Properties

Label 2646.2.l.a.521.2
Level $2646$
Weight $2$
Character 2646.521
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(521,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,0,0,0,0,0,0,-12,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.2
Root \(0.320287 + 1.70218i\) of defining polynomial
Character \(\chi\) \(=\) 2646.521
Dual form 2646.2.l.a.1097.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-0.0338034 + 0.0585493i) q^{5} +1.00000i q^{8} +(0.0585493 + 0.0338034i) q^{10} +(3.40282 - 1.96462i) q^{11} +(-3.32589 + 1.92020i) q^{13} +1.00000 q^{16} +(0.775337 - 1.34292i) q^{17} +(-5.06375 + 2.92356i) q^{19} +(0.0338034 - 0.0585493i) q^{20} +(-1.96462 - 3.40282i) q^{22} +(-4.78687 - 2.76370i) q^{23} +(2.49771 + 4.32617i) q^{25} +(1.92020 + 3.32589i) q^{26} +(-1.20840 - 0.697671i) q^{29} -1.26595i q^{31} -1.00000i q^{32} +(-1.34292 - 0.775337i) q^{34} +(-4.35534 - 7.54368i) q^{37} +(2.92356 + 5.06375i) q^{38} +(-0.0585493 - 0.0338034i) q^{40} +(-5.17415 - 8.96188i) q^{41} +(0.735847 - 1.27452i) q^{43} +(-3.40282 + 1.96462i) q^{44} +(-2.76370 + 4.78687i) q^{46} -3.54265 q^{47} +(4.32617 - 2.49771i) q^{50} +(3.32589 - 1.92020i) q^{52} +(6.28910 + 3.63101i) q^{53} +0.265644i q^{55} +(-0.697671 + 1.20840i) q^{58} +9.40086 q^{59} +0.0815124i q^{61} -1.26595 q^{62} -1.00000 q^{64} -0.259638i q^{65} -15.3451 q^{67} +(-0.775337 + 1.34292i) q^{68} -4.30975i q^{71} +(-6.12768 - 3.53782i) q^{73} +(-7.54368 + 4.35534i) q^{74} +(5.06375 - 2.92356i) q^{76} -6.84639 q^{79} +(-0.0338034 + 0.0585493i) q^{80} +(-8.96188 + 5.17415i) q^{82} +(3.93194 - 6.81032i) q^{83} +(0.0524181 + 0.0907908i) q^{85} +(-1.27452 - 0.735847i) q^{86} +(1.96462 + 3.40282i) q^{88} +(5.84745 + 10.1281i) q^{89} +(4.78687 + 2.76370i) q^{92} +3.54265i q^{94} -0.395305i q^{95} +(0.363295 + 0.209749i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 12 q^{11} - 6 q^{13} + 16 q^{16} - 18 q^{17} + 6 q^{23} - 8 q^{25} + 12 q^{26} - 6 q^{29} - 2 q^{37} - 6 q^{41} - 2 q^{43} + 12 q^{44} + 6 q^{46} - 36 q^{47} + 12 q^{50} + 6 q^{52} + 36 q^{53}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −0.0338034 + 0.0585493i −0.0151174 + 0.0261840i −0.873485 0.486851i \(-0.838146\pi\)
0.858368 + 0.513035i \(0.171479\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.0585493 + 0.0338034i 0.0185149 + 0.0106896i
\(11\) 3.40282 1.96462i 1.02599 0.592356i 0.110157 0.993914i \(-0.464865\pi\)
0.915833 + 0.401559i \(0.131531\pi\)
\(12\) 0 0
\(13\) −3.32589 + 1.92020i −0.922435 + 0.532568i −0.884411 0.466709i \(-0.845440\pi\)
−0.0380241 + 0.999277i \(0.512106\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.775337 1.34292i 0.188047 0.325707i −0.756552 0.653933i \(-0.773118\pi\)
0.944599 + 0.328227i \(0.106451\pi\)
\(18\) 0 0
\(19\) −5.06375 + 2.92356i −1.16170 + 0.670710i −0.951712 0.306994i \(-0.900677\pi\)
−0.209991 + 0.977703i \(0.567344\pi\)
\(20\) 0.0338034 0.0585493i 0.00755868 0.0130920i
\(21\) 0 0
\(22\) −1.96462 3.40282i −0.418859 0.725484i
\(23\) −4.78687 2.76370i −0.998132 0.576272i −0.0904369 0.995902i \(-0.528826\pi\)
−0.907695 + 0.419630i \(0.862160\pi\)
\(24\) 0 0
\(25\) 2.49771 + 4.32617i 0.499543 + 0.865234i
\(26\) 1.92020 + 3.32589i 0.376583 + 0.652260i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.20840 0.697671i −0.224394 0.129554i 0.383589 0.923504i \(-0.374688\pi\)
−0.607983 + 0.793950i \(0.708021\pi\)
\(30\) 0 0
\(31\) 1.26595i 0.227372i −0.993517 0.113686i \(-0.963734\pi\)
0.993517 0.113686i \(-0.0362657\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.34292 0.775337i −0.230309 0.132969i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.35534 7.54368i −0.716014 1.24017i −0.962567 0.271044i \(-0.912631\pi\)
0.246553 0.969129i \(-0.420702\pi\)
\(38\) 2.92356 + 5.06375i 0.474263 + 0.821448i
\(39\) 0 0
\(40\) −0.0585493 0.0338034i −0.00925745 0.00534479i
\(41\) −5.17415 8.96188i −0.808066 1.39961i −0.914202 0.405260i \(-0.867181\pi\)
0.106136 0.994352i \(-0.466152\pi\)
\(42\) 0 0
\(43\) 0.735847 1.27452i 0.112216 0.194363i −0.804448 0.594023i \(-0.797539\pi\)
0.916663 + 0.399660i \(0.130872\pi\)
\(44\) −3.40282 + 1.96462i −0.512995 + 0.296178i
\(45\) 0 0
\(46\) −2.76370 + 4.78687i −0.407486 + 0.705786i
\(47\) −3.54265 −0.516748 −0.258374 0.966045i \(-0.583187\pi\)
−0.258374 + 0.966045i \(0.583187\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 4.32617 2.49771i 0.611813 0.353230i
\(51\) 0 0
\(52\) 3.32589 1.92020i 0.461218 0.266284i
\(53\) 6.28910 + 3.63101i 0.863874 + 0.498758i 0.865308 0.501241i \(-0.167123\pi\)
−0.00143340 + 0.999999i \(0.500456\pi\)
\(54\) 0 0
\(55\) 0.265644i 0.0358194i
\(56\) 0 0
\(57\) 0 0
\(58\) −0.697671 + 1.20840i −0.0916087 + 0.158671i
\(59\) 9.40086 1.22389 0.611944 0.790901i \(-0.290388\pi\)
0.611944 + 0.790901i \(0.290388\pi\)
\(60\) 0 0
\(61\) 0.0815124i 0.0104366i 0.999986 + 0.00521830i \(0.00166104\pi\)
−0.999986 + 0.00521830i \(0.998339\pi\)
\(62\) −1.26595 −0.160776
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.259638i 0.0322041i
\(66\) 0 0
\(67\) −15.3451 −1.87471 −0.937354 0.348379i \(-0.886732\pi\)
−0.937354 + 0.348379i \(0.886732\pi\)
\(68\) −0.775337 + 1.34292i −0.0940234 + 0.162853i
\(69\) 0 0
\(70\) 0 0
\(71\) 4.30975i 0.511474i −0.966746 0.255737i \(-0.917682\pi\)
0.966746 0.255737i \(-0.0823181\pi\)
\(72\) 0 0
\(73\) −6.12768 3.53782i −0.717191 0.414070i 0.0965271 0.995330i \(-0.469227\pi\)
−0.813718 + 0.581260i \(0.802560\pi\)
\(74\) −7.54368 + 4.35534i −0.876935 + 0.506299i
\(75\) 0 0
\(76\) 5.06375 2.92356i 0.580852 0.335355i
\(77\) 0 0
\(78\) 0 0
\(79\) −6.84639 −0.770279 −0.385140 0.922858i \(-0.625847\pi\)
−0.385140 + 0.922858i \(0.625847\pi\)
\(80\) −0.0338034 + 0.0585493i −0.00377934 + 0.00654601i
\(81\) 0 0
\(82\) −8.96188 + 5.17415i −0.989675 + 0.571389i
