Properties

Label 2646.2.m.b.1763.7
Level $2646$
Weight $2$
Character 2646.1763
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(881,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0,0,0,0,12,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1763.7
Root \(0.320287 - 1.70218i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1763
Dual form 2646.2.m.b.881.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(0.0338034 + 0.0585493i) q^{5} +1.00000i q^{8} +0.0676069i q^{10} +(-3.40282 - 1.96462i) q^{11} +(3.32589 - 1.92020i) q^{13} +(-0.500000 + 0.866025i) q^{16} +1.55067 q^{17} +5.84711i q^{19} +(-0.0338034 + 0.0585493i) q^{20} +(-1.96462 - 3.40282i) q^{22} +(4.78687 - 2.76370i) q^{23} +(2.49771 - 4.32617i) q^{25} +3.84040 q^{26} +(-1.20840 - 0.697671i) q^{29} +(1.09635 - 0.632976i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(1.34292 + 0.775337i) q^{34} +8.71069 q^{37} +(-2.92356 + 5.06375i) q^{38} +(-0.0585493 + 0.0338034i) q^{40} +(5.17415 + 8.96188i) q^{41} +(0.735847 - 1.27452i) q^{43} -3.92924i q^{44} +5.52740 q^{46} +(-1.77132 + 3.06802i) q^{47} +(4.32617 - 2.49771i) q^{50} +(3.32589 + 1.92020i) q^{52} -7.26203i q^{53} -0.265644i q^{55} +(-0.697671 - 1.20840i) q^{58} +(4.70043 + 8.14138i) q^{59} +(0.0705919 + 0.0407562i) q^{61} +1.26595 q^{62} -1.00000 q^{64} +(0.224853 + 0.129819i) q^{65} +(7.67257 + 13.2893i) q^{67} +(0.775337 + 1.34292i) q^{68} -4.30975i q^{71} -7.07564i q^{73} +(7.54368 + 4.35534i) q^{74} +(-5.06375 + 2.92356i) q^{76} +(3.42320 - 5.92915i) q^{79} -0.0676069 q^{80} +10.3483i q^{82} +(-3.93194 + 6.81032i) q^{83} +(0.0524181 + 0.0907908i) q^{85} +(1.27452 - 0.735847i) q^{86} +(1.96462 - 3.40282i) q^{88} +11.6949 q^{89} +(4.78687 + 2.76370i) q^{92} +(-3.06802 + 1.77132i) q^{94} +(-0.342344 + 0.197652i) q^{95} +(-0.363295 - 0.209749i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 12 q^{11} + 6 q^{13} - 8 q^{16} - 36 q^{17} - 6 q^{23} - 8 q^{25} + 24 q^{26} - 6 q^{29} + 6 q^{31} + 4 q^{37} + 6 q^{41} - 2 q^{43} - 12 q^{46} - 18 q^{47} + 12 q^{50} + 6 q^{52} + 6 q^{58}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.0338034 + 0.0585493i 0.0151174 + 0.0261840i 0.873485 0.486851i \(-0.161854\pi\)
−0.858368 + 0.513035i \(0.828521\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.0676069i 0.0213792i
\(11\) −3.40282 1.96462i −1.02599 0.592356i −0.110157 0.993914i \(-0.535135\pi\)
−0.915833 + 0.401559i \(0.868469\pi\)
\(12\) 0 0
\(13\) 3.32589 1.92020i 0.922435 0.532568i 0.0380241 0.999277i \(-0.487894\pi\)
0.884411 + 0.466709i \(0.154560\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.55067 0.376094 0.188047 0.982160i \(-0.439784\pi\)
0.188047 + 0.982160i \(0.439784\pi\)
\(18\) 0 0
\(19\) 5.84711i 1.34142i 0.741720 + 0.670710i \(0.234010\pi\)
−0.741720 + 0.670710i \(0.765990\pi\)
\(20\) −0.0338034 + 0.0585493i −0.00755868 + 0.0130920i
\(21\) 0 0
\(22\) −1.96462 3.40282i −0.418859 0.725484i
\(23\) 4.78687 2.76370i 0.998132 0.576272i 0.0904369 0.995902i \(-0.471174\pi\)
0.907695 + 0.419630i \(0.137840\pi\)
\(24\) 0 0
\(25\) 2.49771 4.32617i 0.499543 0.865234i
\(26\) 3.84040 0.753165
\(27\) 0 0
\(28\) 0 0
\(29\) −1.20840 0.697671i −0.224394 0.129554i 0.383589 0.923504i \(-0.374688\pi\)
−0.607983 + 0.793950i \(0.708021\pi\)
\(30\) 0 0
\(31\) 1.09635 0.632976i 0.196910 0.113686i −0.398304 0.917254i \(-0.630401\pi\)
0.595213 + 0.803568i \(0.297068\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 1.34292 + 0.775337i 0.230309 + 0.132969i
\(35\) 0 0
\(36\) 0 0
\(37\) 8.71069 1.43203 0.716014 0.698086i \(-0.245965\pi\)
0.716014 + 0.698086i \(0.245965\pi\)
\(38\) −2.92356 + 5.06375i −0.474263 + 0.821448i
\(39\) 0 0
\(40\) −0.0585493 + 0.0338034i −0.00925745 + 0.00534479i
\(41\) 5.17415 + 8.96188i 0.808066 + 1.39961i 0.914202 + 0.405260i \(0.132819\pi\)
−0.106136 + 0.994352i \(0.533848\pi\)
\(42\) 0 0
\(43\) 0.735847 1.27452i 0.112216 0.194363i −0.804448 0.594023i \(-0.797539\pi\)
0.916663 + 0.399660i \(0.130872\pi\)
\(44\) 3.92924i 0.592356i
\(45\) 0 0
\(46\) 5.52740 0.814971
\(47\) −1.77132 + 3.06802i −0.258374 + 0.447517i −0.965806 0.259264i \(-0.916520\pi\)
0.707432 + 0.706781i \(0.249853\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 4.32617 2.49771i 0.611813 0.353230i
\(51\) 0 0
\(52\) 3.32589 + 1.92020i 0.461218 + 0.266284i
\(53\) 7.26203i 0.997516i −0.866741 0.498758i \(-0.833790\pi\)
0.866741 0.498758i \(-0.166210\pi\)
\(54\) 0 0
\(55\) 0.265644i 0.0358194i
\(56\) 0 0
\(57\) 0 0
\(58\) −0.697671 1.20840i −0.0916087 0.158671i
\(59\) 4.70043 + 8.14138i 0.611944 + 1.05992i 0.990912 + 0.134508i \(0.0429454\pi\)
−0.378969 + 0.925409i \(0.623721\pi\)
\(60\) 0 0
\(61\) 0.0705919 + 0.0407562i 0.00903836 + 0.00521830i 0.504512 0.863404i \(-0.331672\pi\)
−0.495474 + 0.868623i \(0.665006\pi\)
\(62\) 1.26595 0.160776
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.224853 + 0.129819i 0.0278896 + 0.0161020i
\(66\) 0 0
\(67\) 7.67257 + 13.2893i 0.937354 + 1.62354i 0.770382 + 0.637583i \(0.220066\pi\)
0.166972 + 0.985962i \(0.446601\pi\)
\(68\) 0.775337 + 1.34292i 0.0940234 + 0.162853i
\(69\) 0 0
\(70\) 0 0
\(71\) 4.30975i 0.511474i −0.966746 0.255737i \(-0.917682\pi\)
0.966746 0.255737i \(-0.0823181\pi\)
\(72\) 0 0
\(73\) 7.07564i 0.828140i −0.910245 0.414070i \(-0.864107\pi\)
0.910245 0.414070i \(-0.135893\pi\)
\(74\) 7.54368 + 4.35534i 0.876935 + 0.506299i
\(75\) 0 0
\(76\) −5.06375 + 2.92356i −0.580852 + 0.335355i
\(77\) 0 0
\(78\) 0 0
\(79\) 3.42320 5.92915i 0.385140 0.667082i −0.606649 0.794970i \(-0.707487\pi\)
0.991789 + 0.127888i \(0.0408199\pi\)
\(80\) −0.0676069 −0.00755868
\(81\) 0 0
\(82\) 10.3483i 1.14278i
\(83\) −3.93194 + 6.81032i −0.431587 + 0.747530i −0.997010 0.0772707i \(-0.975379\pi\)
0.565423 + 0.824801i \(0.308713\pi\)
