Properties

Label 300.3.l.g.107.6
Level $300$
Weight $3$
Character 300.107
Analytic conductor $8.174$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [300,3,Mod(107,300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("300.107"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 300.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.17440793081\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.6
Character \(\chi\) \(=\) 300.107
Dual form 300.3.l.g.143.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07935 - 1.68375i) q^{2} +(2.99716 - 0.130491i) q^{3} +(-1.67002 + 3.63470i) q^{4} +(-3.45469 - 4.90562i) q^{6} +(1.91561 - 1.91561i) q^{7} +(7.92245 - 1.11122i) q^{8} +(8.96594 - 0.782204i) q^{9} +6.87236 q^{11} +(-4.53101 + 11.1117i) q^{12} +(-12.2746 + 12.2746i) q^{13} +(-5.29303 - 1.15780i) q^{14} +(-10.4221 - 12.1400i) q^{16} +(9.47120 - 9.47120i) q^{17} +(-10.9944 - 14.2521i) q^{18} +33.2524 q^{19} +(5.49143 - 5.99137i) q^{21} +(-7.41767 - 11.5713i) q^{22} +(7.20994 - 7.20994i) q^{23} +(23.5998 - 4.36430i) q^{24} +(33.9159 + 7.41877i) q^{26} +(26.7703 - 3.51436i) q^{27} +(3.76357 + 10.1618i) q^{28} -2.29155 q^{29} -12.1558i q^{31} +(-9.19168 + 30.6515i) q^{32} +(20.5976 - 0.896780i) q^{33} +(-26.1698 - 5.72440i) q^{34} +(-12.1302 + 33.8948i) q^{36} +(20.7290 + 20.7290i) q^{37} +(-35.8909 - 55.9886i) q^{38} +(-35.1872 + 38.3906i) q^{39} -50.9173i q^{41} +(-16.0151 - 2.77942i) q^{42} +(-15.1975 - 15.1975i) q^{43} +(-11.4770 + 24.9790i) q^{44} +(-19.9218 - 4.35769i) q^{46} +(-26.7793 - 26.7793i) q^{47} +(-32.8208 - 35.0256i) q^{48} +41.6608i q^{49} +(27.1508 - 29.6226i) q^{51} +(-24.1157 - 65.1132i) q^{52} +(15.5183 + 15.5183i) q^{53} +(-34.8118 - 41.2812i) q^{54} +(13.0477 - 17.3050i) q^{56} +(99.6627 - 4.33913i) q^{57} +(2.47338 + 3.85839i) q^{58} -63.0946i q^{59} +28.4752 q^{61} +(-20.4672 + 13.1203i) q^{62} +(15.6769 - 18.6737i) q^{63} +(61.5304 - 17.6071i) q^{64} +(-23.7419 - 33.7132i) q^{66} +(-32.4542 + 32.4542i) q^{67} +(18.6079 + 50.2420i) q^{68} +(20.6685 - 22.5502i) q^{69} -88.8377 q^{71} +(70.1630 - 16.1601i) q^{72} +(-71.1740 + 71.1740i) q^{73} +(12.5286 - 57.2763i) q^{74} +(-55.5320 + 120.862i) q^{76} +(13.1648 - 13.1648i) q^{77} +(102.619 + 17.8095i) q^{78} -75.1410 q^{79} +(79.7763 - 14.0264i) q^{81} +(-85.7318 + 54.9574i) q^{82} +(-58.6543 + 58.6543i) q^{83} +(12.6061 + 29.9654i) q^{84} +(-9.18537 + 41.9921i) q^{86} +(-6.86815 + 0.299026i) q^{87} +(54.4459 - 7.63668i) q^{88} +41.1063 q^{89} +47.0267i q^{91} +(14.1653 + 38.2467i) q^{92} +(-1.58621 - 36.4327i) q^{93} +(-16.1854 + 73.9937i) q^{94} +(-23.5492 + 93.0668i) q^{96} +(-30.3484 - 30.3484i) q^{97} +(70.1464 - 44.9665i) q^{98} +(61.6172 - 5.37559i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 4 q^{6} + 20 q^{12} + 8 q^{13} - 36 q^{16} + 24 q^{18} - 24 q^{21} + 76 q^{22} + 84 q^{28} + 40 q^{33} + 172 q^{36} + 40 q^{37} - 236 q^{42} + 240 q^{46} - 196 q^{48} - 304 q^{52} + 72 q^{57} - 180 q^{58}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07935 1.68375i −0.539674 0.841874i
\(3\) 2.99716 0.130491i 0.999054 0.0434969i
\(4\) −1.67002 + 3.63470i −0.417504 + 0.908675i
\(5\) 0 0
\(6\) −3.45469 4.90562i −0.575782 0.817603i
\(7\) 1.91561 1.91561i 0.273659 0.273659i −0.556912 0.830571i \(-0.688014\pi\)
0.830571 + 0.556912i \(0.188014\pi\)
\(8\) 7.92245 1.11122i 0.990306 0.138902i
\(9\) 8.96594 0.782204i 0.996216 0.0869115i
\(10\) 0 0
\(11\) 6.87236 0.624760 0.312380 0.949957i \(-0.398874\pi\)
0.312380 + 0.949957i \(0.398874\pi\)
\(12\) −4.53101 + 11.1117i −0.377585 + 0.925975i
\(13\) −12.2746 + 12.2746i −0.944199 + 0.944199i −0.998523 0.0543246i \(-0.982699\pi\)
0.0543246 + 0.998523i \(0.482699\pi\)
\(14\) −5.29303 1.15780i −0.378073 0.0826999i
\(15\) 0 0
\(16\) −10.4221 12.1400i −0.651380 0.758751i
\(17\) 9.47120 9.47120i 0.557129 0.557129i −0.371360 0.928489i \(-0.621108\pi\)
0.928489 + 0.371360i \(0.121108\pi\)
\(18\) −10.9944 14.2521i −0.610800 0.791785i
\(19\) 33.2524 1.75013 0.875063 0.484010i \(-0.160820\pi\)
0.875063 + 0.484010i \(0.160820\pi\)
\(20\) 0 0
\(21\) 5.49143 5.99137i 0.261497 0.285303i
\(22\) −7.41767 11.5713i −0.337167 0.525969i
\(23\) 7.20994 7.20994i 0.313476 0.313476i −0.532779 0.846255i \(-0.678852\pi\)
0.846255 + 0.532779i \(0.178852\pi\)
\(24\) 23.5998 4.36430i 0.983327 0.181846i
\(25\) 0 0
\(26\) 33.9159 + 7.41877i 1.30446 + 0.285337i
\(27\) 26.7703 3.51436i 0.991493 0.130162i
\(28\) 3.76357 + 10.1618i 0.134413 + 0.362921i
\(29\) −2.29155 −0.0790190 −0.0395095 0.999219i \(-0.512580\pi\)
−0.0395095 + 0.999219i \(0.512580\pi\)
\(30\) 0 0
\(31\) 12.1558i 0.392121i −0.980592 0.196061i \(-0.937185\pi\)
