Properties

Label 3024.2.ca.c.2033.5
Level $3024$
Weight $2$
Character 3024.2033
Analytic conductor $24.147$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(2033,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.2033"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2033.5
Root \(0.320287 + 1.70218i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2033
Dual form 3024.2.ca.c.2609.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0338034 - 0.0585493i) q^{5} +(-1.19767 - 2.35915i) q^{7} +(-3.40282 + 1.96462i) q^{11} +(3.32589 - 1.92020i) q^{13} +(-0.775337 + 1.34292i) q^{17} +(-5.06375 + 2.92356i) q^{19} +(4.78687 + 2.76370i) q^{23} +(2.49771 + 4.32617i) q^{25} +(-1.20840 - 0.697671i) q^{29} -1.26595i q^{31} +(-0.178612 - 0.00962461i) q^{35} +(-4.35534 - 7.54368i) q^{37} +(5.17415 + 8.96188i) q^{41} +(-0.735847 + 1.27452i) q^{43} -3.54265 q^{47} +(-4.13117 + 5.65097i) q^{49} +(6.28910 + 3.63101i) q^{53} +0.265644i q^{55} +9.40086 q^{59} -0.0815124i q^{61} -0.259638i q^{65} +15.3451 q^{67} +4.30975i q^{71} +(6.12768 + 3.53782i) q^{73} +(8.71030 + 5.67480i) q^{77} +6.84639 q^{79} +(3.93194 - 6.81032i) q^{83} +(0.0524181 + 0.0907908i) q^{85} +(-5.84745 - 10.1281i) q^{89} +(-8.51336 - 5.54650i) q^{91} +0.395305i q^{95} +(-0.363295 - 0.209749i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{7} + 12 q^{11} + 6 q^{13} + 18 q^{17} - 6 q^{23} - 8 q^{25} - 6 q^{29} + 30 q^{35} - 2 q^{37} + 6 q^{41} + 2 q^{43} - 36 q^{47} - 8 q^{49} + 36 q^{53} + 60 q^{59} + 28 q^{67} + 42 q^{77} - 32 q^{79}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.0338034 0.0585493i 0.0151174 0.0261840i −0.858368 0.513035i \(-0.828521\pi\)
0.873485 + 0.486851i \(0.161854\pi\)
\(6\) 0 0
\(7\) −1.19767 2.35915i −0.452677 0.891675i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.40282 + 1.96462i −1.02599 + 0.592356i −0.915833 0.401559i \(-0.868469\pi\)
−0.110157 + 0.993914i \(0.535135\pi\)
\(12\) 0 0
\(13\) 3.32589 1.92020i 0.922435 0.532568i 0.0380241 0.999277i \(-0.487894\pi\)
0.884411 + 0.466709i \(0.154560\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.775337 + 1.34292i −0.188047 + 0.325707i −0.944599 0.328227i \(-0.893549\pi\)
0.756552 + 0.653933i \(0.226882\pi\)
\(18\) 0 0
\(19\) −5.06375 + 2.92356i −1.16170 + 0.670710i −0.951712 0.306994i \(-0.900677\pi\)
−0.209991 + 0.977703i \(0.567344\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.78687 + 2.76370i 0.998132 + 0.576272i 0.907695 0.419630i \(-0.137840\pi\)
0.0904369 + 0.995902i \(0.471174\pi\)
\(24\) 0 0
\(25\) 2.49771 + 4.32617i 0.499543 + 0.865234i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.20840 0.697671i −0.224394 0.129554i 0.383589 0.923504i \(-0.374688\pi\)
−0.607983 + 0.793950i \(0.708021\pi\)
\(30\) 0 0
\(31\) 1.26595i 0.227372i −0.993517 0.113686i \(-0.963734\pi\)
0.993517 0.113686i \(-0.0362657\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.178612 0.00962461i −0.0301909 0.00162686i
\(36\) 0 0
\(37\) −4.35534 7.54368i −0.716014 1.24017i −0.962567 0.271044i \(-0.912631\pi\)
0.246553 0.969129i \(-0.420702\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.17415 + 8.96188i 0.808066 + 1.39961i 0.914202 + 0.405260i \(0.132819\pi\)
−0.106136 + 0.994352i \(0.533848\pi\)
\(42\) 0 0
\(43\) −0.735847 + 1.27452i −0.112216 + 0.194363i −0.916663 0.399660i \(-0.869128\pi\)
0.804448 + 0.594023i \(0.202461\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.54265 −0.516748 −0.258374 0.966045i \(-0.583187\pi\)
−0.258374 + 0.966045i \(0.583187\pi\)
\(48\) 0 0
\(49\) −4.13117 + 5.65097i −0.590167 + 0.807281i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.28910 + 3.63101i 0.863874 + 0.498758i 0.865308 0.501241i \(-0.167123\pi\)
−0.00143340 + 0.999999i \(0.500456\pi\)
\(54\) 0 0
\(55\) 0.265644i 0.0358194i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.40086 1.22389 0.611944 0.790901i \(-0.290388\pi\)
0.611944 + 0.790901i \(0.290388\pi\)
\(60\) 0 0
\(61\) 0.0815124i 0.0104366i −0.999986 0.00521830i \(-0.998339\pi\)
0.999986 0.00521830i \(-0.00166104\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.259638i 0.0322041i
\(66\) 0 0
\(67\) 15.3451 1.87471 0.937354 0.348379i \(-0.113268\pi\)
0.937354 + 0.348379i \(0.113268\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.30975i 0.511474i 0.966746 + 0.255737i \(0.0823181\pi\)
−0.966746 + 0.255737i \(0.917682\pi\)
\(72\) 0 0
\(73\) 6.12768 + 3.53782i 0.717191 + 0.414070i 0.813718 0.581260i \(-0.197440\pi\)
−0.0965271 + 0.995330i \(0.530773\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.71030 + 5.67480i 0.992630 + 0.646703i
\(78\) 0 0
\(79\) 6.84639 0.770279 0.385140 0.922858i \(-0.374153\pi\)
0.385140 + 0.922858i \(0.374153\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.93194 6.81032i 0.431587 0.747530i −0.565423 0.824801i \(-0.691287\pi\)
0.997010 + 0.0772707i \(0.0246206\pi\)
\(84\) 0 0