\(84\) 0 0
\(85\) 0.0524181 + 0.0907908i 0.00568554 + 0.00984765i
\(86\) 1.27452 0.735847i 0.137435 0.0793484i
\(87\) 0 0
\(88\) 1.96462 3.40282i 0.209429 0.362742i
\(89\) 11.6949 1.23966 0.619828 0.784737i \(-0.287202\pi\)
0.619828 + 0.784737i \(0.287202\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.78687 + 2.76370i 0.499066 + 0.288136i
\(93\) 0 0
\(94\) −3.06802 + 1.77132i −0.316442 + 0.182698i
\(95\) −0.342344 + 0.197652i −0.0351238 + 0.0202787i
\(96\) 0 0
\(97\) −0.363295 0.209749i −0.0368870 0.0212967i 0.481443 0.876477i \(-0.340113\pi\)
−0.518330 + 0.855181i \(0.673446\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.99543 0.499543
\(101\) 8.69621 15.0623i 0.865305 1.49875i −0.00143888 0.999999i \(-0.500458\pi\)
0.866744 0.498753i \(-0.166209\pi\)
\(102\) 0 0
\(103\) −0.867010 + 0.500568i −0.0854290 + 0.0493225i −0.542106 0.840310i \(-0.682373\pi\)
0.456677 + 0.889633i \(0.349040\pi\)
\(104\) 1.92020 + 3.32589i 0.188291 + 0.326130i
\(105\) 0 0
\(106\) 3.63101 6.28910i 0.352675 0.610851i
\(107\) 9.26477i 0.895659i −0.894119 0.447829i \(-0.852197\pi\)
0.894119 0.447829i \(-0.147803\pi\)
\(108\) 0 0
\(109\) −1.64300 −0.157371 −0.0786855 0.996899i \(-0.525072\pi\)
−0.0786855 + 0.996899i \(0.525072\pi\)
\(110\) 0.132822 0.230054i 0.0126641 0.0219348i
\(111\) 0 0
\(112\) 0 0
\(113\) −13.6537 + 7.88296i −1.28443 + 0.741567i −0.977655 0.210215i \(-0.932584\pi\)
−0.306776 + 0.951782i \(0.599250\pi\)
\(114\) 0 0
\(115\) 0.323625 + 0.186845i 0.0301782 + 0.0174234i
\(116\) 1.39534i 0.129554i
\(117\) 0 0
\(118\) 9.40086i 0.865419i
\(119\) 0 0
\(120\) 0 0
\(121\) 2.21947 + 3.84424i 0.201770 + 0.349476i
\(122\) 0.0407562 + 0.0705919i 0.00368990 + 0.00639109i
\(123\) 0 0
\(124\) 1.09635 + 0.632976i 0.0984548 + 0.0568429i
\(125\) 0.675760 0.0604418
\(126\) 0 0
\(127\) −19.0776 −1.69286 −0.846430 0.532501i \(-0.821252\pi\)
−0.846430 + 0.532501i \(0.821252\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 0.129819 + 0.224853i 0.0113859 + 0.0197209i
\(131\) 9.33404 + 16.1670i 0.815519 + 1.41252i 0.908955 + 0.416895i \(0.136882\pi\)
−0.0934359 + 0.995625i \(0.529785\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 15.3451i 1.32562i
\(135\) 0 0
\(136\) 1.55067i 0.132969i
\(137\) 5.44329 + 3.14269i 0.465052 + 0.268498i 0.714166 0.699976i \(-0.246806\pi\)
−0.249114 + 0.968474i \(0.580139\pi\)
\(138\) 0 0
\(139\) 5.49596 3.17309i 0.466161 0.269138i −0.248470 0.968640i \(-0.579928\pi\)
0.714631 + 0.699501i \(0.246594\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.15488 3.73236i 0.180833 0.313212i
\(143\) −15.0899 −1.26188
\(144\) 0 0
\(145\) 0.0943347i 0.00783407i
\(146\) 3.53782 6.12768i 0.292792 0.507130i
\(147\) 0 0
\(148\) 4.35534 + 7.54368i 0.358007 + 0.620087i
\(149\) 7.21992 4.16842i 0.591479 0.341491i −0.174203 0.984710i \(-0.555735\pi\)
0.765682 + 0.643219i \(0.222402\pi\)
\(150\) 0 0
\(151\) −7.07721 + 12.2581i −0.575935 + 0.997548i 0.420005 + 0.907522i \(0.362028\pi\)
−0.995939 + 0.0900264i \(0.971305\pi\)
\(152\) −5.84711 −0.474263
\(153\) 0 0
\(154\) 0 0
\(155\) 0.0741205 + 0.0427935i 0.00595350 + 0.00343726i
\(156\) 0 0
\(157\) −14.2542 + 8.22967i −1.13761 + 0.656799i −0.945838 0.324640i \(-0.894757\pi\)
−0.191772 + 0.981439i \(0.561424\pi\)
\(158\) 5.92915 3.42320i 0.471698 0.272335i
\(159\) 0 0
\(160\) −0.0585493 0.0338034i −0.00462873 0.00267240i
\(161\) 0 0
\(162\) 0 0
\(163\) 9.06690 0.710174 0.355087 0.934833i \(-0.384451\pi\)
0.355087 + 0.934833i \(0.384451\pi\)
\(164\) −5.17415 + 8.96188i −0.404033 + 0.699806i
\(165\) 0 0
\(166\) −6.81032 + 3.93194i −0.528584 + 0.305178i
\(167\) −7.64922 13.2488i −0.591914 1.02523i −0.993974 0.109612i \(-0.965039\pi\)
0.402060 0.915613i \(-0.368294\pi\)
\(168\) 0 0
\(169\) 0.874352 1.51442i 0.0672579 0.116494i
\(170\) 0.104836i 0.00804057i
\(171\) 0 0
\(172\) 1.47169 0.112216
\(173\) −1.15062 + 1.99294i −0.0874804 + 0.151520i −0.906445 0.422323i \(-0.861215\pi\)
0.818965 + 0.573843i \(0.194548\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.40282 1.96462i 0.256497 0.148089i
\(177\) 0 0
\(178\) 10.1281 + 5.84745i 0.759132 + 0.438285i
\(179\) 15.9437i 1.19169i −0.803099 0.595845i \(-0.796817\pi\)
0.803099 0.595845i \(-0.203183\pi\)
\(180\) 0 0
\(181\) 18.4526i 1.37157i 0.727804 + 0.685785i \(0.240541\pi\)
−0.727804 + 0.685785i \(0.759459\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.76370 + 4.78687i 0.203743 + 0.352893i
\(185\) 0.294451 + 0.510005i 0.0216485 + 0.0374963i
\(186\) 0 0
\(187\) −5.27667 3.04649i −0.385868 0.222781i
\(188\) −3.54265 −0.258374
\(189\) 0 0
\(190\) −0.395305 −0.0286784
\(191\) 20.2162 + 11.6719i 1.46280 + 0.844546i 0.999140 0.0414695i \(-0.0132040\pi\)
0.463656 + 0.886015i \(0.346537\pi\)
\(192\) 0 0
\(193\) −10.6439 18.4357i −0.766164 1.32703i −0.939629 0.342194i \(-0.888830\pi\)
0.173466 0.984840i \(-0.444503\pi\)
\(194\) −0.209749 0.363295i −0.0150591 0.0260831i
\(195\) 0 0
\(196\) 0 0
\(197\) 12.8467i 0.915288i −0.889136 0.457644i \(-0.848693\pi\)
0.889136 0.457644i \(-0.151307\pi\)
\(198\) 0 0
\(199\) 3.74301i 0.265335i 0.991161 + 0.132667i \(0.0423542\pi\)
−0.991161 + 0.132667i \(0.957646\pi\)
\(200\) 4.32617 + 2.49771i 0.305906 + 0.176615i
\(201\) 0 0
\(202\) 15.0623 8.69621i 1.05978 0.611863i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.349808 + 0.605885i −0.0244316 + 0.0423168i
\(206\) −1.00114 −0.0697525
\(207\) 0 0
\(208\) 3.84040i 0.266284i
\(209\) 11.4874 19.8967i 0.794597 1.37628i
\(210\) 0 0
\(211\) 4.69581 + 8.13339i 0.323273 + 0.559925i 0.981161 0.193190i \(-0.0618834\pi\)
−0.657888 + 0.753116i \(0.728550\pi\)
\(212\) 6.28910 3.63101i 0.431937 0.249379i
\(213\) 0 0
\(214\) 4.63238 8.02352i 0.316663 0.548477i
\(215\) 0.0994966 0.00678561
\(216\) 0 0
\(217\) 0 0