0.980592 0.196061i \(-0.0628149\pi\)
\(32\) −9.19168 + 30.6515i −0.287240 + 0.957859i
\(33\) 20.5976 0.896780i 0.624169 0.0271752i
\(34\) −26.1698 5.72440i −0.769701 0.168365i
\(35\) 0 0
\(36\) −12.1302 + 33.8948i −0.336950 + 0.941523i
\(37\) 20.7290 + 20.7290i 0.560244 + 0.560244i 0.929377 0.369133i \(-0.120345\pi\)
−0.369133 + 0.929377i \(0.620345\pi\)
\(38\) −35.8909 55.9886i −0.944497 1.47339i
\(39\) −35.1872 + 38.3906i −0.902235 + 0.984375i
\(40\) 0 0
\(41\) 50.9173i 1.24188i −0.783856 0.620942i \(-0.786750\pi\)
0.783856 0.620942i \(-0.213250\pi\)
\(42\) −16.0151 2.77942i −0.381313 0.0661766i
\(43\) −15.1975 15.1975i −0.353430 0.353430i 0.507954 0.861384i \(-0.330402\pi\)
−0.861384 + 0.507954i \(0.830402\pi\)
\(44\) −11.4770 + 24.9790i −0.260840 + 0.567704i
\(45\) 0 0
\(46\) −19.9218 4.35769i −0.433082 0.0947325i
\(47\) −26.7793 26.7793i −0.569772 0.569772i 0.362293 0.932064i \(-0.381994\pi\)
−0.932064 + 0.362293i \(0.881994\pi\)
\(48\) −32.8208 35.0256i −0.683767 0.729700i
\(49\) 41.6608i 0.850221i
\(50\) 0 0
\(51\) 27.1508 29.6226i 0.532368 0.580835i
\(52\) −24.1157 65.1132i −0.463763 1.25218i
\(53\) 15.5183 + 15.5183i 0.292799 + 0.292799i 0.838185 0.545386i \(-0.183617\pi\)
−0.545386 + 0.838185i \(0.683617\pi\)
\(54\) −34.8118 41.2812i −0.644662 0.764467i
\(55\) 0 0
\(56\) 13.0477 17.3050i 0.232994 0.309018i
\(57\) 99.6627 4.33913i 1.74847 0.0761251i
\(58\) 2.47338 + 3.85839i 0.0426445 + 0.0665240i
\(59\) 63.0946i 1.06940i −0.845042 0.534700i \(-0.820425\pi\)
0.845042 0.534700i \(-0.179575\pi\)
\(60\) 0 0
\(61\) 28.4752 0.466806 0.233403 0.972380i \(-0.425014\pi\)
0.233403 + 0.972380i \(0.425014\pi\)
\(62\) −20.4672 + 13.1203i −0.330117 + 0.211617i
\(63\) 15.6769 18.6737i 0.248839 0.296408i
\(64\) 61.5304 17.6071i 0.961412 0.275111i
\(65\) 0 0
\(66\) −23.7419 33.7132i −0.359726 0.510806i
\(67\) −32.4542 + 32.4542i −0.484392 + 0.484392i −0.906531 0.422139i \(-0.861279\pi\)
0.422139 + 0.906531i \(0.361279\pi\)
\(68\) 18.6079 + 50.2420i 0.273646 + 0.738853i
\(69\) 20.6685 22.5502i 0.299544 0.326814i
\(70\) 0 0
\(71\) −88.8377 −1.25124 −0.625618 0.780130i \(-0.715153\pi\)
−0.625618 + 0.780130i \(0.715153\pi\)
\(72\) 70.1630 16.1601i 0.974487 0.224446i
\(73\) −71.1740 + 71.1740i −0.974987 + 0.974987i −0.999695 0.0247079i \(-0.992134\pi\)
0.0247079 + 0.999695i \(0.492134\pi\)
\(74\) 12.5286 57.2763i 0.169306 0.774004i
\(75\) 0 0
\(76\) −55.5320 + 120.862i −0.730685 + 1.59029i
\(77\) 13.1648 13.1648i 0.170971 0.170971i
\(78\) 102.619 + 17.8095i 1.31563 + 0.228327i
\(79\) −75.1410 −0.951153 −0.475576 0.879675i \(-0.657760\pi\)
−0.475576 + 0.879675i \(0.657760\pi\)
\(80\) 0 0
\(81\) 79.7763 14.0264i 0.984893 0.173165i
\(82\) −85.7318 + 54.9574i −1.04551 + 0.670213i
\(83\) −58.6543 + 58.6543i −0.706678 + 0.706678i −0.965835 0.259157i \(-0.916555\pi\)
0.259157 + 0.965835i \(0.416555\pi\)
\(84\) 12.6061 + 29.9654i 0.150072 + 0.356731i
\(85\) 0 0
\(86\) −9.18537 + 41.9921i −0.106807 + 0.488281i
\(87\) −6.86815 + 0.299026i −0.0789442 + 0.00343708i
\(88\) 54.4459 7.63668i 0.618704 0.0867805i
\(89\) 41.1063 0.461868 0.230934 0.972969i \(-0.425822\pi\)
0.230934 + 0.972969i \(0.425822\pi\)
\(90\) 0 0
\(91\) 47.0267i 0.516777i
\(92\) 14.1653 + 38.2467i 0.153970 + 0.415725i
\(93\) −1.58621 36.4327i −0.0170561 0.391750i
\(94\) −16.1854 + 73.9937i −0.172185 + 0.787167i
\(95\) 0 0
\(96\) −23.5492 + 93.0668i −0.245304 + 0.969446i
\(97\) −30.3484 30.3484i −0.312870 0.312870i 0.533150 0.846020i \(-0.321008\pi\)
−0.846020 + 0.533150i \(0.821008\pi\)
\(98\) 70.1464 44.9665i 0.715779 0.458842i
\(99\) 61.6172 5.37559i 0.622396 0.0542989i
\(100\) 0 0
\(101\) 124.297i 1.23067i 0.788267 + 0.615333i \(0.210978\pi\)
−0.788267 + 0.615333i \(0.789022\pi\)
\(102\) −79.1822 13.7420i −0.776296 0.134726i
\(103\) 131.168 + 131.168i 1.27348 + 1.27348i 0.944252 + 0.329223i \(0.106787\pi\)
0.329223 + 0.944252i \(0.393213\pi\)
\(104\) −83.6050 + 110.884i −0.803895 + 1.06620i
\(105\) 0 0
\(106\) 9.37929 42.8786i 0.0884839 0.404516i
\(107\) −11.4672 11.4672i −0.107170 0.107170i 0.651488 0.758659i \(-0.274145\pi\)
−0.758659 + 0.651488i \(0.774145\pi\)
\(108\) −31.9332 + 103.171i −0.295678 + 0.955288i
\(109\) 80.0130i 0.734065i 0.930208 + 0.367032i \(0.119626\pi\)
−0.930208 + 0.367032i \(0.880374\pi\)
\(110\) 0 0
\(111\) 64.8331 + 59.4232i 0.584082 + 0.535345i
\(112\) −43.2203 3.29090i −0.385895 0.0293830i
\(113\) 64.8556 + 64.8556i 0.573943 + 0.573943i 0.933228 0.359285i \(-0.116979\pi\)
−0.359285 + 0.933228i \(0.616979\pi\)
\(114\) −114.877 163.124i −1.00769 1.43091i
\(115\) 0 0
\(116\) 3.82693 8.32910i 0.0329908 0.0718026i
\(117\) −100.452 + 119.654i −0.858564 + 1.02269i