\(85\) 0.0524181 + 0.0907908i 0.00568554 + 0.00984765i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.84745 10.1281i −0.619828 1.07357i −0.989517 0.144418i \(-0.953869\pi\)
0.369688 0.929156i \(-0.379464\pi\)
\(90\) 0 0
\(91\) −8.51336 5.54650i −0.892443 0.581431i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.395305i 0.0405574i
\(96\) 0 0
\(97\) −0.363295 0.209749i −0.0368870 0.0212967i 0.481443 0.876477i \(-0.340113\pi\)
−0.518330 + 0.855181i \(0.673446\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.69621 + 15.0623i 0.865305 + 1.49875i 0.866744 + 0.498753i \(0.166209\pi\)
−0.00143888 + 0.999999i \(0.500458\pi\)
\(102\) 0 0
\(103\) −0.867010 0.500568i −0.0854290 0.0493225i 0.456677 0.889633i \(-0.349040\pi\)
−0.542106 + 0.840310i \(0.682373\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.02352 4.63238i 0.775663 0.447829i −0.0592279 0.998244i \(-0.518864\pi\)
0.834891 + 0.550415i \(0.185531\pi\)
\(108\) 0 0
\(109\) 0.821501 1.42288i 0.0786855 0.136287i −0.823998 0.566593i \(-0.808261\pi\)
0.902683 + 0.430306i \(0.141594\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.6537 + 7.88296i −1.28443 + 0.741567i −0.977655 0.210215i \(-0.932584\pi\)
−0.306776 + 0.951782i \(0.599250\pi\)
\(114\) 0 0
\(115\) 0.323625 0.186845i 0.0301782 0.0174234i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.09675 + 0.220756i 0.375549 + 0.0202367i
\(120\) 0 0
\(121\) 2.21947 3.84424i 0.201770 0.349476i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.675760 0.0604418
\(126\) 0 0
\(127\) 19.0776 1.69286 0.846430 0.532501i \(-0.178748\pi\)
0.846430 + 0.532501i \(0.178748\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.33404 + 16.1670i −0.815519 + 1.41252i 0.0934359 + 0.995625i \(0.470215\pi\)
−0.908955 + 0.416895i \(0.863118\pi\)
\(132\) 0 0
\(133\) 12.9618 + 8.44468i 1.12393 + 0.732246i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.44329 + 3.14269i −0.465052 + 0.268498i −0.714166 0.699976i \(-0.753194\pi\)
0.249114 + 0.968474i \(0.419861\pi\)
\(138\) 0 0
\(139\) −5.49596 + 3.17309i −0.466161 + 0.269138i −0.714631 0.699501i \(-0.753406\pi\)
0.248470 + 0.968640i \(0.420072\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.54494 + 13.0682i −0.630939 + 1.09282i
\(144\) 0 0
\(145\) −0.0816962 + 0.0471673i −0.00678450 + 0.00391703i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.21992 4.16842i −0.591479 0.341491i 0.174203 0.984710i \(-0.444265\pi\)
−0.765682 + 0.643219i \(0.777598\pi\)
\(150\) 0 0
\(151\) 7.07721 + 12.2581i 0.575935 + 0.997548i 0.995939 + 0.0900264i \(0.0286951\pi\)
−0.420005 + 0.907522i \(0.637972\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.0741205 0.0427935i −0.00595350 0.00343726i
\(156\) 0 0
\(157\) 16.4593i 1.31360i −0.754065 0.656799i \(-0.771910\pi\)
0.754065 0.656799i \(-0.228090\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.786889 14.6030i 0.0620155 1.15087i
\(162\) 0 0
\(163\) 4.53345 + 7.85216i 0.355087 + 0.615029i 0.987133 0.159902i \(-0.0511179\pi\)
−0.632046 + 0.774931i \(0.717785\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.64922 + 13.2488i 0.591914 + 1.02523i 0.993974 + 0.109612i \(0.0349608\pi\)
−0.402060 + 0.915613i \(0.631706\pi\)
\(168\) 0 0
\(169\) 0.874352 1.51442i 0.0672579 0.116494i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.30125 0.174961 0.0874804 0.996166i \(-0.472118\pi\)
0.0874804 + 0.996166i \(0.472118\pi\)
\(174\) 0 0
\(175\) 7.21464 11.0738i 0.545375 0.837101i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.8077 7.97186i −1.03203 0.595845i −0.114467 0.993427i \(-0.536516\pi\)
−0.917567 + 0.397582i \(0.869849\pi\)
\(180\) 0 0
\(181\) 18.4526i 1.37157i 0.727804 + 0.685785i \(0.240541\pi\)
−0.727804 + 0.685785i \(0.759459\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.588903 −0.0432970
\(186\) 0 0
\(187\) 6.09297i 0.445562i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 23.3437i 1.68909i 0.535484 + 0.844546i \(0.320129\pi\)
−0.535484 + 0.844546i \(0.679871\pi\)
\(192\) 0 0
\(193\) 21.2878 1.53233 0.766164 0.642646i \(-0.222163\pi\)
0.766164 + 0.642646i \(0.222163\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.8467i 0.915288i −0.889136 0.457644i \(-0.848693\pi\)
0.889136 0.457644i \(-0.151307\pi\)
\(198\) 0 0
\(199\) 3.24154 + 1.87150i 0.229787 + 0.132667i 0.610474 0.792037i \(-0.290979\pi\)
−0.380687 + 0.924704i \(0.624312\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.198643 + 3.68638i −0.0139420 + 0.258733i
\(204\) 0 0
\(205\) 0.699616 0.0488633
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.4874 19.8967i 0.794597 1.37628i
\(210\) 0 0
\(211\) −4.69581 8.13339i −0.323273 0.559925i 0.657888 0.753116i \(-0.271450\pi\)
−0.981161 + 0.193190i \(0.938117\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.0497483 + 0.0861666i 0.00339281 + 0.00587651i
\(216\) 0 0
\(217\) −2.98657 + 1.51619i −0.202741 + 0.102926i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.95522i 0.400591i