\(218\) −1.42288 0.821501i −0.0963697 0.0556391i
\(219\) 0 0
\(220\) 0.230054 0.132822i 0.0155103 0.00895485i
\(221\) 5.15737 2.97761i 0.346922 0.200296i
\(222\) 0 0
\(223\) −17.7695 10.2592i −1.18993 0.687008i −0.231642 0.972801i \(-0.574410\pi\)
−0.958291 + 0.285793i \(0.907743\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −15.7659 −1.04873
\(227\) 9.38828 16.2610i 0.623122 1.07928i −0.365779 0.930702i \(-0.619197\pi\)
0.988901 0.148577i \(-0.0474694\pi\)
\(228\) 0 0
\(229\) 4.31740 2.49265i 0.285302 0.164719i −0.350519 0.936556i \(-0.613995\pi\)
0.635821 + 0.771836i \(0.280662\pi\)
\(230\) 0.186845 + 0.323625i 0.0123202 + 0.0213392i
\(231\) 0 0
\(232\) 0.697671 1.20840i 0.0458043 0.0793354i
\(233\) 14.7510i 0.966367i −0.875519 0.483184i \(-0.839480\pi\)
0.875519 0.483184i \(-0.160520\pi\)
\(234\) 0 0
\(235\) −0.239507 −0.0156237
\(236\) −4.70043 + 8.14138i −0.305972 + 0.529959i
\(237\) 0 0
\(238\) 0 0
\(239\) 0.155388 0.0897132i 0.0100512 0.00580307i −0.494966 0.868912i \(-0.664819\pi\)
0.505017 + 0.863109i \(0.331486\pi\)
\(240\) 0 0
\(241\) −5.31183 3.06679i −0.342165 0.197549i 0.319064 0.947733i \(-0.396632\pi\)
−0.661229 + 0.750184i \(0.729965\pi\)
\(242\) 4.43894i 0.285346i
\(243\) 0 0
\(244\) 0.0815124i 0.00521830i
\(245\) 0 0
\(246\) 0 0
\(247\) 11.2276 + 19.4468i 0.714397 + 1.23737i
\(248\) 0.632976 + 1.09635i 0.0401940 + 0.0696181i
\(249\) 0 0
\(250\) 0.585225 + 0.337880i 0.0370129 + 0.0213694i
\(251\) 1.11296 0.0702495 0.0351247 0.999383i \(-0.488817\pi\)
0.0351247 + 0.999383i \(0.488817\pi\)
\(252\) 0 0
\(253\) −21.7185 −1.36543
\(254\) −16.5216 9.53878i −1.03666 0.598516i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.37366 4.11130i −0.148065 0.256456i 0.782447 0.622717i \(-0.213971\pi\)
−0.930512 + 0.366261i \(0.880638\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.259638i 0.0161020i
\(261\) 0 0
\(262\) 18.6681i 1.15332i
\(263\) 3.65146 + 2.10817i 0.225159 + 0.129995i 0.608337 0.793679i \(-0.291837\pi\)
−0.383178 + 0.923675i \(0.625170\pi\)
\(264\) 0 0
\(265\) 0.425186 0.245482i 0.0261190 0.0150798i
\(266\) 0 0
\(267\) 0 0
\(268\) −7.67257 + 13.2893i −0.468677 + 0.811772i
\(269\) 15.9453 0.972202 0.486101 0.873903i \(-0.338419\pi\)
0.486101 + 0.873903i \(0.338419\pi\)
\(270\) 0 0
\(271\) 16.3867i 0.995421i 0.867343 + 0.497710i \(0.165826\pi\)
−0.867343 + 0.497710i \(0.834174\pi\)
\(272\) −0.775337 + 1.34292i −0.0470117 + 0.0814267i
\(273\) 0 0
\(274\) 3.14269 + 5.44329i 0.189857 + 0.328841i
\(275\) −16.9986 + 9.81413i −1.02505 + 0.591814i
\(276\) 0 0
\(277\) 0.928004 1.60735i 0.0557583 0.0965763i −0.836799 0.547510i \(-0.815576\pi\)
0.892557 + 0.450934i \(0.148909\pi\)
\(278\) 6.34619 0.380619
\(279\) 0 0
\(280\) 0 0
\(281\) 0.628441 + 0.362830i 0.0374896 + 0.0216446i 0.518628 0.855000i \(-0.326443\pi\)
−0.481138 + 0.876645i \(0.659776\pi\)
\(282\) 0 0
\(283\) 10.0698 5.81382i 0.598590 0.345596i −0.169897 0.985462i \(-0.554343\pi\)
0.768487 + 0.639866i \(0.221010\pi\)
\(284\) 3.73236 2.15488i 0.221475 0.127868i
\(285\) 0 0
\(286\) −13.0682 7.54494i −0.772740 0.446142i
\(287\) 0 0
\(288\) 0 0
\(289\) −14.5954 −0.858553
\(290\) 0.0471673 0.0816962i 0.00276976 0.00479737i
\(291\) 0 0
\(292\) 6.12768 3.53782i 0.358595 0.207035i
\(293\) 6.45034 + 11.1723i 0.376833 + 0.652694i 0.990600 0.136794i \(-0.0436797\pi\)
−0.613766 + 0.789488i \(0.710346\pi\)
\(294\) 0 0
\(295\) −0.317781 + 0.550413i −0.0185019 + 0.0320463i
\(296\) 8.71069i 0.506299i
\(297\) 0 0
\(298\) 8.33685 0.482941
\(299\) 10.6137 18.3835i 0.613808 1.06315i
\(300\) 0 0
\(301\) 0 0
\(302\) −12.2581 + 7.07721i −0.705373 + 0.407247i
\(303\) 0 0
\(304\) −5.06375 2.92356i −0.290426 0.167677i
\(305\) 0.00551080i 0.000315548i
\(306\) 0 0
\(307\) 20.5111i 1.17063i 0.810806 + 0.585315i \(0.199029\pi\)
−0.810806 + 0.585315i \(0.800971\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.0427935 + 0.0741205i 0.00243051 + 0.00420976i
\(311\) −7.51441 13.0153i −0.426103 0.738032i 0.570420 0.821353i \(-0.306781\pi\)
−0.996523 + 0.0833212i \(0.973447\pi\)
\(312\) 0 0
\(313\) −0.965929 0.557679i −0.0545975 0.0315219i 0.472453 0.881356i \(-0.343369\pi\)
−0.527050 + 0.849834i \(0.676702\pi\)
\(314\) −16.4593 −0.928855
\(315\) 0 0
\(316\) 6.84639 0.385140
\(317\) −1.06819 0.616719i −0.0599955 0.0346384i 0.469702 0.882825i \(-0.344361\pi\)
−0.529698 + 0.848187i \(0.677695\pi\)
\(318\) 0 0
\(319\) 2.74132 + 4.74810i 0.153484 + 0.265843i
\(320\) −0.0338034 0.0585493i −0.00188967 0.00327300i
\(321\) 0 0
\(322\) 0 0
\(323\) 9.06696i 0.504499i
\(324\) 0 0
\(325\) 19.1845i 1.06416i
\(326\) 7.85216 + 4.53345i 0.434891 + 0.251085i
\(327\) 0 0
\(328\) −8.96188 + 5.17415i −0.494837 + 0.285694i
\(329\) 0 0
\(330\) 0 0
\(331\) 2.51231 4.35145i 0.138089 0.239177i −0.788684 0.614799i \(-0.789237\pi\)
0.926773 + 0.375621i \(0.122571\pi\)
\(332\) −7.86388 −0.431587
\(333\) 0 0
\(334\) 15.2984i 0.837093i
\(335\) −0.518719 + 0.898447i −0.0283406 + 0.0490874i
\(336\) 0 0
\(337\) 10.6356 + 18.4213i 0.579356 + 1.00347i 0.995553 + 0.0941995i \(0.0300292\pi\)
−0.416198 + 0.909274i \(0.636638\pi\)
\(338\) 1.51442 0.874352i 0.0823737 0.0475585i
\(339\) 0 0
\(340\) −0.0524181 + 0.0907908i −0.00284277 + 0.00492382i
\(341\) −4.97423 −0.269370
\(342\) 0 0
\(343\) 0 0
\(344\) 1.27452 + 0.735847i 0.0687177 + 0.0396742i
\(345\) 0 0
\(346\) −1.99294 + 1.15062i −0.107141 + 0.0618580i
\(347\) −18.6832 + 10.7868i −1.00297 + 0.579063i −0.909125 0.416524i \(-0.863248\pi\)
−0.0938425 + 0.995587i \(0.529915\pi\)
\(348\) 0 0
\(349\) −24.1105 13.9202i −1.29061 0.745132i −0.311845 0.950133i \(-0.600947\pi\)
−0.978762 + 0.205001i \(0.934280\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.92924 0.209429
\(353\) −2.85124 + 4.93850i −0.151756 + 0.262850i −0.931873 0.362784i \(-0.881826\pi\)
