| L(s) = 1 | + (−1.43 − 2.49i)5-s + (0.5 − 0.866i)7-s + (0.592 − 1.02i)11-s + (2.37 + 4.12i)13-s − 5.41·17-s − 1.10·19-s + (−2.95 − 5.11i)23-s + (−1.64 + 2.84i)25-s + (2.49 − 4.31i)29-s + (−2.78 − 4.82i)31-s − 2.87·35-s − 2.42·37-s + (3.81 + 6.61i)41-s + (−3.78 + 6.55i)43-s + (−0.141 + 0.245i)47-s + ⋯ |
| L(s) = 1 | + (−0.643 − 1.11i)5-s + (0.188 − 0.327i)7-s + (0.178 − 0.309i)11-s + (0.659 + 1.14i)13-s − 1.31·17-s − 0.253·19-s + (−0.615 − 1.06i)23-s + (−0.329 + 0.569i)25-s + (0.462 − 0.801i)29-s + (−0.500 − 0.866i)31-s − 0.486·35-s − 0.398·37-s + (0.596 + 1.03i)41-s + (−0.577 + 1.00i)43-s + (−0.0206 + 0.0357i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.3482131910\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3482131910\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 5 | \( 1 + (1.43 + 2.49i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.592 + 1.02i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.37 - 4.12i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 5.41T + 17T^{2} \) |
| 19 | \( 1 + 1.10T + 19T^{2} \) |
| 23 | \( 1 + (2.95 + 5.11i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.49 + 4.31i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.78 + 4.82i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.42T + 37T^{2} \) |
| 41 | \( 1 + (-3.81 - 6.61i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.78 - 6.55i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.141 - 0.245i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 4.22T + 53T^{2} \) |
| 59 | \( 1 + (5.86 + 10.1i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.992 - 1.71i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.76 + 11.7i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.11T + 71T^{2} \) |
| 73 | \( 1 + 0.327T + 73T^{2} \) |
| 79 | \( 1 + (5.24 - 9.08i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.62 - 6.28i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 14.7T + 89T^{2} \) |
| 97 | \( 1 + (9.04 - 15.6i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.287247487830005555469297426013, −7.83959162584428065588573345146, −6.60104727161628189956416380468, −6.25312783039569531100152040091, −4.93843990076790438857183774191, −4.32089722929385207954572669375, −3.89260207664675937446732845855, −2.40454200829383873960434090745, −1.31685595156219201683337148838, −0.11071984697116168035938306492,
1.66643195194677764484667680180, 2.80393865755141530527180812304, 3.50832140759804226001176195303, 4.33036830904118725642975190966, 5.42951385907103484668608827893, 6.12957815529499766275621692816, 7.13876109867756107045260432569, 7.36887769591069400975652403700, 8.532478712967348259263753051063, 8.851074434014765538054063135929