\(118\) −106.235 + 68.1010i −0.900301 + 0.577127i
\(119\) 36.2863i 0.304927i
\(120\) 0 0
\(121\) −73.7706 −0.609675
\(122\) −30.7346 47.9450i −0.251923 0.392992i
\(123\) −6.64423 152.607i −0.0540182 1.24071i
\(124\) 44.1825 + 20.3003i 0.356311 + 0.163712i
\(125\) 0 0
\(126\) −48.3626 6.24053i −0.383830 0.0495280i
\(127\) 63.5895 63.5895i 0.500705 0.500705i −0.410952 0.911657i \(-0.634804\pi\)
0.911657 + 0.410952i \(0.134804\pi\)
\(128\) −96.0586 84.5975i −0.750458 0.660918i
\(129\) −47.5325 43.5662i −0.368469 0.337722i
\(130\) 0 0
\(131\) −144.030 −1.09947 −0.549734 0.835340i \(-0.685271\pi\)
−0.549734 + 0.835340i \(0.685271\pi\)
\(132\) −31.1388 + 76.3636i −0.235900 + 0.578512i
\(133\) 63.6987 63.6987i 0.478938 0.478938i
\(134\) 89.6742 + 19.6154i 0.669210 + 0.146383i
\(135\) 0 0
\(136\) 64.5105 85.5596i 0.474342 0.629115i
\(137\) −13.6200 + 13.6200i −0.0994161 + 0.0994161i −0.755065 0.655649i \(-0.772395\pi\)
0.655649 + 0.755065i \(0.272395\pi\)
\(138\) −60.2774 10.4611i −0.436793 0.0758051i
\(139\) 62.7261 0.451267 0.225634 0.974212i \(-0.427555\pi\)
0.225634 + 0.974212i \(0.427555\pi\)
\(140\) 0 0
\(141\) −83.7563 76.7674i −0.594016 0.544449i
\(142\) 95.8868 + 149.580i 0.675259 + 1.05338i
\(143\) −84.3554 + 84.3554i −0.589898 + 0.589898i
\(144\) −102.940 100.695i −0.714860 0.699268i
\(145\) 0 0
\(146\) 196.661 + 43.0176i 1.34699 + 0.294641i
\(147\) 5.43636 + 124.864i 0.0369820 + 0.849417i
\(148\) −109.962 + 40.7259i −0.742983 + 0.275175i
\(149\) −167.292 −1.12277 −0.561383 0.827556i \(-0.689730\pi\)
−0.561383 + 0.827556i \(0.689730\pi\)
\(150\) 0 0
\(151\) 75.2596i 0.498408i 0.968451 + 0.249204i \(0.0801690\pi\)
−0.968451 + 0.249204i \(0.919831\pi\)
\(152\) 263.440 36.9506i 1.73316 0.243096i
\(153\) 77.5098 92.3266i 0.506600 0.603442i
\(154\) −36.3756 7.95681i −0.236205 0.0516676i
\(155\) 0 0
\(156\) −80.7752 192.008i −0.517790 1.23082i
\(157\) −71.6852 71.6852i −0.456593 0.456593i 0.440942 0.897536i \(-0.354644\pi\)
−0.897536 + 0.440942i \(0.854644\pi\)
\(158\) 81.1033 + 126.519i 0.513312 + 0.800751i
\(159\) 48.5359 + 44.4859i 0.305258 + 0.279786i
\(160\) 0 0
\(161\) 27.6229i 0.171571i
\(162\) −109.723 119.184i −0.677304 0.735703i
\(163\) −61.4502 61.4502i −0.376995 0.376995i 0.493022 0.870017i \(-0.335892\pi\)
−0.870017 + 0.493022i \(0.835892\pi\)
\(164\) 185.069 + 85.0327i 1.12847 + 0.518492i
\(165\) 0 0
\(166\) 162.067 + 35.4507i 0.976309 + 0.213558i
\(167\) −36.7847 36.7847i −0.220268 0.220268i 0.588344 0.808611i \(-0.299780\pi\)
−0.808611 + 0.588344i \(0.799780\pi\)
\(168\) 36.8479 53.5685i 0.219333 0.318860i
\(169\) 132.331i 0.783022i
\(170\) 0 0
\(171\) 298.139 26.0101i 1.74350 0.152106i
\(172\) 80.6184 29.8583i 0.468712 0.173595i
\(173\) −137.897 137.897i −0.797091 0.797091i 0.185545 0.982636i \(-0.440595\pi\)
−0.982636 + 0.185545i \(0.940595\pi\)
\(174\) 7.91660 + 11.2415i 0.0454977 + 0.0646062i
\(175\) 0 0
\(176\) −71.6244 83.4306i −0.406957 0.474038i
\(177\) −8.23327 189.105i −0.0465156 1.06839i
\(178\) −44.3680 69.2126i −0.249258 0.388835i
\(179\) 106.971i 0.597602i 0.954315 + 0.298801i \(0.0965867\pi\)
−0.954315 + 0.298801i \(0.903413\pi\)
\(180\) 0 0
\(181\) −11.6057 −0.0641199 −0.0320600 0.999486i \(-0.510207\pi\)
−0.0320600 + 0.999486i \(0.510207\pi\)
\(182\) 79.1812 50.7582i 0.435061 0.278891i
\(183\) 85.3446 3.71575i 0.466364 0.0203046i
\(184\) 49.1086 65.1322i 0.266895 0.353979i
\(185\) 0 0
\(186\) −59.6315 + 41.9944i −0.320599 + 0.225776i
\(187\) 65.0895 65.0895i 0.348072 0.348072i
\(188\) 142.057 52.6128i 0.755620 0.279855i
\(189\) 44.5494 58.0137i 0.235711 0.306951i
\(190\) 0 0
\(191\) −135.925 −0.711648 −0.355824 0.934553i \(-0.615800\pi\)
−0.355824 + 0.934553i \(0.615800\pi\)
\(192\) 182.119 60.8005i 0.948536 0.316669i
\(193\) 62.7362 62.7362i 0.325058 0.325058i −0.525646 0.850704i \(-0.676176\pi\)
0.850704 + 0.525646i \(0.176176\pi\)
\(194\) −18.3426 + 83.8556i −0.0945494 + 0.432245i
\(195\) 0 0
\(196\) −151.425 69.5743i −0.772575 0.354971i
\(197\) −96.9852 + 96.9852i −0.492311 + 0.492311i −0.909034 0.416723i \(-0.863179\pi\)
0.416723 + 0.909034i \(0.363179\pi\)
\(198\) −75.5575 97.9457i −0.381604 0.494675i
\(199\) −29.0286 −0.145872 −0.0729361 0.997337i \(-0.523237\pi\)
−0.0729361 + 0.997337i \(0.523237\pi\)
\(200\) 0 0
\(201\) −93.0356 + 101.506i −0.462864 + 0.505003i
\(202\) 209.285 134.160i 1.03607 0.664158i
\(203\) −4.38973 + 4.38973i −0.0216243 + 0.0216243i
\(204\) 62.3270 + 148.155i 0.305524 + 0.726251i
\(205\) 0 0
\(206\) 79.2780 362.430i 0.384845 1.75937i
\(207\) 59.0043 70.2836i 0.285045 0.339534i
\(208\) 276.940 + 21.0869i 1.33144 + 0.101379i
\(209\) 228.522 1.09341
\(210\) 0 0