0.780117 + 0.625634i \(0.215160\pi\)
\(354\) 0 0
\(355\) 0.252333 0.145685i 0.0133924 0.00773213i
\(356\) 5.84745 + 10.1281i 0.309914 + 0.536787i
\(357\) 0 0
\(358\) 7.97186 13.8077i 0.421326 0.729758i
\(359\) 21.4560i 1.13241i 0.824266 + 0.566203i \(0.191588\pi\)
−0.824266 + 0.566203i \(0.808412\pi\)
\(360\) 0 0
\(361\) −15.1887 −0.799405
\(362\) −9.22629 + 15.9804i −0.484923 + 0.839911i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.414273 0.239181i 0.0216841 0.0125193i
\(366\) 0 0
\(367\) 7.97484 + 4.60428i 0.416283 + 0.240341i 0.693486 0.720470i \(-0.256074\pi\)
−0.277203 + 0.960811i \(0.589407\pi\)
\(368\) 5.52740i 0.288136i
\(369\) 0 0
\(370\) 0.588903i 0.0306156i
\(371\) 0 0
\(372\) 0 0
\(373\) −14.1000 24.4219i −0.730071 1.26452i −0.956852 0.290574i \(-0.906154\pi\)
0.226782 0.973946i \(-0.427180\pi\)
\(374\) −3.04649 5.27667i −0.157530 0.272850i
\(375\) 0 0
\(376\) −3.06802 1.77132i −0.158221 0.0913490i
\(377\) −5.35867 −0.275986
\(378\) 0 0
\(379\) −4.72569 −0.242742 −0.121371 0.992607i \(-0.538729\pi\)
−0.121371 + 0.992607i \(0.538729\pi\)
\(380\) −0.342344 0.197652i −0.0175619 0.0101394i
\(381\) 0 0
\(382\) 11.6719 + 20.2162i 0.597184 + 1.03435i
\(383\) −17.1174 29.6483i −0.874660 1.51496i −0.857124 0.515110i \(-0.827751\pi\)
−0.0175357 0.999846i \(-0.505582\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 21.2878i 1.08352i
\(387\) 0 0
\(388\) 0.419497i 0.0212967i
\(389\) −16.0167 9.24726i −0.812080 0.468855i 0.0355974 0.999366i \(-0.488667\pi\)
−0.847678 + 0.530511i \(0.822000\pi\)
\(390\) 0 0
\(391\) 7.42288 4.28560i 0.375391 0.216732i
\(392\) 0 0
\(393\) 0 0
\(394\) 6.42334 11.1255i 0.323603 0.560497i
\(395\) 0.462863 0.0232892
\(396\) 0 0
\(397\) 2.03373i 0.102070i −0.998697 0.0510350i \(-0.983748\pi\)
0.998697 0.0510350i \(-0.0162520\pi\)
\(398\) −1.87150 + 3.24154i −0.0938100 + 0.162484i
\(399\) 0 0
\(400\) 2.49771 + 4.32617i 0.124886 + 0.216308i
\(401\) −27.2137 + 15.7118i −1.35899 + 0.784611i −0.989487 0.144620i \(-0.953804\pi\)
−0.369499 + 0.929231i \(0.620471\pi\)
\(402\) 0 0
\(403\) 2.43088 4.21041i 0.121091 0.209736i
\(404\) 17.3924 0.865305
\(405\) 0 0
\(406\) 0 0
\(407\) −29.6409 17.1132i −1.46925 0.848270i
\(408\) 0 0
\(409\) −0.476819 + 0.275292i −0.0235772 + 0.0136123i −0.511742 0.859139i \(-0.671000\pi\)
0.488165 + 0.872751i \(0.337666\pi\)
\(410\) −0.605885 + 0.349808i −0.0299225 + 0.0172758i
\(411\) 0 0
\(412\) −0.867010 0.500568i −0.0427145 0.0246612i
\(413\) 0 0
\(414\) 0 0
\(415\) −0.531653 −0.0260978
\(416\) −1.92020 + 3.32589i −0.0941457 + 0.163065i
\(417\) 0 0
\(418\) 19.8967 11.4874i 0.973179 0.561865i
\(419\) −11.5649 20.0310i −0.564984 0.978580i −0.997051 0.0767392i \(-0.975549\pi\)
0.432068 0.901841i \(-0.357784\pi\)
\(420\) 0 0
\(421\) 5.49773 9.52235i 0.267943 0.464091i −0.700387 0.713763i \(-0.746989\pi\)
0.968330 + 0.249672i \(0.0803228\pi\)
\(422\) 9.39162i 0.457177i
\(423\) 0 0
\(424\) 7.26203 0.352675
\(425\) 3.87314 6.70848i 0.187875 0.325409i
\(426\) 0 0
\(427\) 0 0
\(428\) 8.02352 4.63238i 0.387832 0.223915i
\(429\) 0 0
\(430\) 0.0861666 + 0.0497483i 0.00415532 + 0.00239908i
\(431\) 8.31061i 0.400308i −0.979764 0.200154i \(-0.935856\pi\)
0.979764 0.200154i \(-0.0641442\pi\)
\(432\) 0 0
\(433\) 26.1051i 1.25453i −0.778806 0.627265i \(-0.784174\pi\)
0.778806 0.627265i \(-0.215826\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.821501 1.42288i −0.0393428 0.0681437i
\(437\) 16.1597 + 27.9894i 0.773022 + 1.33891i
\(438\) 0 0
\(439\) −35.3605 20.4154i −1.68766 0.974373i −0.956301 0.292383i \(-0.905552\pi\)
−0.731362 0.681990i \(-0.761115\pi\)
\(440\) 0.265644 0.0126641
\(441\) 0 0
\(442\) 5.95522 0.283261
\(443\) −15.8106 9.12824i −0.751183 0.433696i 0.0749382 0.997188i \(-0.476124\pi\)
−0.826121 + 0.563492i \(0.809457\pi\)
\(444\) 0 0
\(445\) 0.395328 + 0.684728i 0.0187403 + 0.0324592i
\(446\) −10.2592 17.7695i −0.485788 0.841410i
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0881i 1.23117i 0.788070 + 0.615586i \(0.211081\pi\)
−0.788070 + 0.615586i \(0.788919\pi\)
\(450\) 0 0
\(451\) 40.6609i 1.91465i
\(452\) −13.6537 7.88296i −0.642216 0.370783i
\(453\) 0 0
\(454\) 16.2610 9.38828i 0.763166 0.440614i
\(455\) 0 0
\(456\) 0 0
\(457\) 3.19987 5.54233i 0.149683 0.259259i −0.781427 0.623997i \(-0.785508\pi\)
0.931110 + 0.364737i \(0.118841\pi\)
\(458\) 4.98531 0.232948
\(459\) 0 0
\(460\) 0.373691i 0.0174234i
\(461\) −1.04099 + 1.80304i −0.0484836 + 0.0839761i −0.889249 0.457424i \(-0.848772\pi\)
0.840765 + 0.541400i \(0.182106\pi\)
\(462\) 0 0
\(463\) −0.959084 1.66118i −0.0445724 0.0772017i 0.842879 0.538104i \(-0.180859\pi\)
−0.887451 + 0.460902i \(0.847526\pi\)
\(464\) 1.20840 0.697671i 0.0560986 0.0323885i
\(465\) 0 0
\(466\) 7.37548 12.7747i 0.341663 0.591777i
\(467\) −34.2355 −1.58423 −0.792116 0.610371i \(-0.791021\pi\)
−0.792116 + 0.610371i \(0.791021\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.207419 0.119754i −0.00956754 0.00552382i
\(471\) 0 0
\(472\) −8.14138 + 4.70043i −0.374737 + 0.216355i
\(473\) −5.00791 + 2.89132i −0.230264 + 0.132943i
\(474\) 0 0
\(475\) 25.2956 + 14.6044i 1.16064 + 0.670096i
\(476\) 0 0
\(477\) 0 0
\(478\) 0.179426 0.00820677
\(479\) −5.29123 + 9.16468i −0.241763 + 0.418745i −0.961216 0.275795i \(-0.911059\pi\)
0.719454 + 0.694540i \(0.244392\pi\)
\(480\) 0 0
\(481\) 28.9708 16.7263i 1.32095 0.762653i
\(482\) −3.06679 5.31183i −0.139688 0.241947i
\(483\) 0 0
\(484\) −2.21947 + 3.84424i −0.100885 + 0.174738i
\(485\) 0.0283609i 0.00128780i
\(486\) 0 0
\(487\) −11.9161 −0.539969 −0.269985 0.962865i \(-0.587019\pi\)
−0.269985 + 0.962865i \(0.587019\pi\)
\(488\) −0.0407562 + 0.0705919i −0.00184495 + 0.00319554i
\(489\) 0 0
\(490\) 0 0