\(83\) 3.93194 6.81032i 0.431587 0.747530i −0.565423 0.824801i \(-0.691287\pi\)
0.997010 + 0.0772707i \(0.0246206\pi\)
\(84\) 0 0
\(85\) 0.0524181 + 0.0907908i 0.00568554 + 0.00984765i
\(86\) −1.27452 0.735847i −0.137435 0.0793484i
\(87\) 0 0
\(88\) 1.96462 + 3.40282i 0.209429 + 0.362742i
\(89\) 5.84745 + 10.1281i 0.619828 + 1.07357i 0.989517 + 0.144418i \(0.0461311\pi\)
−0.369688 + 0.929156i \(0.620536\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.78687 + 2.76370i 0.499066 + 0.288136i
\(93\) 0 0
\(94\) 3.54265i 0.365396i
\(95\) 0.395305i 0.0405574i
\(96\) 0 0
\(97\) 0.363295 + 0.209749i 0.0368870 + 0.0212967i 0.518330 0.855181i \(-0.326554\pi\)
−0.481443 + 0.876477i \(0.659887\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.49771 4.32617i −0.249771 0.432617i
\(101\) −8.69621 15.0623i −0.865305 1.49875i −0.866744 0.498753i \(-0.833791\pi\)
0.00143888 0.999999i \(-0.499542\pi\)
\(102\) 0 0
\(103\) −0.867010 0.500568i −0.0854290 0.0493225i 0.456677 0.889633i \(-0.349040\pi\)
−0.542106 + 0.840310i \(0.682373\pi\)
\(104\) −1.92020 3.32589i −0.188291 0.326130i
\(105\) 0 0
\(106\) 3.63101 6.28910i 0.352675 0.610851i
\(107\) −8.02352 + 4.63238i −0.775663 + 0.447829i −0.834891 0.550415i \(-0.814469\pi\)
0.0592279 + 0.998244i \(0.481136\pi\)
\(108\) 0 0
\(109\) 0.821501 1.42288i 0.0786855 0.136287i −0.823998 0.566593i \(-0.808261\pi\)
0.902683 + 0.430306i \(0.141594\pi\)
\(110\) 0.265644 0.0253281
\(111\) 0 0
\(112\) 0 0
\(113\) −13.6537 + 7.88296i −1.28443 + 0.741567i −0.977655 0.210215i \(-0.932584\pi\)
−0.306776 + 0.951782i \(0.599250\pi\)
\(114\) 0 0
\(115\) 0.323625 0.186845i 0.0301782 0.0174234i
\(116\) 1.20840 + 0.697671i 0.112197 + 0.0647771i
\(117\) 0 0
\(118\) 9.40086i 0.865419i
\(119\) 0 0
\(120\) 0 0
\(121\) 2.21947 3.84424i 0.201770 0.349476i
\(122\) 0.0815124 0.00737979
\(123\) 0 0
\(124\) 1.26595i 0.113686i
\(125\) −0.675760 −0.0604418
\(126\) 0 0
\(127\) −19.0776 −1.69286 −0.846430 0.532501i \(-0.821252\pi\)
−0.846430 + 0.532501i \(0.821252\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −0.259638 −0.0227717
\(131\) −9.33404 + 16.1670i −0.815519 + 1.41252i 0.0934359 + 0.995625i \(0.470215\pi\)
−0.908955 + 0.416895i \(0.863118\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 15.3451i 1.32562i
\(135\) 0 0
\(136\) 1.34292 + 0.775337i 0.115155 + 0.0664846i
\(137\) −5.44329 + 3.14269i −0.465052 + 0.268498i −0.714166 0.699976i \(-0.753194\pi\)
0.249114 + 0.968474i \(0.419861\pi\)
\(138\) 0 0
\(139\) −5.49596 + 3.17309i −0.466161 + 0.269138i −0.714631 0.699501i \(-0.753406\pi\)
0.248470 + 0.968640i \(0.420072\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.30975 −0.361667
\(143\) −7.54494 + 13.0682i −0.630939 + 1.09282i
\(144\) 0 0
\(145\) 0.0816962 0.0471673i 0.00678450 0.00391703i
\(146\) −3.53782 + 6.12768i −0.292792 + 0.507130i
\(147\) 0 0
\(148\) 4.35534 + 7.54368i 0.358007 + 0.620087i
\(149\) −7.21992 4.16842i −0.591479 0.341491i 0.174203 0.984710i \(-0.444265\pi\)
−0.765682 + 0.643219i \(0.777598\pi\)
\(150\) 0 0
\(151\) −7.07721 12.2581i −0.575935 0.997548i −0.995939 0.0900264i \(-0.971305\pi\)
0.420005 0.907522i \(-0.362028\pi\)
\(152\) −2.92356 5.06375i −0.237132 0.410724i
\(153\) 0 0
\(154\) 0 0
\(155\) 0.0741205 + 0.0427935i 0.00595350 + 0.00343726i
\(156\) 0 0
\(157\) 16.4593i 1.31360i 0.754065 + 0.656799i \(0.228090\pi\)
−0.754065 + 0.656799i \(0.771910\pi\)
\(158\) 6.84639i 0.544670i
\(159\) 0 0
\(160\) 0.0585493 + 0.0338034i 0.00462873 + 0.00267240i
\(161\) 0 0
\(162\) 0 0
\(163\) −4.53345 7.85216i −0.355087 0.615029i 0.632046 0.774931i \(-0.282215\pi\)
−0.987133 + 0.159902i \(0.948882\pi\)
\(164\) 5.17415 + 8.96188i 0.404033 + 0.699806i
\(165\) 0 0
\(166\) −6.81032 3.93194i −0.528584 0.305178i
\(167\) 7.64922 + 13.2488i 0.591914 + 1.02523i 0.993974 + 0.109612i \(0.0349608\pi\)
−0.402060 + 0.915613i \(0.631706\pi\)
\(168\) 0 0
\(169\) 0.874352 1.51442i 0.0672579 0.116494i
\(170\) 0.0907908 0.0524181i 0.00696334 0.00402029i
\(171\) 0 0
\(172\) −0.735847 + 1.27452i −0.0561078 + 0.0971815i
\(173\) −2.30125 −0.174961 −0.0874804 0.996166i \(-0.527882\pi\)
−0.0874804 + 0.996166i \(0.527882\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.40282 1.96462i 0.256497 0.148089i
\(177\) 0 0
\(178\) 10.1281 5.84745i 0.759132 0.438285i
\(179\) 13.8077 + 7.97186i 1.03203 + 0.595845i 0.917567 0.397582i \(-0.130151\pi\)
0.114467 + 0.993427i \(0.463484\pi\)
\(180\) 0 0
\(181\) 18.4526i 1.37157i −0.727804 0.685785i \(-0.759459\pi\)
0.727804 0.685785i \(-0.240541\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.76370 4.78687i 0.203743 0.352893i
\(185\) 0.588903 0.0432970
\(186\) 0 0
\(187\) 6.09297i 0.445562i
\(188\) 3.54265 0.258374
\(189\) 0 0
\(190\) −0.395305 −0.0286784
\(191\) 23.3437i 1.68909i −0.535484 0.844546i \(-0.679871\pi\)
0.535484 0.844546i \(-0.320129\pi\)
\(192\) 0 0
\(193\) 21.2878 1.53233 0.766164 0.642646i \(-0.222163\pi\)
0.766164 + 0.642646i \(0.222163\pi\)
\(194\) 0.209749 0.363295i 0.0150591 0.0260831i
\(195\) 0 0
\(196\) 0 0
\(197\) 12.8467i 0.915288i −0.889136 0.457644i \(-0.848693\pi\)
0.889136 0.457644i \(-0.151307\pi\)
\(198\) 0 0
\(199\) 3.24154 + 1.87150i 0.229787 + 0.132667i 0.610474 0.792037i \(-0.290979\pi\)
−0.380687 + 0.924704i \(0.624312\pi\)
\(200\) −4.32617 + 2.49771i −0.305906 + 0.176615i
\(201\) 0 0
\(202\) −15.0623 + 8.69621i −1.05978 + 0.611863i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.699616 0.0488633
\(206\) −0.500568 + 0.867010i −0.0348762 + 0.0604074i
\(207\) 0 0
\(208\) −3.32589 + 1.92020i −0.230609 + 0.133142i
\(209\) −11.4874 + 19.8967i −0.794597 + 1.37628i
\(210\) 0 0
\(211\) 4.69581 + 8.13339i 0.323273 + 0.559925i 0.981161 0.193190i \(-0.0618834\pi\)
−0.657888 + 0.753116i \(0.728550\pi\)
\(212\) −6.28910 3.63101i −0.431937 0.249379i