\(211\) 376.951i 1.78650i −0.449561 0.893250i \(-0.648420\pi\)
0.449561 0.893250i \(-0.351580\pi\)
\(212\) −82.3204 + 30.4886i −0.388304 + 0.143814i
\(213\) −266.261 + 11.5925i −1.25005 + 0.0544249i
\(214\) −6.93079 + 31.6850i −0.0323869 + 0.148061i
\(215\) 0 0
\(216\) 208.181 57.5900i 0.963802 0.266620i
\(217\) −23.2857 23.2857i −0.107307 0.107307i
\(218\) 134.722 86.3619i 0.617990 0.396155i
\(219\) −204.032 + 222.608i −0.931655 + 1.01647i
\(220\) 0 0
\(221\) 232.510i 1.05208i
\(222\) 30.0763 173.301i 0.135479 0.780635i
\(223\) −255.505 255.505i −1.14576 1.14576i −0.987377 0.158385i \(-0.949371\pi\)
−0.158385 0.987377i \(-0.550629\pi\)
\(224\) 41.1087 + 76.3241i 0.183521 + 0.340733i
\(225\) 0 0
\(226\) 39.1988 179.202i 0.173446 0.792930i
\(227\) 109.045 + 109.045i 0.480375 + 0.480375i 0.905251 0.424876i \(-0.139682\pi\)
−0.424876 + 0.905251i \(0.639682\pi\)
\(228\) −150.667 + 369.490i −0.660820 + 1.62057i
\(229\) 223.738i 0.977023i −0.872557 0.488512i \(-0.837540\pi\)
0.872557 0.488512i \(-0.162460\pi\)
\(230\) 0 0
\(231\) 37.7391 41.1749i 0.163373 0.178246i
\(232\) −18.1547 + 2.54641i −0.0782530 + 0.0109759i
\(233\) −62.4244 62.4244i −0.267916 0.267916i 0.560344 0.828260i \(-0.310669\pi\)
−0.828260 + 0.560344i \(0.810669\pi\)
\(234\) 309.891 + 39.9871i 1.32432 + 0.170885i
\(235\) 0 0
\(236\) 229.330 + 105.369i 0.971737 + 0.446479i
\(237\) −225.210 + 9.80522i −0.950252 + 0.0413722i
\(238\) −61.0970 + 39.1655i −0.256710 + 0.164561i
\(239\) 310.217i 1.29798i −0.760798 0.648989i \(-0.775192\pi\)
0.760798 0.648989i \(-0.224808\pi\)
\(240\) 0 0
\(241\) −119.905 −0.497529 −0.248765 0.968564i \(-0.580025\pi\)
−0.248765 + 0.968564i \(0.580025\pi\)
\(242\) 79.6242 + 124.211i 0.329026 + 0.513269i
\(243\) 237.272 52.4494i 0.976428 0.215841i
\(244\) −47.5540 + 103.499i −0.194893 + 0.424175i
\(245\) 0 0
\(246\) −249.781 + 175.903i −1.01537 + 0.715055i
\(247\) −408.159 + 408.159i −1.65247 + 1.65247i
\(248\) −13.5077 96.3033i −0.0544664 0.388320i
\(249\) −168.142 + 183.450i −0.675271 + 0.736747i
\(250\) 0 0
\(251\) 336.252 1.33965 0.669825 0.742519i \(-0.266369\pi\)
0.669825 + 0.742519i \(0.266369\pi\)
\(252\) 41.6926 + 88.1662i 0.165447 + 0.349866i
\(253\) 49.5493 49.5493i 0.195847 0.195847i
\(254\) −175.704 38.4336i −0.691748 0.151313i
\(255\) 0 0
\(256\) −38.7602 + 253.049i −0.151407 + 0.988472i
\(257\) −199.642 + 199.642i −0.776816 + 0.776816i −0.979288 0.202472i \(-0.935102\pi\)
0.202472 + 0.979288i \(0.435102\pi\)
\(258\) −22.0505 + 127.056i −0.0854669 + 0.492464i
\(259\) 79.4176 0.306632
\(260\) 0 0
\(261\) −20.5459 + 1.79246i −0.0787200 + 0.00686766i
\(262\) 155.459 + 242.511i 0.593354 + 0.925613i
\(263\) −107.927 + 107.927i −0.410368 + 0.410368i −0.881867 0.471499i \(-0.843713\pi\)
0.471499 + 0.881867i \(0.343713\pi\)
\(264\) 162.187 29.9931i 0.614344 0.113610i
\(265\) 0 0
\(266\) −176.006 38.4995i −0.661675 0.144735i
\(267\) 123.202 5.36399i 0.461431 0.0200899i
\(268\) −63.7623 172.161i −0.237919 0.642390i
\(269\) −279.355 −1.03850 −0.519248 0.854624i \(-0.673788\pi\)
−0.519248 + 0.854624i \(0.673788\pi\)
\(270\) 0 0
\(271\) 353.019i 1.30265i 0.758797 + 0.651327i \(0.225787\pi\)
−0.758797 + 0.651327i \(0.774213\pi\)
\(272\) −213.690 16.2709i −0.785626 0.0598194i
\(273\) 6.13656 + 140.947i 0.0224782 + 0.516288i
\(274\) 37.6334 + 8.23194i 0.137348 + 0.0300436i
\(275\) 0 0
\(276\) 47.4464 + 112.783i 0.171907 + 0.408634i
\(277\) −9.06443 9.06443i −0.0327236 0.0327236i 0.690556 0.723279i \(-0.257366\pi\)
−0.723279 + 0.690556i \(0.757366\pi\)
\(278\) −67.7033 105.615i −0.243537 0.379910i
\(279\) −9.50828 108.988i −0.0340798 0.390637i
\(280\) 0 0
\(281\) 204.501i 0.727762i −0.931445 0.363881i \(-0.881451\pi\)
0.931445 0.363881i \(-0.118549\pi\)
\(282\) −38.8548 + 223.883i −0.137783 + 0.793912i
\(283\) −4.95961 4.95961i −0.0175251 0.0175251i 0.698290 0.715815i \(-0.253945\pi\)
−0.715815 + 0.698290i \(0.753945\pi\)
\(284\) 148.360 322.898i 0.522396 1.13697i
\(285\) 0 0
\(286\) 233.082 + 50.9844i 0.814972 + 0.178267i
\(287\) −97.5378 97.5378i −0.339853 0.339853i
\(288\) −58.4364 + 282.009i −0.202904 + 0.979199i
\(289\) 109.593i 0.379214i
\(290\) 0 0
\(291\) −94.9192 86.9988i −0.326183 0.298965i
\(292\) −139.834 377.558i −0.478885 1.29301i
\(293\) 195.635 + 195.635i 0.667697 + 0.667697i 0.957182 0.289485i \(-0.0934842\pi\)
−0.289485 + 0.957182i \(0.593484\pi\)
\(294\) 204.372 143.925i 0.695144 0.489542i
\(295\) 0 0
\(296\) 187.259 + 141.190i 0.632632 + 0.476994i
\(297\) 183.975 24.1520i 0.619445 0.0813198i
\(298\) 180.566 + 281.678i 0.605927 + 0.945227i
\(299\) 176.998i 0.591967i
\(300\) 0 0
\(301\) −58.2251 −0.193439
\(302\) 126.718 81.2313i 0.419597 0.268978i