\(491\) 14.9826 8.65023i 0.676157 0.390379i −0.122248 0.992500i \(-0.539010\pi\)
0.798406 + 0.602120i \(0.205677\pi\)
\(492\) 0 0
\(493\) −1.87384 1.08186i −0.0843933 0.0487245i
\(494\) 22.4553i 1.01031i
\(495\) 0 0
\(496\) 1.26595i 0.0568429i
\(497\) 0 0
\(498\) 0 0
\(499\) 6.41484 + 11.1108i 0.287168 + 0.497389i 0.973133 0.230246i \(-0.0739530\pi\)
−0.685965 + 0.727635i \(0.740620\pi\)
\(500\) 0.337880 + 0.585225i 0.0151104 + 0.0261721i
\(501\) 0 0
\(502\) 0.963852 + 0.556480i 0.0430188 + 0.0248369i
\(503\) 10.9868 0.489878 0.244939 0.969539i \(-0.421232\pi\)
0.244939 + 0.969539i \(0.421232\pi\)
\(504\) 0 0
\(505\) 1.17585 0.0523245
\(506\) −18.8088 10.8593i −0.836152 0.482753i
\(507\) 0 0
\(508\) −9.53878 16.5216i −0.423215 0.733030i
\(509\) 14.4838 + 25.0868i 0.641985 + 1.11195i 0.984989 + 0.172617i \(0.0552223\pi\)
−0.343004 + 0.939334i \(0.611444\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 4.74732i 0.209395i
\(515\) −0.0586158 0.0338419i −0.00258292 0.00149125i
\(516\) 0 0
\(517\) 12.0550 6.95996i 0.530178 0.306099i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.129819 + 0.224853i −0.00569293 + 0.00986045i
\(521\) −11.4427 −0.501312 −0.250656 0.968076i \(-0.580646\pi\)
−0.250656 + 0.968076i \(0.580646\pi\)
\(522\) 0 0
\(523\) 16.3432i 0.714639i 0.933982 + 0.357320i \(0.116309\pi\)
−0.933982 + 0.357320i \(0.883691\pi\)
\(524\) −9.33404 + 16.1670i −0.407759 + 0.706260i
\(525\) 0 0
\(526\) 2.10817 + 3.65146i 0.0919206 + 0.159211i
\(527\) 1.70008 0.981539i 0.0740565 0.0427565i
\(528\) 0 0
\(529\) 3.77610 6.54039i 0.164178 0.284365i
\(530\) 0.490963 0.0213261
\(531\) 0 0
\(532\) 0 0
\(533\) 34.4173 + 19.8708i 1.49078 + 0.860700i
\(534\) 0 0
\(535\) 0.542445 0.313181i 0.0234520 0.0135400i
\(536\) −13.2893 + 7.67257i −0.574010 + 0.331405i
\(537\) 0 0
\(538\) 13.8090 + 7.97265i 0.595350 + 0.343725i
\(539\) 0 0
\(540\) 0 0
\(541\) −31.9505 −1.37366 −0.686830 0.726819i \(-0.740998\pi\)
−0.686830 + 0.726819i \(0.740998\pi\)
\(542\) −8.19335 + 14.1913i −0.351934 + 0.609568i
\(543\) 0 0
\(544\) −1.34292 + 0.775337i −0.0575774 + 0.0332423i
\(545\) −0.0555391 0.0961966i −0.00237903 0.00412061i
\(546\) 0 0
\(547\) 15.4351 26.7344i 0.659958 1.14308i −0.320668 0.947192i \(-0.603908\pi\)
0.980626 0.195889i \(-0.0627591\pi\)
\(548\) 6.28537i 0.268498i
\(549\) 0 0
\(550\) −19.6283 −0.836951
\(551\) 4.07936 7.06565i 0.173786 0.301007i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.60735 0.928004i 0.0682897 0.0394271i
\(555\) 0 0
\(556\) 5.49596 + 3.17309i 0.233081 + 0.134569i
\(557\) 14.1333i 0.598849i 0.954120 + 0.299424i \(0.0967946\pi\)
−0.954120 + 0.299424i \(0.903205\pi\)
\(558\) 0 0
\(559\) 5.65190i 0.239050i
\(560\) 0 0
\(561\) 0 0
\(562\) 0.362830 + 0.628441i 0.0153051 + 0.0265092i
\(563\) −2.55718 4.42916i −0.107772 0.186667i 0.807095 0.590421i \(-0.201038\pi\)
−0.914867 + 0.403754i \(0.867705\pi\)
\(564\) 0 0
\(565\) −0.923083 0.532942i −0.0388344 0.0224211i
\(566\) 11.6276 0.488746
\(567\) 0 0
\(568\) 4.30975 0.180833
\(569\) 32.2337 + 18.6101i 1.35131 + 0.780177i 0.988433 0.151661i \(-0.0484623\pi\)
0.362874 + 0.931838i \(0.381796\pi\)
\(570\) 0 0
\(571\) −2.63869 4.57035i −0.110426 0.191263i 0.805516 0.592574i \(-0.201888\pi\)
−0.915942 + 0.401311i \(0.868555\pi\)
\(572\) −7.54494 13.0682i −0.315470 0.546410i
\(573\) 0 0
\(574\) 0 0
\(575\) 27.6118i 1.15149i
\(576\) 0 0
\(577\) 11.2257i 0.467331i 0.972317 + 0.233666i \(0.0750721\pi\)
−0.972317 + 0.233666i \(0.924928\pi\)
\(578\) −12.6400 7.29770i −0.525754 0.303544i
\(579\) 0 0
\(580\) 0.0816962 0.0471673i 0.00339225 0.00195852i
\(581\) 0 0
\(582\) 0 0
\(583\) −14.2671 + 24.7114i −0.590884 + 1.02344i
\(584\) 7.07564 0.292792
\(585\) 0 0
\(586\) 12.9007i 0.532922i
\(587\) −12.4037 + 21.4838i −0.511955 + 0.886732i 0.487949 + 0.872872i \(0.337745\pi\)
−0.999904 + 0.0138602i \(0.995588\pi\)
\(588\) 0 0
\(589\) 3.70108 + 6.41046i 0.152500 + 0.264138i
\(590\) −0.550413 + 0.317781i −0.0226602 + 0.0130828i
\(591\) 0 0
\(592\) −4.35534 + 7.54368i −0.179004 + 0.310043i
\(593\) −12.9476 −0.531696 −0.265848 0.964015i \(-0.585652\pi\)
−0.265848 + 0.964015i \(0.585652\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 7.21992 + 4.16842i 0.295739 + 0.170745i
\(597\) 0 0
\(598\) 18.3835 10.6137i 0.751758 0.434028i
\(599\) −20.9209 + 12.0787i −0.854804 + 0.493522i −0.862269 0.506451i \(-0.830957\pi\)
0.00746462 + 0.999972i \(0.497624\pi\)
\(600\) 0 0
\(601\) −15.3377 8.85525i −0.625640 0.361213i 0.153422 0.988161i \(-0.450971\pi\)
−0.779061 + 0.626948i \(0.784304\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −14.1544 −0.575935
\(605\) −0.150052 + 0.259897i −0.00610046 + 0.0105663i
\(606\) 0 0
\(607\) 5.27200 3.04379i 0.213984 0.123544i −0.389178 0.921163i \(-0.627241\pi\)
0.603162 + 0.797619i \(0.293907\pi\)
\(608\) −2.92356 5.06375i −0.118566 0.205362i
\(609\) 0 0
\(610\) −0.00275540 + 0.00477249i −0.000111563 + 0.000193233i
\(611\) 13.6052i 0.550407i
\(612\) 0 0
\(613\) −33.0053 −1.33307 −0.666535 0.745474i \(-0.732223\pi\)
−0.666535 + 0.745474i \(0.732223\pi\)
\(614\) −10.2555 + 17.7631i −0.413880 + 0.716861i
\(615\) 0 0
\(616\) 0 0
\(617\) 8.36942 4.83209i 0.336940 0.194533i −0.321978 0.946747i \(-0.604348\pi\)
0.658918 + 0.752215i \(0.271014\pi\)
\(618\) 0 0
\(619\) −15.6756 9.05034i −0.630057 0.363764i 0.150717 0.988577i \(-0.451842\pi\)
−0.780774 + 0.624813i \(0.785175\pi\)
\(620\) 0.0855870i 0.00343726i
\(621\) 0 0
\(622\) 15.0288i 0.602601i
\(623\) 0 0
\(624\) 0 0
\(625\) −12.4657 21.5913i −0.498629 0.863651i
\(626\) −0.557679 0.965929i −0.0222893 0.0386063i
\(627\) 0 0
\(628\) −14.2542 8.22967i −0.568805 0.328400i
\(629\) 13.5074 0.538577
\(630\) 0 0
\(631\) −5.07079 −0.201865 −0.100932 0.994893i \(-0.532183\pi\)
−0.100932 + 0.994893i \(0.532183\pi\)