\(213\) 0 0
\(214\) 4.63238 + 8.02352i 0.316663 + 0.548477i
\(215\) 0.0497483 + 0.0861666i 0.00339281 + 0.00587651i
\(216\) 0 0
\(217\) 0 0
\(218\) −1.42288 0.821501i −0.0963697 0.0556391i
\(219\) 0 0
\(220\) 0.265644i 0.0179097i
\(221\) 5.95522i 0.400591i
\(222\) 0 0
\(223\) 17.7695 + 10.2592i 1.18993 + 0.687008i 0.958291 0.285793i \(-0.0922570\pi\)
0.231642 + 0.972801i \(0.425590\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 7.88296 + 13.6537i 0.524367 + 0.908230i
\(227\) −9.38828 16.2610i −0.623122 1.07928i −0.988901 0.148577i \(-0.952531\pi\)
0.365779 0.930702i \(-0.380803\pi\)
\(228\) 0 0
\(229\) 4.31740 + 2.49265i 0.285302 + 0.164719i 0.635821 0.771836i \(-0.280662\pi\)
−0.350519 + 0.936556i \(0.613995\pi\)
\(230\) −0.186845 0.323625i −0.0123202 0.0213392i
\(231\) 0 0
\(232\) 0.697671 1.20840i 0.0458043 0.0793354i
\(233\) −12.7747 + 7.37548i −0.836899 + 0.483184i −0.856209 0.516630i \(-0.827186\pi\)
0.0193101 + 0.999814i \(0.493853\pi\)
\(234\) 0 0
\(235\) 0.119754 0.207419i 0.00781186 0.0135305i
\(236\) −9.40086 −0.611944
\(237\) 0 0
\(238\) 0 0
\(239\) 0.155388 0.0897132i 0.0100512 0.00580307i −0.494966 0.868912i \(-0.664819\pi\)
0.505017 + 0.863109i \(0.331486\pi\)
\(240\) 0 0
\(241\) −5.31183 + 3.06679i −0.342165 + 0.197549i −0.661229 0.750184i \(-0.729965\pi\)
0.319064 + 0.947733i \(0.396632\pi\)
\(242\) −3.84424 2.21947i −0.247117 0.142673i
\(243\) 0 0
\(244\) 0.0815124i 0.00521830i
\(245\) 0 0
\(246\) 0 0
\(247\) 11.2276 19.4468i 0.714397 1.23737i
\(248\) 1.26595 0.0803880
\(249\) 0 0
\(250\) 0.675760i 0.0427388i
\(251\) −1.11296 −0.0702495 −0.0351247 0.999383i \(-0.511183\pi\)
−0.0351247 + 0.999383i \(0.511183\pi\)
\(252\) 0 0
\(253\) −21.7185 −1.36543
\(254\) 19.0776i 1.19703i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.37366 4.11130i 0.148065 0.256456i −0.782447 0.622717i \(-0.786029\pi\)
0.930512 + 0.366261i \(0.119362\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.259638i 0.0161020i
\(261\) 0 0
\(262\) 16.1670 + 9.33404i 0.998803 + 0.576659i
\(263\) −3.65146 + 2.10817i −0.225159 + 0.129995i −0.608337 0.793679i \(-0.708163\pi\)
0.383178 + 0.923675i \(0.374830\pi\)
\(264\) 0 0
\(265\) −0.425186 + 0.245482i −0.0261190 + 0.0150798i
\(266\) 0 0
\(267\) 0 0
\(268\) 15.3451 0.937354
\(269\) 7.97265 13.8090i 0.486101 0.841952i −0.513771 0.857927i \(-0.671752\pi\)
0.999872 + 0.0159753i \(0.00508533\pi\)
\(270\) 0 0
\(271\) −14.1913 + 8.19335i −0.862060 + 0.497710i −0.864702 0.502286i \(-0.832492\pi\)
0.00264173 + 0.999997i \(0.499159\pi\)
\(272\) 0.775337 1.34292i 0.0470117 0.0814267i
\(273\) 0 0
\(274\) 3.14269 + 5.44329i 0.189857 + 0.328841i
\(275\) 16.9986 + 9.81413i 1.02505 + 0.591814i
\(276\) 0 0
\(277\) 0.928004 + 1.60735i 0.0557583 + 0.0965763i 0.892557 0.450934i \(-0.148909\pi\)
−0.836799 + 0.547510i \(0.815576\pi\)
\(278\) 3.17309 + 5.49596i 0.190309 + 0.329626i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.628441 + 0.362830i 0.0374896 + 0.0216446i 0.518628 0.855000i \(-0.326443\pi\)
−0.481138 + 0.876645i \(0.659776\pi\)
\(282\) 0 0
\(283\) 11.6276i 0.691192i −0.938383 0.345596i \(-0.887677\pi\)
0.938383 0.345596i \(-0.112323\pi\)
\(284\) 4.30975i 0.255737i
\(285\) 0 0
\(286\) 13.0682 + 7.54494i 0.772740 + 0.446142i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.29770 + 12.6400i 0.429277 + 0.743529i
\(290\) −0.0471673 0.0816962i −0.00276976 0.00479737i
\(291\) 0 0
\(292\) 6.12768 + 3.53782i 0.358595 + 0.207035i
\(293\) −6.45034 11.1723i −0.376833 0.652694i 0.613766 0.789488i \(-0.289654\pi\)
−0.990600 + 0.136794i \(0.956320\pi\)
\(294\) 0 0
\(295\) −0.317781 + 0.550413i −0.0185019 + 0.0320463i
\(296\) 7.54368 4.35534i 0.438467 0.253149i
\(297\) 0 0
\(298\) −4.16842 + 7.21992i −0.241470 + 0.418239i
\(299\) 21.2275 1.22762
\(300\) 0 0
\(301\) 0 0
\(302\) −12.2581 + 7.07721i −0.705373 + 0.407247i
\(303\) 0 0
\(304\) −5.06375 + 2.92356i −0.290426 + 0.167677i
\(305\) −0.00477249 0.00275540i −0.000273272 0.000157774i
\(306\) 0 0
\(307\) 20.5111i 1.17063i −0.810806 0.585315i \(-0.800971\pi\)
0.810806 0.585315i \(-0.199029\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.0427935 0.0741205i 0.00243051 0.00420976i
\(311\) −15.0288 −0.852206 −0.426103 0.904675i \(-0.640114\pi\)
−0.426103 + 0.904675i \(0.640114\pi\)
\(312\) 0 0
\(313\) 1.11536i 0.0630438i −0.999503 0.0315219i \(-0.989965\pi\)
0.999503 0.0315219i \(-0.0100354\pi\)
\(314\) 16.4593 0.928855
\(315\) 0 0
\(316\) 6.84639 0.385140
\(317\) 1.23344i 0.0692768i 0.999400 + 0.0346384i \(0.0110280\pi\)
−0.999400 + 0.0346384i \(0.988972\pi\)
\(318\) 0 0
\(319\) −5.48263 −0.306969
\(320\) 0.0338034 0.0585493i 0.00188967 0.00327300i
\(321\) 0 0
\(322\) 0 0
\(323\) 9.06696i 0.504499i
\(324\) 0 0
\(325\) −16.6142 9.59223i −0.921592 0.532081i
\(326\) −7.85216 + 4.53345i −0.434891 + 0.251085i
\(327\) 0 0
\(328\) 8.96188 5.17415i 0.494837 0.285694i
\(329\) 0 0
\(330\) 0 0
\(331\) −5.02462 −0.276178 −0.138089 0.990420i \(-0.544096\pi\)
−0.138089 + 0.990420i \(0.544096\pi\)
\(332\) −3.93194 + 6.81032i −0.215793 + 0.373765i
\(333\) 0 0
\(334\) 13.2488 7.64922i 0.724944 0.418546i
\(335\) 0.518719 0.898447i 0.0283406 0.0490874i
\(336\) 0 0
\(337\) 10.6356 + 18.4213i 0.579356 + 1.00347i 0.995553 + 0.0941995i \(0.0300292\pi\)
−0.416198 + 0.909274i \(0.636638\pi\)
\(338\) −1.51442 0.874352i −0.0823737 0.0475585i
\(339\) 0 0
\(340\) −0.0524181 0.0907908i −0.00284277 0.00492382i
\(341\) −2.48712 4.30781i −0.134685 0.233281i
\(342\) 0 0
\(343\) 0 0
\(344\) 1.27452 + 0.735847i 0.0687177 + 0.0396742i
\(345\) 0 0
\(346\) 2.30125i 0.123716i
\(347\) 21.5735i 1.15813i −0.815282 0.579063i \(-0.803418\pi\)
0.815282 0.579063i \(-0.196582\pi\)
\(348\) 0 0
\(349\) 24.1105 + 13.9202i 1.29061 + 0.745132i 0.978762 0.205001i \(-0.0657198\pi\)