\(303\) 16.2196 + 372.539i 0.0535302 + 1.22950i
\(304\) −346.559 403.685i −1.14000 1.32791i
\(305\) 0 0
\(306\) −239.115 30.8545i −0.781421 0.100832i
\(307\) 323.877 323.877i 1.05497 1.05497i 0.0565751 0.998398i \(-0.481982\pi\)
0.998398 0.0565751i \(-0.0180180\pi\)
\(308\) 25.8646 + 69.8355i 0.0839761 + 0.226739i
\(309\) 410.248 + 376.015i 1.32766 + 1.21688i
\(310\) 0 0
\(311\) −428.968 −1.37932 −0.689660 0.724133i \(-0.742240\pi\)
−0.689660 + 0.724133i \(0.742240\pi\)
\(312\) −236.108 + 343.248i −0.756757 + 1.10015i
\(313\) 144.149 144.149i 0.460541 0.460541i −0.438292 0.898833i \(-0.644416\pi\)
0.898833 + 0.438292i \(0.144416\pi\)
\(314\) −43.3266 + 198.073i −0.137983 + 0.630806i
\(315\) 0 0
\(316\) 125.487 273.115i 0.397110 0.864288i
\(317\) 299.797 299.797i 0.945733 0.945733i −0.0528685 0.998601i \(-0.516836\pi\)
0.998601 + 0.0528685i \(0.0168364\pi\)
\(318\) 22.5160 129.738i 0.0708049 0.407981i
\(319\) −15.7484 −0.0493679
\(320\) 0 0
\(321\) −35.8655 32.8727i −0.111730 0.102407i
\(322\) −46.5101 + 29.8148i −0.144441 + 0.0925924i
\(323\) 314.940 314.940i 0.975046 0.975046i
\(324\) −82.2461 + 313.387i −0.253846 + 0.967245i
\(325\) 0 0
\(326\) −37.1405 + 169.793i −0.113928 + 0.520837i
\(327\) 10.4410 + 239.812i 0.0319296 + 0.733370i
\(328\) −56.5801 403.389i −0.172500 1.22985i
\(329\) −102.598 −0.311847
\(330\) 0 0
\(331\) 89.1276i 0.269268i 0.990895 + 0.134634i \(0.0429858\pi\)
−0.990895 + 0.134634i \(0.957014\pi\)
\(332\) −115.237 311.144i −0.347100 0.937181i
\(333\) 202.070 + 169.641i 0.606815 + 0.509432i
\(334\) −22.2327 + 101.640i −0.0665649 + 0.304310i
\(335\) 0 0
\(336\) −129.968 4.22350i −0.386808 0.0125699i
\(337\) 176.973 + 176.973i 0.525141 + 0.525141i 0.919120 0.393978i \(-0.128902\pi\)
−0.393978 + 0.919120i \(0.628902\pi\)
\(338\) −222.812 + 142.831i −0.659206 + 0.422577i
\(339\) 202.846 + 185.920i 0.598365 + 0.548435i
\(340\) 0 0
\(341\) 83.5387i 0.244982i
\(342\) −365.590 473.917i −1.06898 1.38572i
\(343\) 173.671 + 173.671i 0.506330 + 0.506330i
\(344\) −137.289 103.514i −0.399096 0.300912i
\(345\) 0 0
\(346\) −83.3448 + 381.022i −0.240881 + 1.10122i
\(347\) −341.548 341.548i −0.984288 0.984288i 0.0155906 0.999878i \(-0.495037\pi\)
−0.999878 + 0.0155906i \(0.995037\pi\)
\(348\) 10.3830 25.4630i 0.0298363 0.0731696i
\(349\) 190.129i 0.544782i −0.962187 0.272391i \(-0.912186\pi\)
0.962187 0.272391i \(-0.0878144\pi\)
\(350\) 0 0
\(351\) −285.457 + 371.732i −0.813268 + 1.05906i
\(352\) −63.1686 + 210.648i −0.179456 + 0.598432i
\(353\) 66.4041 + 66.4041i 0.188114 + 0.188114i 0.794880 0.606767i \(-0.207534\pi\)
−0.606767 + 0.794880i \(0.707534\pi\)
\(354\) −309.518 + 217.972i −0.874345 + 0.615742i
\(355\) 0 0
\(356\) −68.6482 + 149.409i −0.192832 + 0.419688i
\(357\) −4.73503 108.756i −0.0132634 0.304638i
\(358\) 180.112 115.459i 0.503106 0.322510i
\(359\) 402.003i 1.11979i −0.828565 0.559893i \(-0.810842\pi\)
0.828565 0.559893i \(-0.189158\pi\)
\(360\) 0 0
\(361\) 744.721 2.06294
\(362\) 12.5266 + 19.5411i 0.0346038 + 0.0539809i
\(363\) −221.102 + 9.62639i −0.609098 + 0.0265190i
\(364\) −170.928 78.5354i −0.469582 0.215757i
\(365\) 0 0
\(366\) −98.3729 139.688i −0.268779 0.381662i
\(367\) 183.244 183.244i 0.499301 0.499301i −0.411919 0.911220i \(-0.635141\pi\)
0.911220 + 0.411919i \(0.135141\pi\)
\(368\) −162.672 12.3862i −0.442042 0.0336582i
\(369\) −39.8277 456.521i −0.107934 1.23719i
\(370\) 0 0
\(371\) 59.4543 0.160254
\(372\) 135.071 + 55.0779i 0.363094 + 0.148059i
\(373\) 78.2141 78.2141i 0.209689 0.209689i −0.594446 0.804135i \(-0.702629\pi\)
0.804135 + 0.594446i \(0.202629\pi\)
\(374\) −179.848 39.3401i −0.480878 0.105187i
\(375\) 0 0
\(376\) −241.915 182.400i −0.643391 0.485106i
\(377\) 28.1278 28.1278i 0.0746096 0.0746096i
\(378\) −145.765 12.3930i −0.385621 0.0327857i
\(379\) −116.155 −0.306478 −0.153239 0.988189i \(-0.548970\pi\)
−0.153239 + 0.988189i \(0.548970\pi\)
\(380\) 0 0
\(381\) 182.290 198.886i 0.478452 0.522010i
\(382\) 146.710 + 228.863i 0.384058 + 0.599118i
\(383\) −439.765 + 439.765i −1.14821 + 1.14821i −0.161308 + 0.986904i \(0.551571\pi\)
−0.986904 + 0.161308i \(0.948429\pi\)
\(384\) −298.942 241.018i −0.778496 0.627650i
\(385\) 0 0
\(386\) −173.346 37.9178i −0.449083 0.0982326i
\(387\) −148.147 124.372i −0.382810 0.321376i
\(388\) 160.990 59.6250i 0.414922 0.153673i
\(389\) 120.985 0.311017 0.155508 0.987835i \(-0.450298\pi\)
0.155508 + 0.987835i \(0.450298\pi\)
\(390\) 0 0
\(391\) 136.574i 0.349293i
\(392\) 46.2942 + 330.056i 0.118098 + 0.841979i
\(393\) −431.682 + 18.7946i −1.09843 + 0.0478235i
\(394\) 267.980 + 58.6179i 0.680151 + 0.148776i
\(395\) 0 0
\(396\) −83.3631 + 232.937i −0.210513 + 0.588226i