\(222\) 0 0
\(223\) 17.7695 + 10.2592i 1.18993 + 0.687008i 0.958291 0.285793i \(-0.0922570\pi\)
0.231642 + 0.972801i \(0.425590\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.38828 16.2610i −0.623122 1.07928i −0.988901 0.148577i \(-0.952531\pi\)
0.365779 0.930702i \(-0.380803\pi\)
\(228\) 0 0
\(229\) −4.31740 2.49265i −0.285302 0.164719i 0.350519 0.936556i \(-0.386005\pi\)
−0.635821 + 0.771836i \(0.719338\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.7747 + 7.37548i −0.836899 + 0.483184i −0.856209 0.516630i \(-0.827186\pi\)
0.0193101 + 0.999814i \(0.493853\pi\)
\(234\) 0 0
\(235\) −0.119754 + 0.207419i −0.00781186 + 0.0135305i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.155388 + 0.0897132i −0.0100512 + 0.00580307i −0.505017 0.863109i \(-0.668514\pi\)
0.494966 + 0.868912i \(0.335181\pi\)
\(240\) 0 0
\(241\) 5.31183 3.06679i 0.342165 0.197549i −0.319064 0.947733i \(-0.603368\pi\)
0.661229 + 0.750184i \(0.270035\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.191212 + 0.432899i 0.0122161 + 0.0276569i
\(246\) 0 0
\(247\) −11.2276 + 19.4468i −0.714397 + 1.23737i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.11296 −0.0702495 −0.0351247 0.999383i \(-0.511183\pi\)
−0.0351247 + 0.999383i \(0.511183\pi\)
\(252\) 0 0
\(253\) −21.7185 −1.36543
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.37366 + 4.11130i −0.148065 + 0.256456i −0.930512 0.366261i \(-0.880638\pi\)
0.782447 + 0.622717i \(0.213971\pi\)
\(258\) 0 0
\(259\) −12.5804 + 19.3098i −0.781708 + 1.19985i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.65146 2.10817i 0.225159 0.129995i −0.383178 0.923675i \(-0.625170\pi\)
0.608337 + 0.793679i \(0.291837\pi\)
\(264\) 0 0
\(265\) 0.425186 0.245482i 0.0261190 0.0150798i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.97265 + 13.8090i −0.486101 + 0.841952i −0.999872 0.0159753i \(-0.994915\pi\)
0.513771 + 0.857927i \(0.328248\pi\)
\(270\) 0 0
\(271\) −14.1913 + 8.19335i −0.862060 + 0.497710i −0.864702 0.502286i \(-0.832492\pi\)
0.00264173 + 0.999997i \(0.499159\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.9986 9.81413i −1.02505 0.591814i
\(276\) 0 0
\(277\) 0.928004 + 1.60735i 0.0557583 + 0.0965763i 0.892557 0.450934i \(-0.148909\pi\)
−0.836799 + 0.547510i \(0.815576\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.628441 + 0.362830i 0.0374896 + 0.0216446i 0.518628 0.855000i \(-0.326443\pi\)
−0.481138 + 0.876645i \(0.659776\pi\)
\(282\) 0 0
\(283\) 11.6276i 0.691192i −0.938383 0.345596i \(-0.887677\pi\)
0.938383 0.345596i \(-0.112323\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.9455 22.9400i 0.882205 1.35410i
\(288\) 0 0
\(289\) 7.29770 + 12.6400i 0.429277 + 0.743529i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.45034 + 11.1723i 0.376833 + 0.652694i 0.990600 0.136794i \(-0.0436797\pi\)
−0.613766 + 0.789488i \(0.710346\pi\)
\(294\) 0 0
\(295\) 0.317781 0.550413i 0.0185019 0.0320463i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 21.2275 1.22762
\(300\) 0 0
\(301\) 3.88809 + 0.209512i 0.224106 + 0.0120761i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.00477249 0.00275540i −0.000273272 0.000157774i
\(306\) 0 0
\(307\) 20.5111i 1.17063i −0.810806 0.585315i \(-0.800971\pi\)
0.810806 0.585315i \(-0.199029\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.0288 −0.852206 −0.426103 0.904675i \(-0.640114\pi\)
−0.426103 + 0.904675i \(0.640114\pi\)
\(312\) 0 0
\(313\) 1.11536i 0.0630438i 0.999503 + 0.0315219i \(0.0100354\pi\)
−0.999503 + 0.0315219i \(0.989965\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.23344i 0.0692768i 0.999400 + 0.0346384i \(0.0110280\pi\)
−0.999400 + 0.0346384i \(0.988972\pi\)
\(318\) 0 0
\(319\) 5.48263 0.306969
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.06696i 0.504499i
\(324\) 0 0
\(325\) 16.6142 + 9.59223i 0.921592 + 0.532081i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.24292 + 8.35763i 0.233920 + 0.460771i
\(330\) 0 0
\(331\) 5.02462 0.276178 0.138089 0.990420i \(-0.455904\pi\)
0.138089 + 0.990420i \(0.455904\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.518719 0.898447i 0.0283406 0.0490874i
\(336\) 0 0
\(337\) 10.6356 + 18.4213i 0.579356 + 1.00347i 0.995553 + 0.0941995i \(0.0300292\pi\)
−0.416198 + 0.909274i \(0.636638\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.48712 + 4.30781i 0.134685 + 0.233281i
\(342\) 0 0
\(343\) 18.2793 + 2.97805i 0.986987 + 0.160799i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.5735i 1.15813i 0.815282 + 0.579063i \(0.196582\pi\)
−0.815282 + 0.579063i \(0.803418\pi\)
\(348\) 0 0
\(349\) −24.1105 13.9202i −1.29061 0.745132i −0.311845 0.950133i \(-0.600947\pi\)
−0.978762 + 0.205001i \(0.934280\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.85124 4.93850i −0.151756 0.262850i 0.780117 0.625634i \(-0.215160\pi\)
−0.931873 + 0.362784i \(0.881826\pi\)
\(354\) 0 0