0.311845 + 0.950133i \(0.399053\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.96462 3.40282i −0.104715 0.181371i
\(353\) 2.85124 + 4.93850i 0.151756 + 0.262850i 0.931873 0.362784i \(-0.118174\pi\)
−0.780117 + 0.625634i \(0.784840\pi\)
\(354\) 0 0
\(355\) 0.252333 + 0.145685i 0.0133924 + 0.00773213i
\(356\) −5.84745 10.1281i −0.309914 0.536787i
\(357\) 0 0
\(358\) 7.97186 13.8077i 0.421326 0.729758i
\(359\) 18.5815 10.7280i 0.980693 0.566203i 0.0782137 0.996937i \(-0.475078\pi\)
0.902479 + 0.430733i \(0.141745\pi\)
\(360\) 0 0
\(361\) 7.59435 13.1538i 0.399703 0.692305i
\(362\) −18.4526 −0.969846
\(363\) 0 0
\(364\) 0 0
\(365\) 0.414273 0.239181i 0.0216841 0.0125193i
\(366\) 0 0
\(367\) 7.97484 4.60428i 0.416283 0.240341i −0.277203 0.960811i \(-0.589407\pi\)
0.693486 + 0.720470i \(0.256074\pi\)
\(368\) −4.78687 2.76370i −0.249533 0.144068i
\(369\) 0 0
\(370\) 0.588903i 0.0306156i
\(371\) 0 0
\(372\) 0 0
\(373\) −14.1000 + 24.4219i −0.730071 + 1.26452i 0.226782 + 0.973946i \(0.427180\pi\)
−0.956852 + 0.290574i \(0.906154\pi\)
\(374\) −6.09297 −0.315060
\(375\) 0 0
\(376\) 3.54265i 0.182698i
\(377\) 5.35867 0.275986
\(378\) 0 0
\(379\) −4.72569 −0.242742 −0.121371 0.992607i \(-0.538729\pi\)
−0.121371 + 0.992607i \(0.538729\pi\)
\(380\) 0.395305i 0.0202787i
\(381\) 0 0
\(382\) −23.3437 −1.19437
\(383\) 17.1174 29.6483i 0.874660 1.51496i 0.0175357 0.999846i \(-0.494418\pi\)
0.857124 0.515110i \(-0.172249\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 21.2878i 1.08352i
\(387\) 0 0
\(388\) −0.363295 0.209749i −0.0184435 0.0106484i
\(389\) 16.0167 9.24726i 0.812080 0.468855i −0.0355974 0.999366i \(-0.511333\pi\)
0.847678 + 0.530511i \(0.178000\pi\)
\(390\) 0 0
\(391\) −7.42288 + 4.28560i −0.375391 + 0.216732i
\(392\) 0 0
\(393\) 0 0
\(394\) −12.8467 −0.647206
\(395\) 0.231432 0.400851i 0.0116446 0.0201690i
\(396\) 0 0
\(397\) 1.76126 1.01687i 0.0883952 0.0510350i −0.455151 0.890414i \(-0.650415\pi\)
0.543546 + 0.839379i \(0.317081\pi\)
\(398\) 1.87150 3.24154i 0.0938100 0.162484i
\(399\) 0 0
\(400\) 2.49771 + 4.32617i 0.124886 + 0.216308i
\(401\) 27.2137 + 15.7118i 1.35899 + 0.784611i 0.989487 0.144620i \(-0.0461961\pi\)
0.369499 + 0.929231i \(0.379529\pi\)
\(402\) 0 0
\(403\) 2.43088 + 4.21041i 0.121091 + 0.209736i
\(404\) 8.69621 + 15.0623i 0.432653 + 0.749376i
\(405\) 0 0
\(406\) 0 0
\(407\) −29.6409 17.1132i −1.46925 0.848270i
\(408\) 0 0
\(409\) 0.550583i 0.0272246i 0.999907 + 0.0136123i \(0.00433306\pi\)
−0.999907 + 0.0136123i \(0.995667\pi\)
\(410\) 0.699616i 0.0345516i
\(411\) 0 0
\(412\) 0.867010 + 0.500568i 0.0427145 + 0.0246612i
\(413\) 0 0
\(414\) 0 0
\(415\) 0.265826 + 0.460425i 0.0130489 + 0.0226014i
\(416\) 1.92020 + 3.32589i 0.0941457 + 0.163065i
\(417\) 0 0
\(418\) 19.8967 + 11.4874i 0.973179 + 0.561865i
\(419\) 11.5649 + 20.0310i 0.564984 + 0.978580i 0.997051 + 0.0767392i \(0.0244509\pi\)
−0.432068 + 0.901841i \(0.642216\pi\)
\(420\) 0 0
\(421\) 5.49773 9.52235i 0.267943 0.464091i −0.700387 0.713763i \(-0.746989\pi\)
0.968330 + 0.249672i \(0.0803228\pi\)
\(422\) 8.13339 4.69581i 0.395927 0.228589i
\(423\) 0 0
\(424\) −3.63101 + 6.28910i −0.176338 + 0.305426i
\(425\) 7.74628 0.375750
\(426\) 0 0
\(427\) 0 0
\(428\) 8.02352 4.63238i 0.387832 0.223915i
\(429\) 0 0
\(430\) 0.0861666 0.0497483i 0.00415532 0.00239908i
\(431\) 7.19720 + 4.15530i 0.346677 + 0.200154i 0.663221 0.748424i \(-0.269189\pi\)
−0.316544 + 0.948578i \(0.602522\pi\)
\(432\) 0 0
\(433\) 26.1051i 1.25453i 0.778806 + 0.627265i \(0.215826\pi\)
−0.778806 + 0.627265i \(0.784174\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.821501 + 1.42288i −0.0393428 + 0.0681437i
\(437\) 32.3193 1.54604
\(438\) 0 0
\(439\) 40.8308i 1.94875i −0.224940 0.974373i \(-0.572218\pi\)
0.224940 0.974373i \(-0.427782\pi\)
\(440\) −0.265644 −0.0126641
\(441\) 0 0
\(442\) 5.95522 0.283261
\(443\) 18.2565i 0.867391i 0.901059 + 0.433696i \(0.142791\pi\)
−0.901059 + 0.433696i \(0.857209\pi\)
\(444\) 0 0
\(445\) −0.790656 −0.0374807
\(446\) 10.2592 17.7695i 0.485788 0.841410i
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0881i 1.23117i 0.788070 + 0.615586i \(0.211081\pi\)
−0.788070 + 0.615586i \(0.788919\pi\)
\(450\) 0 0
\(451\) −35.2134 20.3305i −1.65813 0.957325i
\(452\) 13.6537 7.88296i 0.642216 0.370783i
\(453\) 0 0
\(454\) −16.2610 + 9.38828i −0.763166 + 0.440614i
\(455\) 0 0
\(456\) 0 0
\(457\) −6.39973 −0.299367 −0.149683 0.988734i \(-0.547825\pi\)
−0.149683 + 0.988734i \(0.547825\pi\)
\(458\) 2.49265 4.31740i 0.116474 0.201739i
\(459\) 0 0
\(460\) −0.323625 + 0.186845i −0.0150891 + 0.00871170i
\(461\) 1.04099 1.80304i 0.0484836 0.0839761i −0.840765 0.541400i \(-0.817894\pi\)
0.889249 + 0.457424i \(0.151228\pi\)
\(462\) 0 0
\(463\) −0.959084 1.66118i −0.0445724 0.0772017i 0.842879 0.538104i \(-0.180859\pi\)
−0.887451 + 0.460902i \(0.847526\pi\)
\(464\) −1.20840 0.697671i −0.0560986 0.0323885i
\(465\) 0 0
\(466\) 7.37548 + 12.7747i 0.341663 + 0.591777i
\(467\) −17.1178 29.6488i −0.792116 1.37199i −0.924654 0.380807i \(-0.875646\pi\)
0.132539 0.991178i \(-0.457687\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.207419 0.119754i −0.00956754 0.00552382i
\(471\) 0 0
\(472\) 9.40086i 0.432710i
\(473\) 5.78264i 0.265886i
\(474\) 0 0
\(475\) −25.2956 14.6044i −1.16064 0.670096i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.0897132 0.155388i −0.00410339 0.00710728i
\(479\) 5.29123 + 9.16468i 0.241763 + 0.418745i 0.961216 0.275795i \(-0.0889411\pi\)
−0.719454 + 0.694540i \(0.755608\pi\)
\(480\) 0 0
\(481\) 28.9708 + 16.7263i 1.32095 + 0.762653i
\(482\) 3.06679 + 5.31183i 0.139688 + 0.241947i
\(483\) 0 0
\(484\) −2.21947 + 3.84424i −0.100885 + 0.174738i
\(485\) −0.0245613 + 0.0141804i −0.00111527 + 0.000643901i
\(486\) 0 0