\(632\) 5.92915 + 3.42320i 0.235849 + 0.136167i
\(633\) 0 0
\(634\) −0.616719 1.06819i −0.0244931 0.0424232i
\(635\) −0.644887 1.11698i −0.0255916 0.0443259i
\(636\) 0 0
\(637\) 0 0
\(638\) 5.48263i 0.217060i
\(639\) 0 0
\(640\) 0.0676069i 0.00267240i
\(641\) −7.62707 4.40349i −0.301251 0.173927i 0.341754 0.939790i \(-0.388979\pi\)
−0.643005 + 0.765862i \(0.722312\pi\)
\(642\) 0 0
\(643\) −2.52364 + 1.45702i −0.0995227 + 0.0574594i −0.548935 0.835865i \(-0.684967\pi\)
0.449413 + 0.893324i \(0.351633\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −4.53348 + 7.85222i −0.178367 + 0.308941i
\(647\) −10.3035 −0.405071 −0.202535 0.979275i \(-0.564918\pi\)
−0.202535 + 0.979275i \(0.564918\pi\)
\(648\) 0 0
\(649\) 36.9382i 1.44995i
\(650\) 9.59223 16.6142i 0.376238 0.651664i
\(651\) 0 0
\(652\) 4.53345 + 7.85216i 0.177544 + 0.307515i
\(653\) 15.3666 8.87194i 0.601343 0.347186i −0.168227 0.985748i \(-0.553804\pi\)
0.769570 + 0.638563i \(0.220471\pi\)
\(654\) 0 0
\(655\) −0.631045 + 1.09300i −0.0246570 + 0.0427071i
\(656\) −10.3483 −0.404033
\(657\) 0 0
\(658\) 0 0
\(659\) 4.08467 + 2.35828i 0.159116 + 0.0918657i 0.577444 0.816430i \(-0.304050\pi\)
−0.418328 + 0.908296i \(0.637384\pi\)
\(660\) 0 0
\(661\) 8.16557 4.71439i 0.317604 0.183369i −0.332720 0.943026i \(-0.607966\pi\)
0.650324 + 0.759657i \(0.274633\pi\)
\(662\) 4.35145 2.51231i 0.169124 0.0976438i
\(663\) 0 0
\(664\) −6.81032 3.93194i −0.264292 0.152589i
\(665\) 0 0
\(666\) 0 0
\(667\) −7.71262 −0.298634
\(668\) 7.64922 13.2488i 0.295957 0.512613i
\(669\) 0 0
\(670\) −0.898447 + 0.518719i −0.0347100 + 0.0200398i
\(671\) −0.160141 0.277372i −0.00618218 0.0107078i
\(672\) 0 0
\(673\) −6.42728 + 11.1324i −0.247753 + 0.429122i −0.962902 0.269851i \(-0.913026\pi\)
0.715149 + 0.698972i \(0.246359\pi\)
\(674\) 21.2711i 0.819333i
\(675\) 0 0
\(676\) 1.74870 0.0672579
\(677\) 24.5946 42.5991i 0.945248 1.63722i 0.189995 0.981785i \(-0.439153\pi\)
0.755253 0.655433i \(-0.227514\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.0907908 + 0.0524181i −0.00348167 + 0.00201014i
\(681\) 0 0
\(682\) −4.30781 2.48712i −0.164955 0.0952366i
\(683\) 41.8847i 1.60267i 0.598213 + 0.801337i \(0.295878\pi\)
−0.598213 + 0.801337i \(0.704122\pi\)
\(684\) 0 0
\(685\) 0.424934i 0.0162359i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.735847 + 1.27452i 0.0280539 + 0.0485908i
\(689\) −13.9446 24.1527i −0.531245 0.920144i
\(690\) 0 0
\(691\) −5.56780 3.21457i −0.211809 0.122288i 0.390343 0.920670i \(-0.372356\pi\)
−0.602152 + 0.798382i \(0.705690\pi\)
\(692\) −2.30125 −0.0874804
\(693\) 0 0
\(694\) −21.5735 −0.818919
\(695\) 0.371565 + 0.214523i 0.0140942 + 0.00813732i
\(696\) 0 0
\(697\) 8.02342 + 13.8970i 0.303909 + 0.526385i
\(698\) −13.9202 24.1105i −0.526888 0.912597i
\(699\) 0 0
\(700\) 0 0
\(701\) 33.7907i 1.27626i −0.769930 0.638129i \(-0.779709\pi\)
0.769930 0.638129i \(-0.220291\pi\)
\(702\) 0 0
\(703\) 50.9324i 1.92095i
\(704\) 3.40282 + 1.96462i 0.128249 + 0.0740444i
\(705\) 0 0
\(706\) −4.93850 + 2.85124i −0.185863 + 0.107308i
\(707\) 0 0
\(708\) 0 0
\(709\) 14.8416 25.7065i 0.557390 0.965427i −0.440324 0.897839i \(-0.645136\pi\)
0.997713 0.0675879i \(-0.0215303\pi\)
\(710\) 0.291369 0.0109349
\(711\) 0 0
\(712\) 11.6949i 0.438285i
\(713\) 3.49871 6.05995i 0.131028 0.226947i
\(714\) 0 0
\(715\) −0.510090 0.883501i −0.0190763 0.0330411i
\(716\) 13.8077 7.97186i 0.516017 0.297923i
\(717\) 0 0
\(718\) −10.7280 + 18.5815i −0.400366 + 0.693455i
\(719\) −36.3175 −1.35441 −0.677207 0.735792i \(-0.736810\pi\)
−0.677207 + 0.735792i \(0.736810\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −13.1538 7.59435i −0.489534 0.282632i
\(723\) 0 0
\(724\) −15.9804 + 9.22629i −0.593907 + 0.342892i
\(725\) −6.03648 + 3.48516i −0.224189 + 0.129436i
\(726\) 0 0
\(727\) 14.9225 + 8.61552i 0.553446 + 0.319532i 0.750511 0.660858i \(-0.229808\pi\)
−0.197065 + 0.980390i \(0.563141\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0.478362 0.0177050
\(731\) 1.14106 1.97637i 0.0422036 0.0730987i
\(732\) 0 0
\(733\) 37.2907 21.5298i 1.37736 0.795222i 0.385523 0.922698i \(-0.374021\pi\)
0.991842 + 0.127477i \(0.0406878\pi\)
\(734\) 4.60428 + 7.97484i 0.169947 + 0.294357i
\(735\) 0 0
\(736\) −2.76370 + 4.78687i −0.101871 + 0.176446i
\(737\) 60.2948i 2.22099i
\(738\) 0 0
\(739\) 3.75022 0.137954 0.0689770 0.997618i \(-0.478027\pi\)
0.0689770 + 0.997618i \(0.478027\pi\)
\(740\) −0.294451 + 0.510005i −0.0108242 + 0.0187481i
\(741\) 0 0
\(742\) 0 0
\(743\) 23.9862 13.8484i 0.879967 0.508049i 0.00931965 0.999957i \(-0.497033\pi\)
0.870648 + 0.491907i \(0.163700\pi\)
\(744\) 0 0
\(745\) 0.488116 + 0.281814i 0.0178832 + 0.0103249i
\(746\) 28.2000i 1.03248i
\(747\) 0 0
\(748\) 6.09297i 0.222781i
\(749\) 0 0
\(750\) 0 0
\(751\) 2.08856 + 3.61750i 0.0762127 + 0.132004i 0.901613 0.432544i \(-0.142384\pi\)
−0.825400 + 0.564548i \(0.809051\pi\)
\(752\) −1.77132 3.06802i −0.0645935 0.111879i
\(753\) 0 0
\(754\) −4.64075 2.67934i −0.169006 0.0975757i
\(755\) −0.956936 −0.0348264
\(756\) 0 0
\(757\) 35.9359 1.30611 0.653057 0.757309i \(-0.273486\pi\)
0.653057 + 0.757309i \(0.273486\pi\)
\(758\) −4.09257 2.36284i −0.148649 0.0858224i
\(759\) 0 0
\(760\) −0.197652 0.342344i −0.00716961 0.0124181i
\(761\) 14.5715 + 25.2385i 0.528216 + 0.914896i 0.999459 + 0.0328930i \(0.0104720\pi\)
−0.471243 + 0.882003i \(0.656195\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 23.3437i 0.844546i
\(765\) 0 0
\(766\) 34.2349i 1.23696i
\(767\) 31.2662 + 18.0515i 1.12896 + 0.651804i
\(768\) 0 0
\(769\) 0.795911 0.459519i 0.0287013 0.0165707i −0.485581 0.874192i \(-0.661392\pi\)
0.514282 + 0.857621i \(0.328058\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 10.6439 18.4357i 0.383082 0.663517i