\(397\) 549.267 + 549.267i 1.38355 + 1.38355i 0.838233 + 0.545313i \(0.183589\pi\)
0.545313 + 0.838233i \(0.316411\pi\)
\(398\) 31.3319 + 48.8768i 0.0787234 + 0.122806i
\(399\) 182.603 199.227i 0.457652 0.499317i
\(400\) 0 0
\(401\) 177.597i 0.442885i 0.975173 + 0.221442i \(0.0710765\pi\)
−0.975173 + 0.221442i \(0.928924\pi\)
\(402\) 271.328 + 47.0887i 0.674944 + 0.117136i
\(403\) 149.207 + 149.207i 0.370240 + 0.370240i
\(404\) −451.783 207.578i −1.11827 0.513808i
\(405\) 0 0
\(406\) 12.1292 + 2.65315i 0.0298750 + 0.00653486i
\(407\) 142.457 + 142.457i 0.350018 + 0.350018i
\(408\) 182.184 264.854i 0.446529 0.649152i
\(409\) 348.822i 0.852865i 0.904519 + 0.426433i \(0.140230\pi\)
−0.904519 + 0.426433i \(0.859770\pi\)
\(410\) 0 0
\(411\) −39.0441 + 42.5986i −0.0949977 + 0.103646i
\(412\) −695.809 + 257.703i −1.68886 + 0.625494i
\(413\) −120.865 120.865i −0.292651 0.292651i
\(414\) −182.026 23.4880i −0.439676 0.0567342i
\(415\) 0 0
\(416\) −263.410 489.058i −0.633197 1.17562i
\(417\) 188.000 8.18518i 0.450840 0.0196287i
\(418\) −246.655 384.774i −0.590084 0.920512i
\(419\) 104.631i 0.249716i 0.992175 + 0.124858i \(0.0398476\pi\)
−0.992175 + 0.124858i \(0.960152\pi\)
\(420\) 0 0
\(421\) 207.644 0.493217 0.246609 0.969115i \(-0.420684\pi\)
0.246609 + 0.969115i \(0.420684\pi\)
\(422\) −634.691 + 406.862i −1.50401 + 0.964127i
\(423\) −261.048 219.155i −0.617136 0.518096i
\(424\) 140.187 + 105.699i 0.330631 + 0.249290i
\(425\) 0 0
\(426\) 306.907 + 435.804i 0.720439 + 1.02301i
\(427\) 54.5474 54.5474i 0.127746 0.127746i
\(428\) 60.8303 22.5294i 0.142127 0.0526389i
\(429\) −241.819 + 263.834i −0.563681 + 0.614998i
\(430\) 0 0
\(431\) 135.966 0.315467 0.157734 0.987482i \(-0.449581\pi\)
0.157734 + 0.987482i \(0.449581\pi\)
\(432\) −321.667 288.365i −0.744599 0.667512i
\(433\) −426.207 + 426.207i −0.984312 + 0.984312i −0.999879 0.0155664i \(-0.995045\pi\)
0.0155664 + 0.999879i \(0.495045\pi\)
\(434\) −14.0739 + 64.3407i −0.0324284 + 0.148250i
\(435\) 0 0
\(436\) −290.823 133.623i −0.667026 0.306475i
\(437\) 239.748 239.748i 0.548622 0.548622i
\(438\) 595.037 + 103.268i 1.35853 + 0.235772i
\(439\) −408.305 −0.930080 −0.465040 0.885290i \(-0.653960\pi\)
−0.465040 + 0.885290i \(0.653960\pi\)
\(440\) 0 0
\(441\) 32.5873 + 373.529i 0.0738940 + 0.847004i
\(442\) 391.488 250.959i 0.885720 0.567781i
\(443\) 354.483 354.483i 0.800188 0.800188i −0.182937 0.983125i \(-0.558560\pi\)
0.983125 + 0.182937i \(0.0585604\pi\)
\(444\) −324.258 + 136.411i −0.730311 + 0.307232i
\(445\) 0 0
\(446\) −154.427 + 705.985i −0.346250 + 1.58293i
\(447\) −501.401 + 21.8301i −1.12170 + 0.0488368i
\(448\) 84.1400 151.597i 0.187813 0.338386i
\(449\) 452.663 1.00816 0.504079 0.863657i \(-0.331832\pi\)
0.504079 + 0.863657i \(0.331832\pi\)
\(450\) 0 0
\(451\) 349.922i 0.775880i
\(452\) −344.041 + 127.421i −0.761152 + 0.281904i
\(453\) 9.82069 + 225.565i 0.0216792 + 0.497936i
\(454\) 65.9070 301.302i 0.145170 0.663661i
\(455\) 0 0
\(456\) 784.751 145.123i 1.72095 0.318253i
\(457\) −270.489 270.489i −0.591879 0.591879i 0.346260 0.938139i \(-0.387452\pi\)
−0.938139 + 0.346260i \(0.887452\pi\)
\(458\) −376.719 + 241.491i −0.822531 + 0.527274i
\(459\) 220.262 286.832i 0.479873 0.624906i
\(460\) 0 0
\(461\) 582.469i 1.26349i −0.775176 0.631745i \(-0.782339\pi\)
0.775176 0.631745i \(-0.217661\pi\)
\(462\) −110.062 19.1012i −0.238229 0.0413445i
\(463\) 318.146 + 318.146i 0.687140 + 0.687140i 0.961599 0.274459i \(-0.0884986\pi\)
−0.274459 + 0.961599i \(0.588499\pi\)
\(464\) 23.8827 + 27.8195i 0.0514714 + 0.0599558i
\(465\) 0 0
\(466\) −37.7293 + 172.485i −0.0809642 + 0.370139i
\(467\) 554.211 + 554.211i 1.18675 + 1.18675i 0.977961 + 0.208786i \(0.0669514\pi\)
0.208786 + 0.977961i \(0.433049\pi\)
\(468\) −267.151 564.938i −0.570837 1.20713i
\(469\) 124.340i 0.265116i
\(470\) 0 0
\(471\) −224.206 205.498i −0.476022 0.436301i
\(472\) −70.1118 499.864i −0.148542 1.05903i
\(473\) −104.443 104.443i −0.220809 0.220809i
\(474\) 259.589 + 368.613i 0.547657 + 0.777665i
\(475\) 0 0
\(476\) 131.890 + 60.5987i 0.277080 + 0.127308i
\(477\) 151.275 + 126.998i 0.317138 + 0.266243i
\(478\) −522.327 + 334.832i −1.09273 + 0.700485i
\(479\) 857.141i 1.78944i 0.446629 + 0.894719i \(0.352625\pi\)
−0.446629 + 0.894719i \(0.647375\pi\)
\(480\) 0 0
\(481\) −508.880 −1.05796
\(482\) 129.419 + 201.889i 0.268504 + 0.418857i
\(483\) −3.60454 82.7904i −0.00746281 0.171409i
\(484\) 123.198 268.134i 0.254542 0.553996i
\(485\) 0 0
\(486\) −344.411 342.895i −0.708664 0.705546i
\(487\) 97.7824 97.7824i 0.200785 0.200785i −0.599551 0.800336i \(-0.704654\pi\)
0.800336 + 0.599551i \(0.204654\pi\)