\(487\) 5.95804 10.3196i 0.269985 0.467627i −0.698873 0.715246i \(-0.746315\pi\)
0.968858 + 0.247619i \(0.0796481\pi\)
\(488\) −0.0815124 −0.00368990
\(489\) 0 0
\(490\) 0 0
\(491\) 14.9826 8.65023i 0.676157 0.390379i −0.122248 0.992500i \(-0.539010\pi\)
0.798406 + 0.602120i \(0.205677\pi\)
\(492\) 0 0
\(493\) −1.87384 + 1.08186i −0.0843933 + 0.0487245i
\(494\) −19.4468 11.2276i −0.874954 0.505155i
\(495\) 0 0
\(496\) 1.26595i 0.0568429i
\(497\) 0 0
\(498\) 0 0
\(499\) 6.41484 11.1108i 0.287168 0.497389i −0.685965 0.727635i \(-0.740620\pi\)
0.973133 + 0.230246i \(0.0739530\pi\)
\(500\) 0.675760 0.0302209
\(501\) 0 0
\(502\) 1.11296i 0.0496739i
\(503\) −10.9868 −0.489878 −0.244939 0.969539i \(-0.578768\pi\)
−0.244939 + 0.969539i \(0.578768\pi\)
\(504\) 0 0
\(505\) 1.17585 0.0523245
\(506\) 21.7185i 0.965505i
\(507\) 0 0
\(508\) 19.0776 0.846430
\(509\) −14.4838 + 25.0868i −0.641985 + 1.11195i 0.343004 + 0.939334i \(0.388556\pi\)
−0.984989 + 0.172617i \(0.944778\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −4.11130 2.37366i −0.181342 0.104698i
\(515\) 0.0586158 0.0338419i 0.00258292 0.00149125i
\(516\) 0 0
\(517\) −12.0550 + 6.95996i −0.530178 + 0.306099i
\(518\) 0 0
\(519\) 0 0
\(520\) 0.259638 0.0113859
\(521\) −5.72133 + 9.90963i −0.250656 + 0.434149i −0.963707 0.266964i \(-0.913980\pi\)
0.713051 + 0.701113i \(0.247313\pi\)
\(522\) 0 0
\(523\) −14.1536 + 8.17161i −0.618896 + 0.357320i −0.776439 0.630192i \(-0.782976\pi\)
0.157543 + 0.987512i \(0.449643\pi\)
\(524\) 9.33404 16.1670i 0.407759 0.706260i
\(525\) 0 0
\(526\) 2.10817 + 3.65146i 0.0919206 + 0.159211i
\(527\) −1.70008 0.981539i −0.0740565 0.0427565i
\(528\) 0 0
\(529\) 3.77610 + 6.54039i 0.164178 + 0.284365i
\(530\) 0.245482 + 0.425186i 0.0106630 + 0.0184689i
\(531\) 0 0
\(532\) 0 0
\(533\) 34.4173 + 19.8708i 1.49078 + 0.860700i
\(534\) 0 0
\(535\) 0.626362i 0.0270800i
\(536\) 15.3451i 0.662809i
\(537\) 0 0
\(538\) −13.8090 7.97265i −0.595350 0.343725i
\(539\) 0 0
\(540\) 0 0
\(541\) 15.9752 + 27.6699i 0.686830 + 1.18962i 0.972858 + 0.231403i \(0.0743314\pi\)
−0.286029 + 0.958221i \(0.592335\pi\)
\(542\) 8.19335 + 14.1913i 0.351934 + 0.609568i
\(543\) 0 0
\(544\) −1.34292 0.775337i −0.0575774 0.0332423i
\(545\) 0.0555391 + 0.0961966i 0.00237903 + 0.00412061i
\(546\) 0 0
\(547\) 15.4351 26.7344i 0.659958 1.14308i −0.320668 0.947192i \(-0.603908\pi\)
0.980626 0.195889i \(-0.0627591\pi\)
\(548\) 5.44329 3.14269i 0.232526 0.134249i
\(549\) 0 0
\(550\) 9.81413 16.9986i 0.418476 0.724821i
\(551\) 8.15871 0.347573
\(552\) 0 0
\(553\) 0 0
\(554\) 1.60735 0.928004i 0.0682897 0.0394271i
\(555\) 0 0
\(556\) 5.49596 3.17309i 0.233081 0.134569i
\(557\) −12.2398 7.06667i −0.518618 0.299424i 0.217751 0.976004i \(-0.430128\pi\)
−0.736369 + 0.676580i \(0.763461\pi\)
\(558\) 0 0
\(559\) 5.65190i 0.239050i
\(560\) 0 0
\(561\) 0 0
\(562\) 0.362830 0.628441i 0.0153051 0.0265092i
\(563\) −5.11436 −0.215544 −0.107772 0.994176i \(-0.534372\pi\)
−0.107772 + 0.994176i \(0.534372\pi\)
\(564\) 0 0
\(565\) 1.06588i 0.0448421i
\(566\) −11.6276 −0.488746
\(567\) 0 0
\(568\) 4.30975 0.180833
\(569\) 37.2203i 1.56035i −0.625559 0.780177i \(-0.715129\pi\)
0.625559 0.780177i \(-0.284871\pi\)
\(570\) 0 0
\(571\) 5.27738 0.220851 0.110426 0.993884i \(-0.464779\pi\)
0.110426 + 0.993884i \(0.464779\pi\)
\(572\) 7.54494 13.0682i 0.315470 0.546410i
\(573\) 0 0
\(574\) 0 0
\(575\) 27.6118i 1.15149i
\(576\) 0 0
\(577\) 9.72172 + 5.61284i 0.404721 + 0.233666i 0.688519 0.725218i \(-0.258261\pi\)
−0.283798 + 0.958884i \(0.591595\pi\)
\(578\) 12.6400 7.29770i 0.525754 0.303544i
\(579\) 0 0
\(580\) −0.0816962 + 0.0471673i −0.00339225 + 0.00195852i
\(581\) 0 0
\(582\) 0 0
\(583\) 28.5343 1.18177
\(584\) 3.53782 6.12768i 0.146396 0.253565i
\(585\) 0 0
\(586\) −11.1723 + 6.45034i −0.461524 + 0.266461i
\(587\) 12.4037 21.4838i 0.511955 0.886732i −0.487949 0.872872i \(-0.662255\pi\)
0.999904 0.0138602i \(-0.00441196\pi\)
\(588\) 0 0
\(589\) 3.70108 + 6.41046i 0.152500 + 0.264138i
\(590\) 0.550413 + 0.317781i 0.0226602 + 0.0130828i
\(591\) 0 0
\(592\) −4.35534 7.54368i −0.179004 0.310043i
\(593\) −6.47382 11.2130i −0.265848 0.460462i 0.701938 0.712238i \(-0.252319\pi\)
−0.967785 + 0.251777i \(0.918985\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 7.21992 + 4.16842i 0.295739 + 0.170745i
\(597\) 0 0
\(598\) 21.2275i 0.868056i
\(599\) 24.1574i 0.987043i −0.869734 0.493522i \(-0.835709\pi\)
0.869734 0.493522i \(-0.164291\pi\)
\(600\) 0 0
\(601\) 15.3377 + 8.85525i 0.625640 + 0.361213i 0.779061 0.626948i \(-0.215696\pi\)
−0.153422 + 0.988161i \(0.549029\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 7.07721 + 12.2581i 0.287967 + 0.498774i
\(605\) 0.150052 + 0.259897i 0.00610046 + 0.0105663i
\(606\) 0 0
\(607\) 5.27200 + 3.04379i 0.213984 + 0.123544i 0.603162 0.797619i \(-0.293907\pi\)
−0.389178 + 0.921163i \(0.627241\pi\)
\(608\) 2.92356 + 5.06375i 0.118566 + 0.205362i
\(609\) 0 0
\(610\) −0.00275540 + 0.00477249i −0.000111563 + 0.000193233i
\(611\) 11.7824 6.80260i 0.476667 0.275204i
\(612\) 0 0
\(613\) 16.5026 28.5834i 0.666535 1.15447i −0.312332 0.949973i \(-0.601110\pi\)
0.978867 0.204499i \(-0.0655566\pi\)
\(614\) −20.5111 −0.827760
\(615\) 0 0
\(616\) 0 0
\(617\) 8.36942 4.83209i 0.336940 0.194533i −0.321978 0.946747i \(-0.604348\pi\)
0.658918 + 0.752215i \(0.271014\pi\)
\(618\) 0 0
\(619\) −15.6756 + 9.05034i −0.630057 + 0.363764i −0.780774 0.624813i \(-0.785175\pi\)
0.150717 + 0.988577i \(0.451842\pi\)
\(620\) −0.0741205 0.0427935i −0.00297675 0.00171863i
\(621\) 0 0
\(622\) 15.0288i 0.602601i
\(623\) 0 0
\(624\) 0 0
\(625\) −12.4657 + 21.5913i −0.498629 + 0.863651i
\(626\) −1.11536 −0.0445787
\(627\) 0 0
\(628\) 16.4593i 0.656799i
\(629\) −13.5074 −0.538577
\(630\) 0 0
\(631\) −5.07079 −0.201865 −0.100932 0.994893i \(-0.532183\pi\)