\(355\) 0.252333 + 0.145685i 0.0133924 + 0.00773213i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.5815 + 10.7280i −0.980693 + 0.566203i −0.902479 0.430733i \(-0.858255\pi\)
−0.0782137 + 0.996937i \(0.524922\pi\)
\(360\) 0 0
\(361\) 7.59435 13.1538i 0.399703 0.692305i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.414273 0.239181i 0.0216841 0.0125193i
\(366\) 0 0
\(367\) 7.97484 4.60428i 0.416283 0.240341i −0.277203 0.960811i \(-0.589407\pi\)
0.693486 + 0.720470i \(0.256074\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.03383 19.1857i 0.0536739 0.996071i
\(372\) 0 0
\(373\) −14.1000 + 24.4219i −0.730071 + 1.26452i 0.226782 + 0.973946i \(0.427180\pi\)
−0.956852 + 0.290574i \(0.906154\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.35867 −0.275986
\(378\) 0 0
\(379\) 4.72569 0.242742 0.121371 0.992607i \(-0.461271\pi\)
0.121371 + 0.992607i \(0.461271\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.1174 29.6483i 0.874660 1.51496i 0.0175357 0.999846i \(-0.494418\pi\)
0.857124 0.515110i \(-0.172249\pi\)
\(384\) 0 0
\(385\) 0.626693 0.318154i 0.0319392 0.0162146i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.0167 9.24726i 0.812080 0.468855i −0.0355974 0.999366i \(-0.511333\pi\)
0.847678 + 0.530511i \(0.178000\pi\)
\(390\) 0 0
\(391\) −7.42288 + 4.28560i −0.375391 + 0.216732i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.231432 0.400851i 0.0116446 0.0201690i
\(396\) 0 0
\(397\) −1.76126 + 1.01687i −0.0883952 + 0.0510350i −0.543546 0.839379i \(-0.682919\pi\)
0.455151 + 0.890414i \(0.349585\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.2137 + 15.7118i 1.35899 + 0.784611i 0.989487 0.144620i \(-0.0461961\pi\)
0.369499 + 0.929231i \(0.379529\pi\)
\(402\) 0 0
\(403\) −2.43088 4.21041i −0.121091 0.209736i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 29.6409 + 17.1132i 1.46925 + 0.848270i
\(408\) 0 0
\(409\) 0.550583i 0.0272246i −0.999907 0.0136123i \(-0.995667\pi\)
0.999907 0.0136123i \(-0.00433306\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −11.2591 22.1780i −0.554026 1.09131i
\(414\) 0 0
\(415\) −0.265826 0.460425i −0.0130489 0.0226014i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.5649 + 20.0310i 0.564984 + 0.978580i 0.997051 + 0.0767392i \(0.0244509\pi\)
−0.432068 + 0.901841i \(0.642216\pi\)
\(420\) 0 0
\(421\) 5.49773 9.52235i 0.267943 0.464091i −0.700387 0.713763i \(-0.746989\pi\)
0.968330 + 0.249672i \(0.0803228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.74628 −0.375750
\(426\) 0 0
\(427\) −0.192300 + 0.0976251i −0.00930605 + 0.00472441i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.19720 4.15530i −0.346677 0.200154i 0.316544 0.948578i \(-0.397478\pi\)
−0.663221 + 0.748424i \(0.730811\pi\)
\(432\) 0 0
\(433\) 26.1051i 1.25453i −0.778806 0.627265i \(-0.784174\pi\)
0.778806 0.627265i \(-0.215826\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −32.3193 −1.54604
\(438\) 0 0
\(439\) 40.8308i 1.94875i −0.224940 0.974373i \(-0.572218\pi\)
0.224940 0.974373i \(-0.427782\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.2565i 0.867391i −0.901059 0.433696i \(-0.857209\pi\)
0.901059 0.433696i \(-0.142791\pi\)
\(444\) 0 0
\(445\) −0.790656 −0.0374807
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0881i 1.23117i 0.788070 + 0.615586i \(0.211081\pi\)
−0.788070 + 0.615586i \(0.788919\pi\)
\(450\) 0 0
\(451\) −35.2134 20.3305i −1.65813 0.957325i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.612524 + 0.310960i −0.0287156 + 0.0145781i
\(456\) 0 0
\(457\) −6.39973 −0.299367 −0.149683 0.988734i \(-0.547825\pi\)
−0.149683 + 0.988734i \(0.547825\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.04099 + 1.80304i −0.0484836 + 0.0839761i −0.889249 0.457424i \(-0.848772\pi\)
0.840765 + 0.541400i \(0.182106\pi\)
\(462\) 0 0
\(463\) 0.959084 + 1.66118i 0.0445724 + 0.0772017i 0.887451 0.460902i \(-0.152474\pi\)
−0.842879 + 0.538104i \(0.819141\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.1178 29.6488i −0.792116 1.37199i −0.924654 0.380807i \(-0.875646\pi\)
0.132539 0.991178i \(-0.457687\pi\)
\(468\) 0 0
\(469\) −18.3784 36.2015i −0.848637 1.67163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.78264i 0.265886i
\(474\) 0 0
\(475\) −25.2956 14.6044i −1.16064 0.670096i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.29123 + 9.16468i 0.241763 + 0.418745i 0.961216 0.275795i \(-0.0889411\pi\)
−0.719454 + 0.694540i \(0.755608\pi\)
\(480\) 0 0
\(481\) −28.9708 16.7263i −1.32095 0.762653i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.0245613 + 0.0141804i −0.00111527 + 0.000643901i
\(486\) 0 0
\(487\) −5.95804 + 10.3196i −0.269985 + 0.467627i −0.968858 0.247619i \(-0.920352\pi\)
0.698873 + 0.715246i \(0.253685\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −14.9826 + 8.65023i −0.676157 + 0.390379i −0.798406 0.602120i \(-0.794323\pi\)
0.122248 + 0.992500i \(0.460990\pi\)
\(492\) 0 0