\(488\) 225.593 31.6421i 0.462281 0.0648403i
\(489\) −192.195 176.157i −0.393036 0.360240i
\(490\) 0 0
\(491\) 770.213 1.56866 0.784331 0.620342i \(-0.213006\pi\)
0.784331 + 0.620342i \(0.213006\pi\)
\(492\) 565.777 + 230.707i 1.14995 + 0.468916i
\(493\) −21.7037 + 21.7037i −0.0440238 + 0.0440238i
\(494\) 1127.78 + 246.692i 2.28296 + 0.499376i
\(495\) 0 0
\(496\) −147.571 + 126.688i −0.297522 + 0.255420i
\(497\) −170.179 + 170.179i −0.342412 + 0.342412i
\(498\) 490.368 + 85.1031i 0.984675 + 0.170890i
\(499\) 66.3836 0.133033 0.0665166 0.997785i \(-0.478811\pi\)
0.0665166 + 0.997785i \(0.478811\pi\)
\(500\) 0 0
\(501\) −115.050 105.450i −0.229640 0.210478i
\(502\) −362.933 566.164i −0.722974 1.12782i
\(503\) 349.224 349.224i 0.694282 0.694282i −0.268889 0.963171i \(-0.586656\pi\)
0.963171 + 0.268889i \(0.0866564\pi\)
\(504\) 103.449 165.362i 0.205256 0.328099i
\(505\) 0 0
\(506\) −136.910 29.9477i −0.270572 0.0591851i
\(507\) −17.2680 396.617i −0.0340591 0.782281i
\(508\) 124.933 + 337.325i 0.245932 + 0.664025i
\(509\) 447.822 0.879807 0.439904 0.898045i \(-0.355013\pi\)
0.439904 + 0.898045i \(0.355013\pi\)
\(510\) 0 0
\(511\) 272.684i 0.533628i
\(512\) 467.906 207.865i 0.913879 0.405987i
\(513\) 890.176 116.861i 1.73524 0.227799i
\(514\) 551.629 + 120.664i 1.07321 + 0.234754i
\(515\) 0 0
\(516\) 237.730 100.010i 0.460717 0.193818i
\(517\) −184.037 184.037i −0.355971 0.355971i
\(518\) −85.7192 133.719i −0.165481 0.258145i
\(519\) −431.293 395.304i −0.831007 0.761665i
\(520\) 0 0
\(521\) 373.093i 0.716109i −0.933701 0.358054i \(-0.883440\pi\)
0.933701 0.358054i \(-0.116560\pi\)
\(522\) 25.1942 + 32.6595i 0.0482648 + 0.0625660i
\(523\) −593.137 593.137i −1.13411 1.13411i −0.989488 0.144618i \(-0.953805\pi\)
−0.144618 0.989488i \(-0.546195\pi\)
\(524\) 240.533 523.507i 0.459032 0.999058i
\(525\) 0 0
\(526\) 298.212 + 65.2311i 0.566943 + 0.124013i
\(527\) −115.130 115.130i −0.218462 0.218462i
\(528\) −225.557 240.709i −0.427191 0.455888i
\(529\) 425.033i 0.803466i
\(530\) 0 0
\(531\) −49.3529 565.703i −0.0929432 1.06535i
\(532\) 125.148 + 337.904i 0.235240 + 0.635157i
\(533\) 624.988 + 624.988i 1.17259 + 1.17259i
\(534\) −142.010 201.652i −0.265935 0.377625i
\(535\) 0 0
\(536\) −221.053 + 293.181i −0.412413 + 0.546979i
\(537\) 13.9587 + 320.609i 0.0259939 + 0.597036i
\(538\) 301.522 + 470.364i 0.560449 + 0.874283i
\(539\) 286.308i 0.531184i
\(540\) 0 0
\(541\) −46.0398 −0.0851012 −0.0425506 0.999094i \(-0.513548\pi\)
−0.0425506 + 0.999094i \(0.513548\pi\)
\(542\) 594.395 381.030i 1.09667 0.703008i
\(543\) −34.7842 + 1.51444i −0.0640592 + 0.00278902i
\(544\) 203.250 + 377.362i 0.373621 + 0.693681i
\(545\) 0 0
\(546\) 230.695 162.463i 0.422519 0.297551i
\(547\) −586.492 + 586.492i −1.07220 + 1.07220i −0.0750146 + 0.997182i \(0.523900\pi\)
−0.997182 + 0.0750146i \(0.976100\pi\)
\(548\) −26.7590 72.2503i −0.0488303 0.131844i
\(549\) 255.307 22.2734i 0.465040 0.0405708i
\(550\) 0 0
\(551\) −76.1995 −0.138293
\(552\) 138.687 201.620i 0.251245 0.365254i
\(553\) −143.941 + 143.941i −0.260292 + 0.260292i
\(554\) −5.47855 + 25.0459i −0.00988908 + 0.0452092i
\(555\) 0 0
\(556\) −104.754 + 227.991i −0.188406 + 0.410055i
\(557\) 413.911 413.911i 0.743108 0.743108i −0.230067 0.973175i \(-0.573894\pi\)
0.973175 + 0.230067i \(0.0738945\pi\)
\(558\) −173.245 + 133.645i −0.310475 + 0.239508i
\(559\) 373.086 0.667416
\(560\) 0 0
\(561\) 186.590 203.577i 0.332603 0.362883i
\(562\) −344.328 + 220.728i −0.612684 + 0.392754i
\(563\) 185.957 185.957i 0.330296 0.330296i −0.522403 0.852699i \(-0.674964\pi\)
0.852699 + 0.522403i \(0.174964\pi\)
\(564\) 418.901 176.226i 0.742732 0.312458i
\(565\) 0 0
\(566\) −2.99759 + 13.7039i −0.00529610 + 0.0242118i
\(567\) 125.951 179.690i 0.222137 0.316913i
\(568\) −703.812 + 98.7180i −1.23911 + 0.173799i
\(569\) −745.467 −1.31014 −0.655068 0.755570i \(-0.727360\pi\)
−0.655068 + 0.755570i \(0.727360\pi\)
\(570\) 0 0
\(571\) 406.663i 0.712195i −0.934449 0.356097i \(-0.884107\pi\)
0.934449 0.356097i \(-0.115893\pi\)
\(572\) −165.732 447.481i −0.289741 0.782310i
\(573\) −407.388 + 17.7369i −0.710975 + 0.0309545i
\(574\) −58.9519 + 269.506i −0.102704 + 0.469523i
\(575\) 0 0
\(576\) 537.906 205.994i 0.933864 0.357628i
\(577\) −73.9694 73.9694i −0.128197 0.128197i 0.640097 0.768294i \(-0.278894\pi\)
−0.768294 + 0.640097i \(0.778894\pi\)
\(578\) 184.527 118.289i 0.319251 0.204652i
\(579\) 179.844 196.217i 0.310611 0.338889i
\(580\) 0 0
\(581\) 224.718i 0.386778i
\(582\) −44.0333 + 253.722i −0.0756586 + 0.435949i
\(583\) 106.648 + 106.648i 0.182929 + 0.182929i
\(584\) −484.783 + 642.962i −0.830108 + 1.10096i
\(585\) 0 0