−0.100932 + 0.994893i \(0.532183\pi\)
\(632\) 6.84639i 0.272335i
\(633\) 0 0
\(634\) 1.23344 0.0489861
\(635\) 0.644887 1.11698i 0.0255916 0.0443259i
\(636\) 0 0
\(637\) 0 0
\(638\) 5.48263i 0.217060i
\(639\) 0 0
\(640\) −0.0585493 0.0338034i −0.00231436 0.00133620i
\(641\) 7.62707 4.40349i 0.301251 0.173927i −0.341754 0.939790i \(-0.611021\pi\)
0.643005 + 0.765862i \(0.277688\pi\)
\(642\) 0 0
\(643\) 2.52364 1.45702i 0.0995227 0.0574594i −0.449413 0.893324i \(-0.648367\pi\)
0.548935 + 0.835865i \(0.315033\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 9.06696 0.356735
\(647\) −5.15173 + 8.92306i −0.202535 + 0.350802i −0.949345 0.314237i \(-0.898251\pi\)
0.746809 + 0.665038i \(0.231585\pi\)
\(648\) 0 0
\(649\) 31.9895 18.4691i 1.25570 0.724976i
\(650\) −9.59223 + 16.6142i −0.376238 + 0.651664i
\(651\) 0 0
\(652\) 4.53345 + 7.85216i 0.177544 + 0.307515i
\(653\) −15.3666 8.87194i −0.601343 0.347186i 0.168227 0.985748i \(-0.446196\pi\)
−0.769570 + 0.638563i \(0.779529\pi\)
\(654\) 0 0
\(655\) −0.631045 1.09300i −0.0246570 0.0427071i
\(656\) −5.17415 8.96188i −0.202016 0.349903i
\(657\) 0 0
\(658\) 0 0
\(659\) 4.08467 + 2.35828i 0.159116 + 0.0918657i 0.577444 0.816430i \(-0.304050\pi\)
−0.418328 + 0.908296i \(0.637384\pi\)
\(660\) 0 0
\(661\) 9.42879i 0.366737i −0.983044 0.183369i \(-0.941300\pi\)
0.983044 0.183369i \(-0.0587002\pi\)
\(662\) 5.02462i 0.195288i
\(663\) 0 0
\(664\) 6.81032 + 3.93194i 0.264292 + 0.152589i
\(665\) 0 0
\(666\) 0 0
\(667\) 3.85631 + 6.67932i 0.149317 + 0.258624i
\(668\) −7.64922 13.2488i −0.295957 0.512613i
\(669\) 0 0
\(670\) −0.898447 0.518719i −0.0347100 0.0200398i
\(671\) 0.160141 + 0.277372i 0.00618218 + 0.0107078i
\(672\) 0 0
\(673\) −6.42728 + 11.1324i −0.247753 + 0.429122i −0.962902 0.269851i \(-0.913026\pi\)
0.715149 + 0.698972i \(0.246359\pi\)
\(674\) 18.4213 10.6356i 0.709563 0.409666i
\(675\) 0 0
\(676\) −0.874352 + 1.51442i −0.0336289 + 0.0582470i
\(677\) 49.1893 1.89050 0.945248 0.326352i \(-0.105819\pi\)
0.945248 + 0.326352i \(0.105819\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.0907908 + 0.0524181i −0.00348167 + 0.00201014i
\(681\) 0 0
\(682\) −4.30781 + 2.48712i −0.164955 + 0.0952366i
\(683\) −36.2732 20.9424i −1.38796 0.801337i −0.394872 0.918736i \(-0.629211\pi\)
−0.993085 + 0.117399i \(0.962544\pi\)
\(684\) 0 0
\(685\) 0.424934i 0.0162359i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.735847 1.27452i 0.0280539 0.0485908i
\(689\) −27.8891 −1.06249
\(690\) 0 0
\(691\) 6.42914i 0.244576i −0.992495 0.122288i \(-0.960977\pi\)
0.992495 0.122288i \(-0.0390231\pi\)
\(692\) 2.30125 0.0874804
\(693\) 0 0
\(694\) −21.5735 −0.818919
\(695\) 0.429046i 0.0162746i
\(696\) 0 0
\(697\) −16.0468 −0.607817
\(698\) 13.9202 24.1105i 0.526888 0.912597i
\(699\) 0 0
\(700\) 0 0
\(701\) 33.7907i 1.27626i −0.769930 0.638129i \(-0.779709\pi\)
0.769930 0.638129i \(-0.220291\pi\)
\(702\) 0 0
\(703\) 44.1087 + 25.4662i 1.66359 + 0.960475i
\(704\) −3.40282 + 1.96462i −0.128249 + 0.0740444i
\(705\) 0 0
\(706\) 4.93850 2.85124i 0.185863 0.107308i
\(707\) 0 0
\(708\) 0 0
\(709\) −29.6833 −1.11478 −0.557390 0.830251i \(-0.688197\pi\)
−0.557390 + 0.830251i \(0.688197\pi\)
\(710\) 0.145685 0.252333i 0.00546744 0.00946989i
\(711\) 0 0
\(712\) −10.1281 + 5.84745i −0.379566 + 0.219142i
\(713\) −3.49871 + 6.05995i −0.131028 + 0.226947i
\(714\) 0 0
\(715\) −0.510090 0.883501i −0.0190763 0.0330411i
\(716\) −13.8077 7.97186i −0.516017 0.297923i
\(717\) 0 0
\(718\) −10.7280 18.5815i −0.400366 0.693455i
\(719\) −18.1588 31.4519i −0.677207 1.17296i −0.975818 0.218583i \(-0.929857\pi\)
0.298611 0.954375i \(-0.403477\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −13.1538 7.59435i −0.489534 0.282632i
\(723\) 0 0
\(724\) 18.4526i 0.685785i
\(725\) 6.97033i 0.258872i
\(726\) 0 0
\(727\) −14.9225 8.61552i −0.553446 0.319532i 0.197065 0.980390i \(-0.436859\pi\)
−0.750511 + 0.660858i \(0.770192\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −0.239181 0.414273i −0.00885248 0.0153329i
\(731\) −1.14106 1.97637i −0.0422036 0.0730987i
\(732\) 0 0
\(733\) 37.2907 + 21.5298i 1.37736 + 0.795222i 0.991842 0.127477i \(-0.0406878\pi\)
0.385523 + 0.922698i \(0.374021\pi\)
\(734\) −4.60428 7.97484i −0.169947 0.294357i
\(735\) 0 0
\(736\) −2.76370 + 4.78687i −0.101871 + 0.176446i
\(737\) −52.2168 + 30.1474i −1.92343 + 1.11049i
\(738\) 0 0
\(739\) −1.87511 + 3.24778i −0.0689770 + 0.119472i −0.898451 0.439073i \(-0.855307\pi\)
0.829474 + 0.558545i \(0.188640\pi\)
\(740\) −0.588903 −0.0216485
\(741\) 0 0
\(742\) 0 0
\(743\) 23.9862 13.8484i 0.879967 0.508049i 0.00931965 0.999957i \(-0.497033\pi\)
0.870648 + 0.491907i \(0.163700\pi\)
\(744\) 0 0
\(745\) 0.488116 0.281814i 0.0178832 0.0103249i
\(746\) 24.4219 + 14.1000i 0.894151 + 0.516238i
\(747\) 0 0
\(748\) 6.09297i 0.222781i
\(749\) 0 0
\(750\) 0 0
\(751\) 2.08856 3.61750i 0.0762127 0.132004i −0.825400 0.564548i \(-0.809051\pi\)
0.901613 + 0.432544i \(0.142384\pi\)
\(752\) −3.54265 −0.129187
\(753\) 0 0
\(754\) 5.35867i 0.195151i
\(755\) 0.956936 0.0348264
\(756\) 0 0
\(757\) 35.9359 1.30611 0.653057 0.757309i \(-0.273486\pi\)
0.653057 + 0.757309i \(0.273486\pi\)
\(758\) 4.72569i 0.171645i
\(759\) 0 0
\(760\) 0.395305 0.0143392
\(761\) −14.5715 + 25.2385i −0.528216 + 0.914896i 0.471243 + 0.882003i \(0.343805\pi\)
−0.999459 + 0.0328930i \(0.989528\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 23.3437i 0.844546i
\(765\) 0 0
\(766\) −29.6483 17.1174i −1.07124 0.618478i
\(767\) −31.2662 + 18.0515i −1.12896 + 0.651804i
\(768\) 0 0
\(769\) −0.795911 + 0.459519i −0.0287013 + 0.0165707i −0.514282 0.857621i \(-0.671942\pi\)
0.485581 + 0.874192i \(0.338608\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −21.2878 −0.766164