\(493\) 1.87384 1.08186i 0.0843933 0.0487245i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.1674 5.16167i 0.456068 0.231532i
\(498\) 0 0
\(499\) −6.41484 + 11.1108i −0.287168 + 0.497389i −0.973133 0.230246i \(-0.926047\pi\)
0.685965 + 0.727635i \(0.259380\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.9868 −0.489878 −0.244939 0.969539i \(-0.578768\pi\)
−0.244939 + 0.969539i \(0.578768\pi\)
\(504\) 0 0
\(505\) 1.17585 0.0523245
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.4838 25.0868i 0.641985 1.11195i −0.343004 0.939334i \(-0.611444\pi\)
0.984989 0.172617i \(-0.0552223\pi\)
\(510\) 0 0
\(511\) 1.00730 18.6933i 0.0445602 0.826941i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.0586158 + 0.0338419i −0.00258292 + 0.00149125i
\(516\) 0 0
\(517\) 12.0550 6.95996i 0.530178 0.306099i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.72133 9.90963i 0.250656 0.434149i −0.713051 0.701113i \(-0.752687\pi\)
0.963707 + 0.266964i \(0.0860204\pi\)
\(522\) 0 0
\(523\) −14.1536 + 8.17161i −0.618896 + 0.357320i −0.776439 0.630192i \(-0.782976\pi\)
0.157543 + 0.987512i \(0.449643\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.70008 + 0.981539i 0.0740565 + 0.0427565i
\(528\) 0 0
\(529\) 3.77610 + 6.54039i 0.164178 + 0.284365i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 34.4173 + 19.8708i 1.49078 + 0.860700i
\(534\) 0 0
\(535\) 0.626362i 0.0270800i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.95563 27.3454i 0.127308 1.17785i
\(540\) 0 0
\(541\) 15.9752 + 27.6699i 0.686830 + 1.18962i 0.972858 + 0.231403i \(0.0743314\pi\)
−0.286029 + 0.958221i \(0.592335\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.0555391 0.0961966i −0.00237903 0.00412061i
\(546\) 0 0
\(547\) −15.4351 + 26.7344i −0.659958 + 1.14308i 0.320668 + 0.947192i \(0.396092\pi\)
−0.980626 + 0.195889i \(0.937241\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.15871 0.347573
\(552\) 0 0
\(553\) −8.19972 16.1517i −0.348688 0.686839i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.2398 7.06667i −0.518618 0.299424i 0.217751 0.976004i \(-0.430128\pi\)
−0.736369 + 0.676580i \(0.763461\pi\)
\(558\) 0 0
\(559\) 5.65190i 0.239050i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.11436 −0.215544 −0.107772 0.994176i \(-0.534372\pi\)
−0.107772 + 0.994176i \(0.534372\pi\)
\(564\) 0 0
\(565\) 1.06588i 0.0448421i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 37.2203i 1.56035i −0.625559 0.780177i \(-0.715129\pi\)
0.625559 0.780177i \(-0.284871\pi\)
\(570\) 0 0
\(571\) −5.27738 −0.220851 −0.110426 0.993884i \(-0.535221\pi\)
−0.110426 + 0.993884i \(0.535221\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 27.6118i 1.15149i
\(576\) 0 0
\(577\) −9.72172 5.61284i −0.404721 0.233666i 0.283798 0.958884i \(-0.408405\pi\)
−0.688519 + 0.725218i \(0.741739\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −20.7757 1.11951i −0.861923 0.0464452i
\(582\) 0 0
\(583\) −28.5343 −1.18177
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.4037 21.4838i 0.511955 0.886732i −0.487949 0.872872i \(-0.662255\pi\)
0.999904 0.0138602i \(-0.00441196\pi\)
\(588\) 0 0
\(589\) 3.70108 + 6.41046i 0.152500 + 0.264138i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.47382 + 11.2130i 0.265848 + 0.460462i 0.967785 0.251777i \(-0.0810148\pi\)
−0.701938 + 0.712238i \(0.747681\pi\)
\(594\) 0 0
\(595\) 0.151410 0.232400i 0.00620718 0.00952746i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.1574i 0.987043i 0.869734 + 0.493522i \(0.164291\pi\)
−0.869734 + 0.493522i \(0.835709\pi\)
\(600\) 0 0
\(601\) −15.3377 8.85525i −0.625640 0.361213i 0.153422 0.988161i \(-0.450971\pi\)
−0.779061 + 0.626948i \(0.784304\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.150052 0.259897i −0.00610046 0.0105663i
\(606\) 0 0
\(607\) 5.27200 + 3.04379i 0.213984 + 0.123544i 0.603162 0.797619i \(-0.293907\pi\)
−0.389178 + 0.921163i \(0.627241\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.7824 + 6.80260i −0.476667 + 0.275204i
\(612\) 0 0
\(613\) 16.5026 28.5834i 0.666535 1.15447i −0.312332 0.949973i \(-0.601110\pi\)
0.978867 0.204499i \(-0.0655566\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.36942 4.83209i 0.336940 0.194533i −0.321978 0.946747i \(-0.604348\pi\)
0.658918 + 0.752215i \(0.271014\pi\)
\(618\) 0 0
\(619\) −15.6756 + 9.05034i −0.630057 + 0.363764i −0.780774 0.624813i \(-0.785175\pi\)
0.150717 + 0.988577i \(0.451842\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.8903 + 25.9251i −0.676697 + 1.03867i
\(624\) 0 0
\(625\) −12.4657 + 21.5913i −0.498629 + 0.863651i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.5074 0.538577
\(630\) 0 0
\(631\) 5.07079 0.201865 0.100932 0.994893i \(-0.467817\pi\)
0.100932 + 0.994893i \(0.467817\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.644887 1.11698i 0.0255916 0.0443259i
\(636\) 0 0