\(773\) −9.39416 −0.337884 −0.168942 0.985626i \(-0.554035\pi\)
−0.168942 + 0.985626i \(0.554035\pi\)
\(774\) 0 0
\(775\) 6.32397i 0.227164i
\(776\) 0.209749 0.363295i 0.00752954 0.0130415i
\(777\) 0 0
\(778\) −9.24726 16.0167i −0.331530 0.574228i
\(779\) −52.4011 + 30.2538i −1.87747 + 1.08396i
\(780\) 0 0
\(781\) −8.46703 + 14.6653i −0.302974 + 0.524767i
\(782\) 8.57120 0.306506
\(783\) 0 0
\(784\) 0 0
\(785\) −0.963683 0.556383i −0.0343953 0.0198581i
\(786\) 0 0
\(787\) −26.4969 + 15.2980i −0.944513 + 0.545315i −0.891372 0.453272i \(-0.850257\pi\)
−0.0531407 + 0.998587i \(0.516923\pi\)
\(788\) 11.1255 6.42334i 0.396331 0.228822i
\(789\) 0 0
\(790\) 0.400851 + 0.231432i 0.0142617 + 0.00823397i
\(791\) 0 0
\(792\) 0 0
\(793\) 0.313041 0.0111164
\(794\) 1.01687 1.76126i 0.0360872 0.0625049i
\(795\) 0 0
\(796\) −3.24154 + 1.87150i −0.114893 + 0.0663337i
\(797\) 1.64717 + 2.85299i 0.0583459 + 0.101058i 0.893723 0.448619i \(-0.148084\pi\)
−0.835377 + 0.549677i \(0.814751\pi\)
\(798\) 0 0
\(799\) −2.74674 + 4.75750i −0.0971728 + 0.168308i
\(800\) 4.99543i 0.176615i
\(801\) 0 0
\(802\) −31.4236 −1.10961
\(803\) −13.9009 + 24.0771i −0.490554 + 0.849664i
\(804\) 0 0
\(805\) 0 0
\(806\) 4.21041 2.43088i 0.148305 0.0856242i
\(807\) 0 0
\(808\) 15.0623 + 8.69621i 0.529889 + 0.305932i
\(809\) 22.8437i 0.803143i 0.915828 + 0.401572i \(0.131536\pi\)
−0.915828 + 0.401572i \(0.868464\pi\)
\(810\) 0 0
\(811\) 23.9412i 0.840691i 0.907364 + 0.420345i \(0.138091\pi\)
−0.907364 + 0.420345i \(0.861909\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −17.1132 29.6409i −0.599818 1.03891i
\(815\) 0.306492 + 0.530860i 0.0107360 + 0.0185952i
\(816\) 0 0
\(817\) 7.45228 + 4.30258i 0.260722 + 0.150528i
\(818\) −0.550583 −0.0192507
\(819\) 0 0
\(820\) −0.699616 −0.0244316
\(821\) 1.97936 + 1.14278i 0.0690802 + 0.0398834i 0.534142 0.845395i \(-0.320635\pi\)
−0.465062 + 0.885278i \(0.653968\pi\)
\(822\) 0 0
\(823\) 11.4851 + 19.8928i 0.400347 + 0.693421i 0.993768 0.111471i \(-0.0355563\pi\)
−0.593421 + 0.804892i \(0.702223\pi\)
\(824\) −0.500568 0.867010i −0.0174381 0.0302037i
\(825\) 0 0
\(826\) 0 0
\(827\) 15.1679i 0.527438i 0.964600 + 0.263719i \(0.0849492\pi\)
−0.964600 + 0.263719i \(0.915051\pi\)
\(828\) 0 0
\(829\) 6.62574i 0.230122i 0.993358 + 0.115061i \(0.0367063\pi\)
−0.993358 + 0.115061i \(0.963294\pi\)
\(830\) −0.460425 0.265826i −0.0159816 0.00922697i
\(831\) 0 0
\(832\) −3.32589 + 1.92020i −0.115304 + 0.0665710i
\(833\) 0 0
\(834\) 0 0
\(835\) 0.517140 0.895712i 0.0178964 0.0309974i
\(836\) 22.9747 0.794597
\(837\) 0 0
\(838\) 23.1299i 0.799008i
\(839\) −23.8462 + 41.3029i −0.823264 + 1.42593i 0.0799756 + 0.996797i \(0.474516\pi\)
−0.903239 + 0.429138i \(0.858818\pi\)
\(840\) 0 0
\(841\) −13.5265 23.4286i −0.466431 0.807883i
\(842\) 9.52235 5.49773i 0.328162 0.189464i
\(843\) 0 0
\(844\) −4.69581 + 8.13339i −0.161637 + 0.279963i
\(845\) 0.118224 0.00406704
\(846\) 0 0
\(847\) 0 0
\(848\) 6.28910 + 3.63101i 0.215969 + 0.124690i
\(849\) 0 0
\(850\) 6.70848 3.87314i 0.230099 0.132848i
\(851\) 41.6970 24.0738i 1.42935 0.825238i
\(852\) 0 0
\(853\) 22.0983 + 12.7585i 0.756632 + 0.436842i 0.828085 0.560602i \(-0.189430\pi\)
−0.0714529 + 0.997444i \(0.522764\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.26477 0.316663
\(857\) 3.19043 5.52598i 0.108983 0.188764i −0.806376 0.591404i \(-0.798574\pi\)
0.915358 + 0.402640i \(0.131907\pi\)
\(858\) 0 0
\(859\) −29.7468 + 17.1743i −1.01495 + 0.585980i −0.912636 0.408773i \(-0.865957\pi\)
−0.102310 + 0.994753i \(0.532624\pi\)
\(860\) 0.0497483 + 0.0861666i 0.00169640 + 0.00293826i
\(861\) 0 0
\(862\) 4.15530 7.19720i 0.141530 0.245137i
\(863\) 36.1860i 1.23179i 0.787830 + 0.615893i \(0.211205\pi\)
−0.787830 + 0.615893i \(0.788795\pi\)
\(864\) 0 0
\(865\) −0.155580 −0.00528989
\(866\) 13.0525 22.6077i 0.443543 0.768240i
\(867\) 0 0
\(868\) 0 0
\(869\) −23.2971 + 13.4506i −0.790299 + 0.456279i
\(870\) 0 0
\(871\) 51.0362 + 29.4658i 1.72930 + 0.998410i
\(872\) 1.64300i 0.0556391i
\(873\) 0 0
\(874\) 32.3193i 1.09322i
\(875\) 0 0
\(876\) 0 0
\(877\) −17.0155 29.4716i −0.574571 0.995186i −0.996088 0.0883657i \(-0.971836\pi\)
0.421517 0.906820i \(-0.361498\pi\)
\(878\) −20.4154 35.3605i −0.688986 1.19336i
\(879\) 0 0
\(880\) 0.230054 + 0.132822i 0.00775513 + 0.00447742i
\(881\) −26.6961 −0.899416 −0.449708 0.893176i \(-0.648472\pi\)
−0.449708 + 0.893176i \(0.648472\pi\)
\(882\) 0 0
\(883\) 11.2126 0.377333 0.188667 0.982041i \(-0.439583\pi\)
0.188667 + 0.982041i \(0.439583\pi\)
\(884\) 5.15737 + 2.97761i 0.173461 + 0.100148i
\(885\) 0 0
\(886\) −9.12824 15.8106i −0.306669 0.531167i
\(887\) −5.09353 8.82225i −0.171024 0.296222i 0.767754 0.640745i \(-0.221374\pi\)
−0.938778 + 0.344522i \(0.888041\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.790656i 0.0265028i
\(891\) 0 0
\(892\) 20.5184i 0.687008i
\(893\) −17.9391 10.3571i −0.600308 0.346588i
\(894\) 0 0
\(895\) 0.933494 0.538953i 0.0312033 0.0180152i
\(896\) 0 0
\(897\) 0 0
\(898\) −13.0440 + 22.5929i −0.435285 + 0.753936i
\(899\) −1.76643 −0.0589139
\(900\) 0 0
\(901\) 11.2610i 0.375160i
\(902\) 20.3305 35.2134i 0.676931 1.17248i
\(903\) 0 0
\(904\) −7.88296 13.6537i −0.262183 0.454115i
\(905\) −1.08039 + 0.623761i −0.0359132 + 0.0207345i
\(906\) 0 0
\(907\) 7.57428 13.1190i 0.251500 0.435611i −0.712439 0.701734i \(-0.752409\pi\)
0.963939 + 0.266123i \(0.0857428\pi\)
\(908\) 18.7766 0.623122
\(909\) 0 0
\(910\) 0 0
\(911\) 8.43020 + 4.86718i 0.279305 + 0.161257i 0.633109 0.774063i \(-0.281779\pi\)
−0.353804 + 0.935320i \(0.615112\pi\)
\(912\) 0 0
\(913\) 26.7594 15.4496i 0.885607 0.511306i
\(914\) 5.54233 3.19987i 0.183324 0.105842i
\(915\) 0 0
\(916\) 4.31740 + 2.49265i 0.142651 + 0.0823596i
\(917\) 0 0