\(773\) −4.69708 + 8.13558i −0.168942 + 0.292616i −0.938048 0.346505i \(-0.887368\pi\)
0.769106 + 0.639121i \(0.220702\pi\)
\(774\) 0 0
\(775\) 5.47672 3.16199i 0.196730 0.113582i
\(776\) −0.209749 + 0.363295i −0.00752954 + 0.0130415i
\(777\) 0 0
\(778\) −9.24726 16.0167i −0.331530 0.574228i
\(779\) 52.4011 + 30.2538i 1.87747 + 1.08396i
\(780\) 0 0
\(781\) −8.46703 14.6653i −0.302974 0.524767i
\(782\) 4.28560 + 7.42288i 0.153253 + 0.265442i
\(783\) 0 0
\(784\) 0 0
\(785\) −0.963683 0.556383i −0.0343953 0.0198581i
\(786\) 0 0
\(787\) 30.5960i 1.09063i 0.838231 + 0.545315i \(0.183590\pi\)
−0.838231 + 0.545315i \(0.816410\pi\)
\(788\) 12.8467i 0.457644i
\(789\) 0 0
\(790\) −0.400851 0.231432i −0.0142617 0.00823397i
\(791\) 0 0
\(792\) 0 0
\(793\) −0.156520 0.271101i −0.00555820 0.00962709i
\(794\) −1.01687 1.76126i −0.0360872 0.0625049i
\(795\) 0 0
\(796\) −3.24154 1.87150i −0.114893 0.0663337i
\(797\) −1.64717 2.85299i −0.0583459 0.101058i 0.835377 0.549677i \(-0.185249\pi\)
−0.893723 + 0.448619i \(0.851916\pi\)
\(798\) 0 0
\(799\) −2.74674 + 4.75750i −0.0971728 + 0.168308i
\(800\) 4.32617 2.49771i 0.152953 0.0883075i
\(801\) 0 0
\(802\) 15.7118 27.2137i 0.554804 0.960948i
\(803\) −27.8019 −0.981107
\(804\) 0 0
\(805\) 0 0
\(806\) 4.21041 2.43088i 0.148305 0.0856242i
\(807\) 0 0
\(808\) 15.0623 8.69621i 0.529889 0.305932i
\(809\) −19.7833 11.4219i −0.695542 0.401572i 0.110143 0.993916i \(-0.464869\pi\)
−0.805685 + 0.592344i \(0.798203\pi\)
\(810\) 0 0
\(811\) 23.9412i 0.840691i −0.907364 0.420345i \(-0.861909\pi\)
0.907364 0.420345i \(-0.138091\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −17.1132 + 29.6409i −0.599818 + 1.03891i
\(815\) 0.612985 0.0214719
\(816\) 0 0
\(817\) 8.60515i 0.301056i
\(818\) 0.550583 0.0192507
\(819\) 0 0
\(820\) −0.699616 −0.0244316
\(821\) 2.28557i 0.0797669i −0.999204 0.0398834i \(-0.987301\pi\)
0.999204 0.0398834i \(-0.0126987\pi\)
\(822\) 0 0
\(823\) −22.9703 −0.800694 −0.400347 0.916364i \(-0.631110\pi\)
−0.400347 + 0.916364i \(0.631110\pi\)
\(824\) 0.500568 0.867010i 0.0174381 0.0302037i
\(825\) 0 0
\(826\) 0 0
\(827\) 15.1679i 0.527438i 0.964600 + 0.263719i \(0.0849492\pi\)
−0.964600 + 0.263719i \(0.915051\pi\)
\(828\) 0 0
\(829\) 5.73806 + 3.31287i 0.199291 + 0.115061i 0.596325 0.802743i \(-0.296627\pi\)
−0.397034 + 0.917804i \(0.629960\pi\)
\(830\) 0.460425 0.265826i 0.0159816 0.00922697i
\(831\) 0 0
\(832\) 3.32589 1.92020i 0.115304 0.0665710i
\(833\) 0 0
\(834\) 0 0
\(835\) −1.03428 −0.0357927
\(836\) 11.4874 19.8967i 0.397299 0.688141i
\(837\) 0 0
\(838\) 20.0310 11.5649i 0.691961 0.399504i
\(839\) 23.8462 41.3029i 0.823264 1.42593i −0.0799756 0.996797i \(-0.525484\pi\)
0.903239 0.429138i \(-0.141182\pi\)
\(840\) 0 0
\(841\) −13.5265 23.4286i −0.466431 0.807883i
\(842\) −9.52235 5.49773i −0.328162 0.189464i
\(843\) 0 0
\(844\) −4.69581 8.13339i −0.161637 0.279963i
\(845\) 0.0591122 + 0.102385i 0.00203352 + 0.00352216i
\(846\) 0 0
\(847\) 0 0
\(848\) 6.28910 + 3.63101i 0.215969 + 0.124690i
\(849\) 0 0
\(850\) 7.74628i 0.265695i
\(851\) 48.1475i 1.65048i
\(852\) 0 0
\(853\) −22.0983 12.7585i −0.756632 0.436842i 0.0714529 0.997444i \(-0.477236\pi\)
−0.828085 + 0.560602i \(0.810570\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.63238 8.02352i −0.158332 0.274238i
\(857\) −3.19043 5.52598i −0.108983 0.188764i 0.806376 0.591404i \(-0.201426\pi\)
−0.915358 + 0.402640i \(0.868093\pi\)
\(858\) 0 0
\(859\) −29.7468 17.1743i −1.01495 0.585980i −0.102310 0.994753i \(-0.532624\pi\)
−0.912636 + 0.408773i \(0.865957\pi\)
\(860\) −0.0497483 0.0861666i −0.00169640 0.00293826i
\(861\) 0 0
\(862\) 4.15530 7.19720i 0.141530 0.245137i
\(863\) 31.3380 18.0930i 1.06676 0.615893i 0.139464 0.990227i \(-0.455462\pi\)
0.927294 + 0.374334i \(0.122129\pi\)
\(864\) 0 0
\(865\) 0.0777901 0.134736i 0.00264494 0.00458118i
\(866\) 26.1051 0.887087
\(867\) 0 0
\(868\) 0 0
\(869\) −23.2971 + 13.4506i −0.790299 + 0.456279i
\(870\) 0 0
\(871\) 51.0362 29.4658i 1.72930 0.998410i
\(872\) 1.42288 + 0.821501i 0.0481849 + 0.0278195i
\(873\) 0 0
\(874\) 32.3193i 1.09322i
\(875\) 0 0
\(876\) 0 0
\(877\) −17.0155 + 29.4716i −0.574571 + 0.995186i 0.421517 + 0.906820i \(0.361498\pi\)
−0.996088 + 0.0883657i \(0.971836\pi\)
\(878\) −40.8308 −1.37797
\(879\) 0 0
\(880\) 0.265644i 0.00895485i
\(881\) 26.6961 0.899416 0.449708 0.893176i \(-0.351528\pi\)
0.449708 + 0.893176i \(0.351528\pi\)
\(882\) 0 0
\(883\) 11.2126 0.377333 0.188667 0.982041i \(-0.439583\pi\)
0.188667 + 0.982041i \(0.439583\pi\)
\(884\) 5.95522i 0.200296i
\(885\) 0 0
\(886\) 18.2565 0.613338
\(887\) 5.09353 8.82225i 0.171024 0.296222i −0.767754 0.640745i \(-0.778626\pi\)
0.938778 + 0.344522i \(0.111959\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.790656i 0.0265028i
\(891\) 0 0
\(892\) −17.7695 10.2592i −0.594966 0.343504i
\(893\) 17.9391 10.3571i 0.600308 0.346588i
\(894\) 0 0
\(895\) −0.933494 + 0.538953i −0.0312033 + 0.0180152i
\(896\) 0 0
\(897\) 0 0
\(898\) 26.0881 0.870570
\(899\) −0.883217 + 1.52978i −0.0294569 + 0.0510209i
\(900\) 0 0
\(901\) 9.75235 5.63052i 0.324898 0.187580i
\(902\) −20.3305 + 35.2134i −0.676931 + 1.17248i
\(903\) 0 0
\(904\) −7.88296 13.6537i −0.262183 0.454115i
\(905\) 1.08039 + 0.623761i 0.0359132 + 0.0207345i
\(906\) 0 0
\(907\) 7.57428 + 13.1190i 0.251500 + 0.435611i 0.963939 0.266123i \(-0.0857428\pi\)
−0.712439 + 0.701734i \(0.752409\pi\)
\(908\) 9.38828 + 16.2610i 0.311561 + 0.539640i
\(909\) 0 0
\(910\) 0 0
\(911\) 8.43020 + 4.86718i 0.279305 + 0.161257i 0.633109 0.774063i \(-0.281779\pi\)
−0.353804 + 0.935320i \(0.615112\pi\)
\(912\) 0 0
\(913\) 30.8991i 1.02261i
\(914\) 6.39973i 0.211684i
\(915\) 0 0
\(916\) −4.31740 2.49265i −0.142651 0.0823596i
\(917\) 0 0
\(918\) 0 0
\(919\) −4.01638 6.95658i −0.132488 0.229476i 0.792147 0.610330i \(-0.208963\pi\)