\(637\) −2.88881 + 26.7272i −0.114459 + 1.05897i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.62707 4.40349i 0.301251 0.173927i −0.341754 0.939790i \(-0.611021\pi\)
0.643005 + 0.765862i \(0.277688\pi\)
\(642\) 0 0
\(643\) 2.52364 1.45702i 0.0995227 0.0574594i −0.449413 0.893324i \(-0.648367\pi\)
0.548935 + 0.835865i \(0.315033\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.15173 + 8.92306i −0.202535 + 0.350802i −0.949345 0.314237i \(-0.898251\pi\)
0.746809 + 0.665038i \(0.231585\pi\)
\(648\) 0 0
\(649\) −31.9895 + 18.4691i −1.25570 + 0.724976i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.3666 8.87194i −0.601343 0.347186i 0.168227 0.985748i \(-0.446196\pi\)
−0.769570 + 0.638563i \(0.779529\pi\)
\(654\) 0 0
\(655\) 0.631045 + 1.09300i 0.0246570 + 0.0427071i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.08467 2.35828i −0.159116 0.0918657i 0.418328 0.908296i \(-0.362616\pi\)
−0.577444 + 0.816430i \(0.695950\pi\)
\(660\) 0 0
\(661\) 9.42879i 0.366737i 0.983044 + 0.183369i \(0.0587002\pi\)
−0.983044 + 0.183369i \(0.941300\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.932583 0.473445i 0.0361640 0.0183594i
\(666\) 0 0
\(667\) −3.85631 6.67932i −0.149317 0.258624i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.160141 + 0.277372i 0.00618218 + 0.0107078i
\(672\) 0 0
\(673\) −6.42728 + 11.1324i −0.247753 + 0.429122i −0.962902 0.269851i \(-0.913026\pi\)
0.715149 + 0.698972i \(0.246359\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −49.1893 −1.89050 −0.945248 0.326352i \(-0.894181\pi\)
−0.945248 + 0.326352i \(0.894181\pi\)
\(678\) 0 0
\(679\) −0.0597202 + 1.10828i −0.00229185 + 0.0425318i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.2732 + 20.9424i 1.38796 + 0.801337i 0.993085 0.117399i \(-0.0374556\pi\)
0.394872 + 0.918736i \(0.370789\pi\)
\(684\) 0 0
\(685\) 0.424934i 0.0162359i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 27.8891 1.06249
\(690\) 0 0
\(691\) 6.42914i 0.244576i −0.992495 0.122288i \(-0.960977\pi\)
0.992495 0.122288i \(-0.0390231\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.429046i 0.0162746i
\(696\) 0 0
\(697\) −16.0468 −0.607817
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.7907i 1.27626i −0.769930 0.638129i \(-0.779709\pi\)
0.769930 0.638129i \(-0.220291\pi\)
\(702\) 0 0
\(703\) 44.1087 + 25.4662i 1.66359 + 0.960475i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 25.1190 38.5553i 0.944696 1.45002i
\(708\) 0 0
\(709\) −29.6833 −1.11478 −0.557390 0.830251i \(-0.688197\pi\)
−0.557390 + 0.830251i \(0.688197\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.49871 6.05995i 0.131028 0.226947i
\(714\) 0 0
\(715\) 0.510090 + 0.883501i 0.0190763 + 0.0330411i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −18.1588 31.4519i −0.677207 1.17296i −0.975818 0.218583i \(-0.929857\pi\)
0.298611 0.954375i \(-0.403477\pi\)
\(720\) 0 0
\(721\) −0.142523 + 2.64492i −0.00530784 + 0.0985020i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.97033i 0.258872i
\(726\) 0 0
\(727\) −14.9225 8.61552i −0.553446 0.319532i 0.197065 0.980390i \(-0.436859\pi\)
−0.750511 + 0.660858i \(0.770192\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.14106 1.97637i −0.0422036 0.0730987i
\(732\) 0 0
\(733\) −37.2907 21.5298i −1.37736 0.795222i −0.385523 0.922698i \(-0.625979\pi\)
−0.991842 + 0.127477i \(0.959312\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −52.2168 + 30.1474i −1.92343 + 1.11049i
\(738\) 0 0
\(739\) 1.87511 3.24778i 0.0689770 0.119472i −0.829474 0.558545i \(-0.811360\pi\)
0.898451 + 0.439073i \(0.144693\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.9862 + 13.8484i −0.879967 + 0.508049i −0.870648 0.491907i \(-0.836300\pi\)
−0.00931965 + 0.999957i \(0.502967\pi\)
\(744\) 0 0
\(745\) −0.488116 + 0.281814i −0.0178832 + 0.0103249i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −20.5380 13.3806i −0.750443 0.488917i
\(750\) 0 0
\(751\) −2.08856 + 3.61750i −0.0762127 + 0.132004i −0.901613 0.432544i \(-0.857616\pi\)
0.825400 + 0.564548i \(0.190949\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.956936 0.0348264
\(756\) 0 0
\(757\) 35.9359 1.30611 0.653057 0.757309i \(-0.273486\pi\)
0.653057 + 0.757309i \(0.273486\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.5715 25.2385i 0.528216 0.914896i −0.471243 0.882003i \(-0.656195\pi\)
0.999459 0.0328930i \(-0.0104720\pi\)
\(762\) 0 0
\(763\) −4.34068 0.233900i −0.157143 0.00846775i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 31.2662 18.0515i 1.12896 0.651804i
\(768\) 0 0
\(769\) 0.795911 0.459519i 0.0287013 0.0165707i −0.485581 0.874192i \(-0.661392\pi\)
0.514282 + 0.857621i \(0.328058\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.69708 8.13558i 0.168942 0.292616i −0.769106 0.639121i \(-0.779298\pi\)
0.938048 + 0.346505i \(0.112632\pi\)
\(774\) 0 0
\(775\) 5.47672 3.16199i 0.196730 0.113582i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −52.4011 30.2538i −1.87747 1.08396i