\(918\) 0 0
\(919\) 8.03276 0.264976 0.132488 0.991185i \(-0.457703\pi\)
0.132488 + 0.991185i \(0.457703\pi\)
\(920\) −0.186845 + 0.323625i −0.00616011 + 0.0106696i
\(921\) 0 0
\(922\) −1.80304 + 1.04099i −0.0593800 + 0.0342831i
\(923\) −8.27560 14.3338i −0.272395 0.471801i
\(924\) 0 0
\(925\) 21.7568 37.6839i 0.715360 1.23904i
\(926\) 1.91817i 0.0630349i
\(927\) 0 0
\(928\) 1.39534 0.0458043
\(929\) −13.1064 + 22.7010i −0.430007 + 0.744794i −0.996873 0.0790158i \(-0.974822\pi\)
0.566866 + 0.823810i \(0.308156\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 12.7747 7.37548i 0.418449 0.241592i
\(933\) 0 0
\(934\) −29.6488 17.1178i −0.970140 0.560111i
\(935\) 0.411927i 0.0134715i
\(936\) 0 0
\(937\) 37.5797i 1.22768i 0.789432 + 0.613838i \(0.210375\pi\)
−0.789432 + 0.613838i \(0.789625\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −0.119754 0.207419i −0.00390593 0.00676527i
\(941\) 4.63655 + 8.03074i 0.151147 + 0.261794i 0.931649 0.363358i \(-0.118370\pi\)
−0.780502 + 0.625153i \(0.785037\pi\)
\(942\) 0 0
\(943\) 49.5360 + 28.5996i 1.61311 + 0.931331i
\(944\) −9.40086 −0.305972
\(945\) 0 0
\(946\) −5.78264 −0.188010
\(947\) −12.0019 6.92928i −0.390008 0.225171i 0.292155 0.956371i \(-0.405628\pi\)
−0.682164 + 0.731199i \(0.738961\pi\)
\(948\) 0 0
\(949\) −13.5866 23.5328i −0.441041 0.763906i
\(950\) 14.6044 + 25.2956i 0.473830 + 0.820697i
\(951\) 0 0
\(952\) 0 0
\(953\) 2.65523i 0.0860115i −0.999075 0.0430057i \(-0.986307\pi\)
0.999075 0.0430057i \(-0.0136934\pi\)
\(954\) 0 0
\(955\) 1.57819i 0.0510692i
\(956\) 0.155388 + 0.0897132i 0.00502560 + 0.00290153i
\(957\) 0 0
\(958\) −9.16468 + 5.29123i −0.296098 + 0.170952i
\(959\) 0 0
\(960\) 0 0
\(961\) −14.6987 + 25.4589i −0.474151 + 0.821254i
\(962\) 33.4526 1.07855
\(963\) 0 0
\(964\) 6.13358i 0.197549i
\(965\) 0.719600 1.24638i 0.0231647 0.0401225i
\(966\) 0 0
\(967\) 7.14946 + 12.3832i 0.229911 + 0.398218i 0.957782 0.287497i \(-0.0928231\pi\)
−0.727870 + 0.685715i \(0.759490\pi\)
\(968\) −3.84424 + 2.21947i −0.123558 + 0.0713365i
\(969\) 0 0
\(970\) 0.0141804 0.0245613i 0.000455307 0.000788614i
\(971\) 0.261332 0.00838653 0.00419326 0.999991i \(-0.498665\pi\)
0.00419326 + 0.999991i \(0.498665\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −10.3196 5.95804i −0.330662 0.190908i
\(975\) 0 0
\(976\) −0.0705919 + 0.0407562i −0.00225959 + 0.00130457i
\(977\) 33.9113 19.5787i 1.08492 0.626378i 0.152700 0.988273i \(-0.451203\pi\)
0.932219 + 0.361894i \(0.117870\pi\)
\(978\) 0 0
\(979\) −39.7957 22.9760i −1.27188 0.734318i
\(980\) 0 0
\(981\) 0 0
\(982\) 17.3005 0.552080
\(983\) −13.1844 + 22.8361i −0.420517 + 0.728357i −0.995990 0.0894636i \(-0.971485\pi\)
0.575473 + 0.817821i \(0.304818\pi\)
\(984\) 0 0
\(985\) 0.752163 0.434262i 0.0239659 0.0138367i
\(986\) −1.08186 1.87384i −0.0344534 0.0596751i
\(987\) 0 0
\(988\) −11.2276 + 19.4468i −0.357199 + 0.618686i
\(989\) 8.13464i 0.258667i
\(990\) 0 0
\(991\) 45.9032 1.45816 0.729082 0.684426i \(-0.239947\pi\)
0.729082 + 0.684426i \(0.239947\pi\)
\(992\) −0.632976 + 1.09635i −0.0200970 + 0.0348090i
\(993\) 0 0
\(994\) 0 0
\(995\) −0.219150 + 0.126526i −0.00694753 + 0.00401116i
\(996\) 0 0
\(997\) 18.5929 + 10.7346i 0.588844 + 0.339969i 0.764640 0.644457i \(-0.222917\pi\)
−0.175796 + 0.984427i \(0.556250\pi\)
\(998\) 12.8297i 0.406116i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.m.b.1763.7 16
3.2 odd 2 882.2.m.b.587.4 16
7.2 even 3 378.2.l.a.143.3 16
7.3 odd 6 378.2.t.a.89.3 16
7.4 even 3 2646.2.t.b.1979.2 16
7.5 odd 6 2646.2.l.a.521.2 16
7.6 odd 2 2646.2.m.a.1763.6 16
9.4 even 3 882.2.m.a.293.1 16
9.5 odd 6 2646.2.m.a.881.6 16
21.2 odd 6 126.2.l.a.101.6 yes 16
21.5 even 6 882.2.l.b.227.7 16
21.11 odd 6 882.2.t.a.803.6 16
21.17 even 6 126.2.t.a.47.7 yes 16
21.20 even 2 882.2.m.a.587.1 16
28.3 even 6 3024.2.df.c.1601.5 16
28.23 odd 6 3024.2.ca.c.2033.5 16
63.2 odd 6 1134.2.k.a.647.6 16
63.4 even 3 882.2.l.b.509.3 16
63.5 even 6 2646.2.t.b.2285.2 16
63.13 odd 6 882.2.m.b.293.4 16
63.16 even 3 1134.2.k.b.647.3 16
63.23 odd 6 378.2.t.a.17.3 16
63.31 odd 6 126.2.l.a.5.2 16
63.32 odd 6 2646.2.l.a.1097.6 16
63.38 even 6 1134.2.k.b.971.3 16
63.40 odd 6 882.2.t.a.815.6 16
63.41 even 6 inner 2646.2.m.b.881.7 16
63.52 odd 6 1134.2.k.a.971.6 16
63.58 even 3 126.2.t.a.59.7 yes 16
63.59 even 6 378.2.l.a.341.7 16
84.23 even 6 1008.2.ca.c.353.4 16
84.59 odd 6 1008.2.df.c.929.2 16
252.23 even 6 3024.2.df.c.17.5 16
252.31 even 6 1008.2.ca.c.257.4 16
252.59 odd 6 3024.2.ca.c.2609.5 16
252.247 odd 6 1008.2.df.c.689.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.2 16 63.31 odd 6
126.2.l.a.101.6 yes 16 21.2 odd 6
126.2.t.a.47.7 yes 16 21.17 even 6
126.2.t.a.59.7 yes 16 63.58 even 3
378.2.l.a.143.3 16 7.2 even 3
378.2.l.a.341.7 16 63.59 even 6
378.2.t.a.17.3 16 63.23 odd 6
378.2.t.a.89.3 16 7.3 odd 6
882.2.l.b.227.7 16 21.5 even 6
882.2.l.b.509.3 16 63.4 even 3
882.2.m.a.293.1 16 9.4 even 3
882.2.m.a.587.1 16 21.20 even 2
882.2.m.b.293.4 16 63.13 odd 6
882.2.m.b.587.4 16 3.2 odd 2
882.2.t.a.803.6 16 21.11 odd 6
882.2.t.a.815.6 16 63.40 odd 6
1008.2.ca.c.257.4 16 252.31 even 6
1008.2.ca.c.353.4 16 84.23 even 6
1008.2.df.c.689.2 16 252.247 odd 6
1008.2.df.c.929.2 16 84.59 odd 6
1134.2.k.a.647.6 16 63.2 odd 6
1134.2.k.a.971.6 16 63.52 odd 6
1134.2.k.b.647.3 16 63.16 even 3
1134.2.k.b.971.3 16 63.38 even 6
2646.2.l.a.521.2 16 7.5 odd 6
2646.2.l.a.1097.6 16 63.32 odd 6
2646.2.m.a.881.6 16 9.5 odd 6
2646.2.m.a.1763.6 16 7.6 odd 2
2646.2.m.b.881.7 16 63.41 even 6 inner
2646.2.m.b.1763.7 16 1.1 even 1 trivial
2646.2.t.b.1979.2 16 7.4 even 3
2646.2.t.b.2285.2 16 63.5 even 6
3024.2.ca.c.2033.5 16 28.23 odd 6
3024.2.ca.c.2609.5 16 252.59 odd 6
3024.2.df.c.17.5 16 252.23 even 6
3024.2.df.c.1601.5 16 28.3 even 6