−0.924635 + 0.380854i \(0.875630\pi\)
\(920\) 0.186845 + 0.323625i 0.00616011 + 0.0106696i
\(921\) 0 0
\(922\) −1.80304 1.04099i −0.0593800 0.0342831i
\(923\) 8.27560 + 14.3338i 0.272395 + 0.471801i
\(924\) 0 0
\(925\) 21.7568 37.6839i 0.715360 1.23904i
\(926\) −1.66118 + 0.959084i −0.0545898 + 0.0315175i
\(927\) 0 0
\(928\) −0.697671 + 1.20840i −0.0229022 + 0.0396677i
\(929\) −26.2128 −0.860014 −0.430007 0.902826i \(-0.641489\pi\)
−0.430007 + 0.902826i \(0.641489\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 12.7747 7.37548i 0.418449 0.241592i
\(933\) 0 0
\(934\) −29.6488 + 17.1178i −0.970140 + 0.560111i
\(935\) 0.356739 + 0.205963i 0.0116666 + 0.00673573i
\(936\) 0 0
\(937\) 37.5797i 1.22768i −0.789432 0.613838i \(-0.789625\pi\)
0.789432 0.613838i \(-0.210375\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −0.119754 + 0.207419i −0.00390593 + 0.00676527i
\(941\) 9.27309 0.302294 0.151147 0.988511i \(-0.451703\pi\)
0.151147 + 0.988511i \(0.451703\pi\)
\(942\) 0 0
\(943\) 57.1992i 1.86266i
\(944\) 9.40086 0.305972
\(945\) 0 0
\(946\) −5.78264 −0.188010
\(947\) 13.8586i 0.450343i 0.974319 + 0.225171i \(0.0722942\pi\)
−0.974319 + 0.225171i \(0.927706\pi\)
\(948\) 0 0
\(949\) 27.1733 0.882083
\(950\) −14.6044 + 25.2956i −0.473830 + 0.820697i
\(951\) 0 0
\(952\) 0 0
\(953\) 2.65523i 0.0860115i −0.999075 0.0430057i \(-0.986307\pi\)
0.999075 0.0430057i \(-0.0136934\pi\)
\(954\) 0 0
\(955\) 1.36676 + 0.789097i 0.0442272 + 0.0255346i
\(956\) −0.155388 + 0.0897132i −0.00502560 + 0.00290153i
\(957\) 0 0
\(958\) 9.16468 5.29123i 0.296098 0.170952i
\(959\) 0 0
\(960\) 0 0
\(961\) 29.3974 0.948302
\(962\) 16.7263 28.9708i 0.539277 0.934055i
\(963\) 0 0
\(964\) 5.31183 3.06679i 0.171083 0.0987746i
\(965\) −0.719600 + 1.24638i −0.0231647 + 0.0401225i
\(966\) 0 0
\(967\) 7.14946 + 12.3832i 0.229911 + 0.398218i 0.957782 0.287497i \(-0.0928231\pi\)
−0.727870 + 0.685715i \(0.759490\pi\)
\(968\) 3.84424 + 2.21947i 0.123558 + 0.0713365i
\(969\) 0 0
\(970\) 0.0141804 + 0.0245613i 0.000455307 + 0.000788614i
\(971\) 0.130666 + 0.226320i 0.00419326 + 0.00726295i 0.868114 0.496364i \(-0.165332\pi\)
−0.863921 + 0.503627i \(0.831999\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −10.3196 5.95804i −0.330662 0.190908i
\(975\) 0 0
\(976\) 0.0815124i 0.00260915i
\(977\) 39.1574i 1.25276i 0.779519 + 0.626378i \(0.215464\pi\)
−0.779519 + 0.626378i \(0.784536\pi\)
\(978\) 0 0
\(979\) 39.7957 + 22.9760i 1.27188 + 0.734318i
\(980\) 0 0
\(981\) 0 0
\(982\) −8.65023 14.9826i −0.276040 0.478115i
\(983\) 13.1844 + 22.8361i 0.420517 + 0.728357i 0.995990 0.0894636i \(-0.0285153\pi\)
−0.575473 + 0.817821i \(0.695182\pi\)
\(984\) 0 0
\(985\) 0.752163 + 0.434262i 0.0239659 + 0.0138367i
\(986\) 1.08186 + 1.87384i 0.0344534 + 0.0596751i
\(987\) 0 0
\(988\) −11.2276 + 19.4468i −0.357199 + 0.618686i
\(989\) −7.04481 + 4.06732i −0.224012 + 0.129333i
\(990\) 0 0
\(991\) −22.9516 + 39.7534i −0.729082 + 1.26281i 0.228189 + 0.973617i \(0.426720\pi\)
−0.957271 + 0.289191i \(0.906614\pi\)
\(992\) −1.26595 −0.0401940
\(993\) 0 0
\(994\) 0 0
\(995\) −0.219150 + 0.126526i −0.00694753 + 0.00401116i
\(996\) 0 0
\(997\) 18.5929 10.7346i 0.588844 0.339969i −0.175796 0.984427i \(-0.556250\pi\)
0.764640 + 0.644457i \(0.222917\pi\)
\(998\) −11.1108 6.41484i −0.351707 0.203058i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.l.a.521.2 16
3.2 odd 2 882.2.l.b.227.7 16
7.2 even 3 378.2.t.a.89.3 16
7.3 odd 6 2646.2.m.b.1763.7 16
7.4 even 3 2646.2.m.a.1763.6 16
7.5 odd 6 2646.2.t.b.1979.2 16
7.6 odd 2 378.2.l.a.143.3 16
9.4 even 3 882.2.t.a.815.6 16
9.5 odd 6 2646.2.t.b.2285.2 16
21.2 odd 6 126.2.t.a.47.7 yes 16
21.5 even 6 882.2.t.a.803.6 16
21.11 odd 6 882.2.m.a.587.1 16
21.17 even 6 882.2.m.b.587.4 16
21.20 even 2 126.2.l.a.101.6 yes 16
28.23 odd 6 3024.2.df.c.1601.5 16
28.27 even 2 3024.2.ca.c.2033.5 16
63.2 odd 6 1134.2.k.b.971.3 16
63.4 even 3 882.2.m.b.293.4 16
63.5 even 6 inner 2646.2.l.a.1097.6 16
63.13 odd 6 126.2.t.a.59.7 yes 16
63.16 even 3 1134.2.k.a.971.6 16
63.20 even 6 1134.2.k.a.647.6 16
63.23 odd 6 378.2.l.a.341.7 16
63.31 odd 6 882.2.m.a.293.1 16
63.32 odd 6 2646.2.m.b.881.7 16
63.34 odd 6 1134.2.k.b.647.3 16
63.40 odd 6 882.2.l.b.509.3 16
63.41 even 6 378.2.t.a.17.3 16
63.58 even 3 126.2.l.a.5.2 16
63.59 even 6 2646.2.m.a.881.6 16
84.23 even 6 1008.2.df.c.929.2 16
84.83 odd 2 1008.2.ca.c.353.4 16
252.23 even 6 3024.2.ca.c.2609.5 16
252.139 even 6 1008.2.df.c.689.2 16
252.167 odd 6 3024.2.df.c.17.5 16
252.247 odd 6 1008.2.ca.c.257.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.2 16 63.58 even 3
126.2.l.a.101.6 yes 16 21.20 even 2
126.2.t.a.47.7 yes 16 21.2 odd 6
126.2.t.a.59.7 yes 16 63.13 odd 6
378.2.l.a.143.3 16 7.6 odd 2
378.2.l.a.341.7 16 63.23 odd 6
378.2.t.a.17.3 16 63.41 even 6
378.2.t.a.89.3 16 7.2 even 3
882.2.l.b.227.7 16 3.2 odd 2
882.2.l.b.509.3 16 63.40 odd 6
882.2.m.a.293.1 16 63.31 odd 6
882.2.m.a.587.1 16 21.11 odd 6
882.2.m.b.293.4 16 63.4 even 3
882.2.m.b.587.4 16 21.17 even 6
882.2.t.a.803.6 16 21.5 even 6
882.2.t.a.815.6 16 9.4 even 3
1008.2.ca.c.257.4 16 252.247 odd 6
1008.2.ca.c.353.4 16 84.83 odd 2
1008.2.df.c.689.2 16 252.139 even 6
1008.2.df.c.929.2 16 84.23 even 6
1134.2.k.a.647.6 16 63.20 even 6
1134.2.k.a.971.6 16 63.16 even 3
1134.2.k.b.647.3 16 63.34 odd 6
1134.2.k.b.971.3 16 63.2 odd 6
2646.2.l.a.521.2 16 1.1 even 1 trivial
2646.2.l.a.1097.6 16 63.5 even 6 inner
2646.2.m.a.881.6 16 63.59 even 6
2646.2.m.a.1763.6 16 7.4 even 3
2646.2.m.b.881.7 16 63.32 odd 6
2646.2.m.b.1763.7 16 7.3 odd 6
2646.2.t.b.1979.2 16 7.5 odd 6
2646.2.t.b.2285.2 16 9.5 odd 6
3024.2.ca.c.2033.5 16 28.27 even 2
3024.2.ca.c.2609.5 16 252.23 even 6
3024.2.df.c.17.5 16 252.167 odd 6
3024.2.df.c.1601.5 16 28.23 odd 6