\(780\) 0 0
\(781\) −8.46703 14.6653i −0.302974 0.524767i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.963683 0.556383i −0.0343953 0.0198581i
\(786\) 0 0
\(787\) 30.5960i 1.09063i 0.838231 + 0.545315i \(0.183590\pi\)
−0.838231 + 0.545315i \(0.816410\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 34.9497 + 22.7699i 1.24267 + 0.809604i
\(792\) 0 0
\(793\) −0.156520 0.271101i −0.00555820 0.00962709i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.64717 + 2.85299i 0.0583459 + 0.101058i 0.893723 0.448619i \(-0.148084\pi\)
−0.835377 + 0.549677i \(0.814751\pi\)
\(798\) 0 0
\(799\) 2.74674 4.75750i 0.0971728 0.168308i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −27.8019 −0.981107
\(804\) 0 0
\(805\) −0.828393 0.539702i −0.0291970 0.0190220i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −19.7833 11.4219i −0.695542 0.401572i 0.110143 0.993916i \(-0.464869\pi\)
−0.805685 + 0.592344i \(0.798203\pi\)
\(810\) 0 0
\(811\) 23.9412i 0.840691i −0.907364 0.420345i \(-0.861909\pi\)
0.907364 0.420345i \(-0.138091\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.612985 0.0214719
\(816\) 0 0
\(817\) 8.60515i 0.301056i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.28557i 0.0797669i −0.999204 0.0398834i \(-0.987301\pi\)
0.999204 0.0398834i \(-0.0126987\pi\)
\(822\) 0 0
\(823\) 22.9703 0.800694 0.400347 0.916364i \(-0.368890\pi\)
0.400347 + 0.916364i \(0.368890\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.1679i 0.527438i −0.964600 0.263719i \(-0.915051\pi\)
0.964600 0.263719i \(-0.0849492\pi\)
\(828\) 0 0
\(829\) −5.73806 3.31287i −0.199291 0.115061i 0.397034 0.917804i \(-0.370040\pi\)
−0.596325 + 0.802743i \(0.703373\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.38577 9.92925i −0.151958 0.344028i
\(834\) 0 0
\(835\) 1.03428 0.0357927
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.8462 41.3029i 0.823264 1.42593i −0.0799756 0.996797i \(-0.525484\pi\)
0.903239 0.429138i \(-0.141182\pi\)
\(840\) 0 0
\(841\) −13.5265 23.4286i −0.466431 0.807883i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.0591122 0.102385i −0.00203352 0.00352216i
\(846\) 0 0
\(847\) −11.7273 0.631934i −0.402956 0.0217135i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 48.1475i 1.65048i
\(852\) 0 0
\(853\) 22.0983 + 12.7585i 0.756632 + 0.436842i 0.828085 0.560602i \(-0.189430\pi\)
−0.0714529 + 0.997444i \(0.522764\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.19043 + 5.52598i 0.108983 + 0.188764i 0.915358 0.402640i \(-0.131907\pi\)
−0.806376 + 0.591404i \(0.798574\pi\)
\(858\) 0 0
\(859\) −29.7468 17.1743i −1.01495 0.585980i −0.102310 0.994753i \(-0.532624\pi\)
−0.912636 + 0.408773i \(0.865957\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.3380 + 18.0930i −1.06676 + 0.615893i −0.927294 0.374334i \(-0.877871\pi\)
−0.139464 + 0.990227i \(0.544538\pi\)
\(864\) 0 0
\(865\) 0.0777901 0.134736i 0.00264494 0.00458118i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −23.2971 + 13.4506i −0.790299 + 0.456279i
\(870\) 0 0
\(871\) 51.0362 29.4658i 1.72930 0.998410i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.809338 1.59422i −0.0273606 0.0538944i
\(876\) 0 0
\(877\) −17.0155 + 29.4716i −0.574571 + 0.995186i 0.421517 + 0.906820i \(0.361498\pi\)
−0.996088 + 0.0883657i \(0.971836\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26.6961 −0.899416 −0.449708 0.893176i \(-0.648472\pi\)
−0.449708 + 0.893176i \(0.648472\pi\)
\(882\) 0 0
\(883\) −11.2126 −0.377333 −0.188667 0.982041i \(-0.560417\pi\)
−0.188667 + 0.982041i \(0.560417\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.09353 8.82225i 0.171024 0.296222i −0.767754 0.640745i \(-0.778626\pi\)
0.938778 + 0.344522i \(0.111959\pi\)
\(888\) 0 0
\(889\) −22.8486 45.0068i −0.766318 1.50948i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.9391 10.3571i 0.600308 0.346588i
\(894\) 0 0
\(895\) −0.933494 + 0.538953i −0.0312033 + 0.0180152i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.883217 + 1.52978i −0.0294569 + 0.0510209i
\(900\) 0 0
\(901\) −9.75235 + 5.63052i −0.324898 + 0.187580i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.08039 + 0.623761i 0.0359132 + 0.0207345i
\(906\) 0 0
\(907\) −7.57428 13.1190i −0.251500 0.435611i 0.712439 0.701734i \(-0.247591\pi\)
−0.963939 + 0.266123i \(0.914257\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.43020 4.86718i −0.279305 0.161257i 0.353804 0.935320i \(-0.384888\pi\)
−0.633109 + 0.774063i \(0.718221\pi\)
\(912\) 0 0
\(913\) 30.8991i 1.02261i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 49.3195 + 2.65761i 1.62867 + 0.0877621i
\(918\) 0 0
\(919\) 4.01638 + 6.95658i 0.132488 + 0.229476i 0.924635 0.380854i \(-0.124370\pi\)
−0.792147 + 0.610330i \(0.791037\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.27560 + 14.3338i 0.272395 + 0.471801i
\(924\) 0 0
