Properties

Label 3024.2.r.h
Level $3024$
Weight $2$
Character orbit 3024.r
Analytic conductor $24.147$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(1009,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.1009"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-3,0,3,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1) q^{5} + ( - \beta_1 + 1) q^{7} + (2 \beta_{5} - \beta_{3} + \beta_{2}) q^{11} + ( - 2 \beta_{2} + \beta_1) q^{13} + ( - \beta_{4} + \beta_{3} - 2) q^{17} + (\beta_{4} + 3 \beta_{3} + 3) q^{19}+ \cdots + ( - 11 \beta_{5} + 9 \beta_{3} + \cdots - 5) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} + 3 q^{7} + 3 q^{13} - 12 q^{17} + 18 q^{19} - 6 q^{23} + 6 q^{25} - 3 q^{29} - 9 q^{31} - 6 q^{35} - 30 q^{37} + 6 q^{41} - 15 q^{43} - 9 q^{47} - 3 q^{49} + 12 q^{53} - 3 q^{59} + 12 q^{61}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{18}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{18}^{5} + \zeta_{18} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\zeta_{18}^{5} + \zeta_{18}^{4} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18} \) Copy content Toggle raw display
\(\zeta_{18}\)\(=\) \( ( \beta_{5} + \beta_{4} + 2\beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{2}\)\(=\) \( ( -2\beta_{5} + \beta_{4} + 3\beta_{3} - \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{18}^{4}\)\(=\) \( ( -\beta_{5} + 2\beta_{4} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{5}\)\(=\) \( ( -\beta_{5} - \beta_{4} + \beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(-\beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1009.1
−0.173648 + 0.984808i
−0.766044 0.642788i
0.939693 0.342020i
−0.173648 0.984808i
−0.766044 + 0.642788i
0.939693 + 0.342020i
0 0 0 −1.43969 + 2.49362i 0 0.500000 + 0.866025i 0 0 0
1009.2 0 0 0 −0.326352 + 0.565258i 0 0.500000 + 0.866025i 0 0 0
1009.3 0 0 0 0.266044 0.460802i 0 0.500000 + 0.866025i 0 0 0
2017.1 0 0 0 −1.43969 2.49362i 0 0.500000 0.866025i 0 0 0
2017.2 0 0 0 −0.326352 0.565258i 0 0.500000 0.866025i 0 0 0
2017.3 0 0 0 0.266044 + 0.460802i 0 0.500000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1009.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.r.h 6
3.b odd 2 1 1008.2.r.i 6
4.b odd 2 1 1512.2.r.c 6
9.c even 3 1 inner 3024.2.r.h 6
9.c even 3 1 9072.2.a.cc 3
9.d odd 6 1 1008.2.r.i 6
9.d odd 6 1 9072.2.a.br 3
12.b even 2 1 504.2.r.c 6
36.f odd 6 1 1512.2.r.c 6
36.f odd 6 1 4536.2.a.v 3
36.h even 6 1 504.2.r.c 6
36.h even 6 1 4536.2.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.r.c 6 12.b even 2 1
504.2.r.c 6 36.h even 6 1
1008.2.r.i 6 3.b odd 2 1
1008.2.r.i 6 9.d odd 6 1
1512.2.r.c 6 4.b odd 2 1
1512.2.r.c 6 36.f odd 6 1
3024.2.r.h 6 1.a even 1 1 trivial
3024.2.r.h 6 9.c even 3 1 inner
4536.2.a.s 3 36.h even 6 1
4536.2.a.v 3 36.f odd 6 1
9072.2.a.br 3 9.d odd 6 1
9072.2.a.cc 3 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\( T_{5}^{6} + 3T_{5}^{5} + 9T_{5}^{4} + 2T_{5}^{3} + 3T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{6} + 9T_{11}^{4} - 18T_{11}^{3} + 81T_{11}^{2} - 81T_{11} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{6} + 9 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$17$ \( (T^{3} + 6 T^{2} + 3 T - 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} - 9 T^{2} + 6 T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 6 T^{5} + \cdots + 72361 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$31$ \( T^{6} + 9 T^{5} + \cdots + 5329 \) Copy content Toggle raw display
$37$ \( (T^{3} + 15 T^{2} + \cdots + 57)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 6 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$43$ \( T^{6} + 15 T^{5} + \cdots + 289 \) Copy content Toggle raw display
$47$ \( T^{6} + 9 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( (T^{3} - 6 T^{2} + 3 T + 19)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 3 T^{5} + \cdots + 239121 \) Copy content Toggle raw display
$61$ \( T^{6} - 12 T^{5} + \cdots + 5329 \) Copy content Toggle raw display
$67$ \( T^{6} + 12 T^{5} + \cdots + 106929 \) Copy content Toggle raw display
$71$ \( (T^{3} - 21 T^{2} + \cdots + 867)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 3 T^{2} - 114 T - 37)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + 15 T^{5} + \cdots + 877969 \) Copy content Toggle raw display
$83$ \( T^{6} - 6 T^{5} + \cdots + 294849 \) Copy content Toggle raw display
$89$ \( (T^{3} - 18 T^{2} + \cdots - 37)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 15 T^{5} + \cdots + 10374841 \) Copy content Toggle raw display
show more
show less