beta )q^{3}+(-1+\beta )q^{4}+(-1+\cdots)q^{6}+\cdots\)
3025.2.a.j 3025.a 1.a $2$ $24.155$ \(\Q(\sqrt{3}) \) None 605.2.a.f \(0\) \(-4\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-2q^{3}+q^{4}-2\beta q^{6}+2\beta q^{7}+\cdots\)
3025.2.a.k 3025.a 1.a $2$ $24.155$ \(\Q(\sqrt{11}) \) \(\Q(\sqrt{-11}) \) 605.2.b.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-\beta q^{3}-2q^{4}+8q^{9}+2\beta q^{12}+4q^{16}+\cdots\)
3025.2.a.l 3025.a 1.a $2$ $24.155$ \(\Q(\sqrt{3}) \) None 605.2.a.e \(0\) \(2\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{3}+q^{4}+\beta q^{6}-\beta q^{7}-\beta q^{8}+\cdots\)
3025.2.a.m 3025.a 1.a $2$ $24.155$ \(\Q(\sqrt{5}) \) None 275.2.a.d \(1\) \(-3\) \(0\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1-\beta )q^{3}+(-1+\beta )q^{4}+\cdots\)
3025.2.a.n 3025.a 1.a $2$ $24.155$ \(\Q(\sqrt{13}) \) None 275.2.a.e \(1\) \(-1\) \(0\) \(5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+\beta )q^{3}+(1+\beta )q^{4}+3q^{6}+\cdots\)
3025.2.a.o 3025.a 1.a $2$ $24.155$ \(\Q(\sqrt{2}) \) None 55.2.a.b \(2\) \(0\) \(0\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+2\beta q^{3}+(1+2\beta )q^{4}+(4+\cdots)q^{6}+\cdots\)
3025.2.a.p 3025.a 1.a $3$ $24.155$ 3.3.404.1 None 605.2.a.g \(-1\) \(-1\) \(0\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}-\beta _{1}q^{3}+(3+\beta _{1}-\beta _{2})q^{4}+\cdots\)
3025.2.a.q 3025.a 1.a $3$ $24.155$ 3.3.473.1 None 3025.2.a.q \(0\) \(-3\) \(0\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1-\beta _{1})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
3025.2.a.r 3025.a 1.a $3$ $24.155$ 3.3.473.1 None 3025.2.a.q \(0\) \(-3\) \(0\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1-\beta _{1})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
3025.2.a.s 3025.a 1.a $3$ $24.155$ 3.3.473.1 None 3025.2.a.q \(0\) \(3\) \(0\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{1})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
3025.2.a.t 3025.a 1.a $3$ $24.155$ 3.3.473.1 None 3025.2.a.q \(0\) \(3\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{1})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
3025.2.a.u 3025.a 1.a $3$ $24.155$ 3.3.404.1 None 605.2.a.g \(1\) \(-1\) \(0\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}-\beta _{1}q^{3}+(3+\beta _{1}-\beta _{2})q^{4}+\cdots\)
3025.2.a.v 3025.a 1.a $4$ $24.155$ 4.4.2525.1 None 55.2.g.a \(-3\) \(2\) \(0\) \(-11\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{3})q^{2}+\beta _{1}q^{3}+(1+\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
3025.2.a.w 3025.a 1.a $4$ $24.155$ 4.4.725.1 None 55.2.g.b \(-1\) \(0\) \(0\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1-\beta _{2}-\beta _{3})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\)
3025.2.a.x 3025.a 1.a $4$ $24.155$ 4.4.105840.1 None 3025.2.a.x \(0\) \(-2\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1-\beta _{2})q^{3}+(3+\beta _{2})q^{4}+\cdots\)
3025.2.a.y 3025.a 1.a $4$ $24.155$ \(\Q(\zeta_{24})^+\) None 605.2.b.d \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+\beta _{2}q^{4}-q^{6}+(\beta _{1}+\cdots)q^{7}+\cdots\)
3025.2.a.z 3025.a 1.a $4$ $24.155$ \(\Q(\zeta_{24})^+\) None 605.2.b.d \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+\beta _{2}q^{4}+q^{6}+(\beta _{1}+\cdots)q^{7}+\cdots\)
3025.2.a.ba 3025.a 1.a $4$ $24.155$ \(\Q(\sqrt{3}, \sqrt{11})\) None 55.2.b.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-\beta _{1}+\beta _{2})q^{3}+(2+\beta _{3})q^{4}+\cdots\)
3025.2.a.bb 3025.a 1.a $4$ $24.155$ 4.4.4400.1 \(\Q(\sqrt{-55}) \) 605.2.b.b \(0\) \(0\) \(0\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-\beta _{2}q^{2}+(2-\beta _{3})q^{4}+\beta _{1}q^{7}+(\beta _{1}+\cdots)q^{8}+\cdots\)
3025.2.a.bc 3025.a 1.a $4$ $24.155$ 4.4.105840.1 None 3025.2.a.x \(0\) \(2\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{3}+(3+\beta _{2})q^{4}+\cdots\)
3025.2.a.bd 3025.a 1.a $4$ $24.155$ 4.4.725.1 None 55.2.g.b \(1\) \(0\) \(0\) \(3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{2}-\beta _{3})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\)
3025.2.a.be 3025.a 1.a $4$ $24.155$ 4.4.2525.1 None 55.2.g.a \(3\) \(2\) \(0\) \(11\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2}-\beta _{3})q^{2}+(1-\beta _{1})q^{3}+(2+\cdots)q^{4}+\cdots\)
3025.2.a.bf 3025.a 1.a $6$ $24.155$ \(\Q(\zeta_{36})^+\) None 3025.2.a.bf \(0\) \(-6\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1-\beta _{4})q^{3}+\beta _{2}q^{4}+(-\beta _{1}+\cdots)q^{6}+\cdots\)
3025.2.a.bg 3025.a 1.a $6$ $24.155$ 6.6.27433728.1 None 605.2.a.m \(0\) \(-6\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{3})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
3025.2.a.bh 3025.a 1.a $6$ $24.155$ \(\Q(\zeta_{36})^+\) None 3025.2.a.bf \(0\) \(6\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{4})q^{3}+\beta _{2}q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\)
3025.2.a.bi 3025.a 1.a $8$ $24.155$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 275.2.h.c \(-5\) \(-1\) \(0\) \(-8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+\beta _{5}q^{3}+(1-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
3025.2.a.bj 3025.a 1.a $8$ $24.155$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 275.2.h.c \(-5\) \(1\) \(0\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-\beta _{5}q^{3}+(1-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
3025.2.a.bk 3025.a 1.a $8$ $24.155$ 8.8.1480160000.1 None 55.2.j.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{6}-\beta _{7})q^{3}+\beta _{2}q^{4}+\cdots\)
3025.2.a.bl 3025.a 1.a $8$ $24.155$ 8.8.1480160000.1 None 55.2.j.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{6}+\beta _{7})q^{3}+\beta _{2}q^{4}+\cdots\)
3025.2.a.bm 3025.a 1.a $8$ $24.155$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 275.2.h.c \(5\) \(-1\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+\beta _{5}q^{3}+(1-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
3025.2.a.bn 3025.a 1.a $8$ $24.155$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 275.2.h.c \(5\) \(1\) \(0\) \(8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-\beta _{5}q^{3}+(1-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
3025.2.a.bo 3025.a 1.a $12$ $24.155$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 605.2.b.h \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(2-\beta _{10})q^{4}+\beta _{2}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3025))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3025)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 2}\)