\(925\) 21.7568 37.6839i 0.715360 1.23904i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26.2128 0.860014 0.430007 0.902826i \(-0.358511\pi\)
0.430007 + 0.902826i \(0.358511\pi\)
\(930\) 0 0
\(931\) 4.39828 40.6928i 0.144148 1.33365i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.356739 0.205963i −0.0116666 0.00673573i
\(936\) 0 0
\(937\) 37.5797i 1.22768i 0.789432 + 0.613838i \(0.210375\pi\)
−0.789432 + 0.613838i \(0.789625\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9.27309 −0.302294 −0.151147 0.988511i \(-0.548297\pi\)
−0.151147 + 0.988511i \(0.548297\pi\)
\(942\) 0 0
\(943\) 57.1992i 1.86266i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.8586i 0.450343i −0.974319 0.225171i \(-0.927706\pi\)
0.974319 0.225171i \(-0.0722942\pi\)
\(948\) 0 0
\(949\) 27.1733 0.882083
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.65523i 0.0860115i −0.999075 0.0430057i \(-0.986307\pi\)
0.999075 0.0430057i \(-0.0136934\pi\)
\(954\) 0 0
\(955\) 1.36676 + 0.789097i 0.0442272 + 0.0255346i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 13.9333 + 9.07763i 0.449931 + 0.293132i
\(960\) 0 0
\(961\) 29.3974 0.948302
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.719600 1.24638i 0.0231647 0.0401225i
\(966\) 0 0
\(967\) −7.14946 12.3832i −0.229911 0.398218i 0.727870 0.685715i \(-0.240510\pi\)
−0.957782 + 0.287497i \(0.907177\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.130666 + 0.226320i 0.00419326 + 0.00726295i 0.868114 0.496364i \(-0.165332\pi\)
−0.863921 + 0.503627i \(0.831999\pi\)
\(972\) 0 0
\(973\) 14.0681 + 9.16546i 0.451004 + 0.293831i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 39.1574i 1.25276i 0.779519 + 0.626378i \(0.215464\pi\)
−0.779519 + 0.626378i \(0.784536\pi\)
\(978\) 0 0
\(979\) 39.7957 + 22.9760i 1.27188 + 0.734318i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13.1844 + 22.8361i 0.420517 + 0.728357i 0.995990 0.0894636i \(-0.0285153\pi\)
−0.575473 + 0.817821i \(0.695182\pi\)
\(984\) 0 0
\(985\) −0.752163 0.434262i −0.0239659 0.0138367i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.04481 + 4.06732i −0.224012 + 0.129333i
\(990\) 0 0
\(991\) 22.9516 39.7534i 0.729082 1.26281i −0.228189 0.973617i \(-0.573280\pi\)
0.957271 0.289191i \(-0.0933862\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.219150 0.126526i 0.00694753 0.00401116i
\(996\) 0 0
\(997\) −18.5929 + 10.7346i −0.588844 + 0.339969i −0.764640 0.644457i \(-0.777083\pi\)
0.175796 + 0.984427i \(0.443750\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.ca.c.2033.5 16
3.2 odd 2 1008.2.ca.c.353.4 16
4.3 odd 2 378.2.l.a.143.3 16
7.5 odd 6 3024.2.df.c.1601.5 16
9.4 even 3 1008.2.df.c.689.2 16
9.5 odd 6 3024.2.df.c.17.5 16
12.11 even 2 126.2.l.a.101.6 yes 16
21.5 even 6 1008.2.df.c.929.2 16
28.3 even 6 2646.2.m.a.1763.6 16
28.11 odd 6 2646.2.m.b.1763.7 16
28.19 even 6 378.2.t.a.89.3 16
28.23 odd 6 2646.2.t.b.1979.2 16
28.27 even 2 2646.2.l.a.521.2 16
36.7 odd 6 1134.2.k.b.647.3 16
36.11 even 6 1134.2.k.a.647.6 16
36.23 even 6 378.2.t.a.17.3 16
36.31 odd 6 126.2.t.a.59.7 yes 16
63.5 even 6 inner 3024.2.ca.c.2609.5 16
63.40 odd 6 1008.2.ca.c.257.4 16
84.11 even 6 882.2.m.b.587.4 16
84.23 even 6 882.2.t.a.803.6 16
84.47 odd 6 126.2.t.a.47.7 yes 16
84.59 odd 6 882.2.m.a.587.1 16
84.83 odd 2 882.2.l.b.227.7 16
252.23 even 6 2646.2.l.a.1097.6 16
252.31 even 6 882.2.m.b.293.4 16
252.47 odd 6 1134.2.k.b.971.3 16
252.59 odd 6 2646.2.m.b.881.7 16
252.67 odd 6 882.2.m.a.293.1 16
252.95 even 6 2646.2.m.a.881.6 16
252.103 even 6 126.2.l.a.5.2 16
252.131 odd 6 378.2.l.a.341.7 16
252.139 even 6 882.2.t.a.815.6 16
252.167 odd 6 2646.2.t.b.2285.2 16
252.187 even 6 1134.2.k.a.971.6 16
252.247 odd 6 882.2.l.b.509.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.2 16 252.103 even 6
126.2.l.a.101.6 yes 16 12.11 even 2
126.2.t.a.47.7 yes 16 84.47 odd 6
126.2.t.a.59.7 yes 16 36.31 odd 6
378.2.l.a.143.3 16 4.3 odd 2
378.2.l.a.341.7 16 252.131 odd 6
378.2.t.a.17.3 16 36.23 even 6
378.2.t.a.89.3 16 28.19 even 6
882.2.l.b.227.7 16 84.83 odd 2
882.2.l.b.509.3 16 252.247 odd 6
882.2.m.a.293.1 16 252.67 odd 6
882.2.m.a.587.1 16 84.59 odd 6
882.2.m.b.293.4 16 252.31 even 6
882.2.m.b.587.4 16 84.11 even 6
882.2.t.a.803.6 16 84.23 even 6
882.2.t.a.815.6 16 252.139 even 6
1008.2.ca.c.257.4 16 63.40 odd 6
1008.2.ca.c.353.4 16 3.2 odd 2
1008.2.df.c.689.2 16 9.4 even 3
1008.2.df.c.929.2 16 21.5 even 6
1134.2.k.a.647.6 16 36.11 even 6
1134.2.k.a.971.6 16 252.187 even 6
1134.2.k.b.647.3 16 36.7 odd 6
1134.2.k.b.971.3 16 252.47 odd 6
2646.2.l.a.521.2 16 28.27 even 2
2646.2.l.a.1097.6 16 252.23 even 6
2646.2.m.a.881.6 16 252.95 even 6
2646.2.m.a.1763.6 16 28.3 even 6
2646.2.m.b.881.7 16 252.59 odd 6
2646.2.m.b.1763.7 16 28.11 odd 6
2646.2.t.b.1979.2 16 28.23 odd 6
2646.2.t.b.2285.2 16 252.167 odd 6
3024.2.ca.c.2033.5 16 1.1 even 1 trivial
3024.2.ca.c.2609.5 16 63.5 even 6 inner
3024.2.df.c.17.5 16 9.5 odd 6
3024.2.df.c.1601.5 16 7.5 odd 6