\(586\) 118.242 540.559i 0.201778 0.922456i
\(587\) 422.201 + 422.201i 0.719251 + 0.719251i 0.968452 0.249200i \(-0.0801678\pi\)
−0.249200 + 0.968452i \(0.580168\pi\)
\(588\) −462.923 188.766i −0.787284 0.321030i
\(589\) 404.208i 0.686261i
\(590\) 0 0
\(591\) −278.025 + 303.336i −0.470431 + 0.513259i
\(592\) 35.6111 467.690i 0.0601538 0.790017i
\(593\) −406.869 406.869i −0.686119 0.686119i 0.275253 0.961372i \(-0.411238\pi\)
−0.961372 + 0.275253i \(0.911238\pi\)
\(594\) −239.239 283.700i −0.402759 0.477609i
\(595\) 0 0
\(596\) 279.381 608.056i 0.468759 1.02023i
\(597\) −87.0033 + 3.78796i −0.145734 + 0.00634500i
\(598\) 298.020 191.043i 0.498362 0.319469i
\(599\) 293.225i 0.489525i −0.969583 0.244762i \(-0.921290\pi\)
0.969583 0.244762i \(-0.0787100\pi\)
\(600\) 0 0
\(601\) −1087.24 −1.80905 −0.904523 0.426424i \(-0.859773\pi\)
−0.904523 + 0.426424i \(0.859773\pi\)
\(602\) 62.8451 + 98.0363i 0.104394 + 0.162851i
\(603\) −265.597 + 316.369i −0.440459 + 0.524658i
\(604\) −273.546 125.685i −0.452891 0.208087i
\(605\) 0 0
\(606\) 609.755 429.409i 1.00620 0.708595i
\(607\) 74.9651 74.9651i 0.123501 0.123501i −0.642655 0.766156i \(-0.722167\pi\)
0.766156 + 0.642655i \(0.222167\pi\)
\(608\) −305.645 + 1019.23i −0.502706 + 1.67637i
\(609\) −12.5839 + 13.7295i −0.0206632 + 0.0225444i
\(610\) 0 0
\(611\) 657.409 1.07596
\(612\) 206.137 + 435.912i 0.336825 + 0.712274i
\(613\) −22.9005 + 22.9005i −0.0373581 + 0.0373581i −0.725539 0.688181i \(-0.758410\pi\)
0.688181 + 0.725539i \(0.258410\pi\)
\(614\) −894.903 195.751i −1.45750 0.318813i
\(615\) 0 0
\(616\) 89.6684 118.926i 0.145566 0.193062i
\(617\) −115.002 + 115.002i −0.186389 + 0.186389i −0.794133 0.607744i \(-0.792075\pi\)
0.607744 + 0.794133i \(0.292075\pi\)
\(618\) 190.315 1096.60i 0.307953 1.77444i
\(619\) 710.704 1.14815 0.574074 0.818803i \(-0.305362\pi\)
0.574074 + 0.818803i \(0.305362\pi\)
\(620\) 0 0
\(621\) 167.674 218.351i 0.270006 0.351612i
\(622\) 463.006 + 722.275i 0.744383 + 1.16121i
\(623\) 78.7438 78.7438i 0.126394 0.126394i
\(624\) 832.787 + 27.0627i 1.33459 + 0.0433697i
\(625\) 0 0
\(626\) −398.299 87.1240i −0.636260 0.139176i
\(627\) 684.918 29.8201i 1.09237 0.0475599i
\(628\) 380.270 140.839i 0.605525 0.224265i
\(629\) 392.657 0.624256
\(630\) 0 0
\(631\) 209.771i 0.332443i 0.986088 + 0.166221i \(0.0531566\pi\)
−0.986088 + 0.166221i \(0.946843\pi\)
\(632\) −595.301 + 83.4980i −0.941932 + 0.132117i
\(633\) −49.1887 1129.78i −0.0777072 1.78481i
\(634\) −828.369 181.198i −1.30658 0.285801i
\(635\) 0 0
\(636\) −242.749 + 102.121i −0.381681 + 0.160568i
\(637\) −511.370 511.370i −0.802778 0.802778i
\(638\) 16.9980 + 26.5163i 0.0266426 + 0.0415616i
\(639\) −796.514 + 69.4892i −1.24650 + 0.108747i
\(640\) 0 0
\(641\) 1193.44i 1.86184i 0.365221 + 0.930921i \(0.380993\pi\)
−0.365221 + 0.930921i \(0.619007\pi\)
\(642\) −16.6381 + 95.8695i −0.0259160 + 0.149329i
\(643\) −424.387 424.387i −0.660012 0.660012i 0.295371 0.955383i \(-0.404557\pi\)
−0.955383 + 0.295371i \(0.904557\pi\)
\(644\) 100.401 + 46.1308i 0.155902 + 0.0716316i
\(645\) 0 0
\(646\) −870.209 190.350i −1.34707 0.294659i
\(647\) −556.306 556.306i −0.859824 0.859824i 0.131493 0.991317i \(-0.458023\pi\)
−0.991317 + 0.131493i \(0.958023\pi\)
\(648\) 616.437 199.772i 0.951292 0.308290i
\(649\) 433.609i 0.668119i
\(650\) 0 0
\(651\) −72.8296 66.7525i −0.111873 0.102538i
\(652\) 325.976 120.730i 0.499963 0.185169i
\(653\) −730.267 730.267i −1.11833 1.11833i −0.991987 0.126340i \(-0.959677\pi\)
−0.126340 0.991987i \(-0.540323\pi\)
\(654\) 392.513 276.420i 0.600174 0.422661i
\(655\) 0 0
\(656\) −618.137 + 530.664i −0.942281 + 0.808939i
\(657\) −582.470 + 693.815i −0.886560 + 1.05604i
\(658\) 110.738 + 172.748i 0.168295 + 0.262536i
\(659\) 929.519i 1.41050i 0.708959 + 0.705250i \(0.249165\pi\)
−0.708959 + 0.705250i \(0.750835\pi\)
\(660\) 0 0
\(661\) 564.895 0.854607 0.427303 0.904108i \(-0.359464\pi\)
0.427303 + 0.904108i \(0.359464\pi\)
\(662\) 150.068 96.1997i 0.226690 0.145317i
\(663\) 30.3404 + 696.870i 0.0457623 + 1.05109i
\(664\) −399.508 + 529.863i −0.601668 + 0.797986i
\(665\) 0 0
\(666\) 67.5293 523.336i 0.101395 0.785789i
\(667\) −16.5220 + 16.5220i −0.0247705 + 0.0247705i
\(668\) 195.132 72.2703i 0.292114 0.108189i
\(669\) −799.131 732.449i −1.19452 1.09484i
\(670\) 0 0
\(671\) 195.692 0.291642
\(672\) 133.169 + 223.391i 0.198168 + 0.332428i
\(673\) −301.487 + 301.487i −0.447975 + 0.447975i −0.894681 0.446706i \(-0.852597\pi\)
0.446706 + 0.894681i \(0.352597\pi\)
\(674\) 106.962 488.992i 0.158698 0.725508i
\(675\) 0 0
\(676\) 480.983 + 220.995i 0.711513 + 0.326915i
\(677\) −530.496 + 530.496i −0.783598 + 0.783598i −0.980436 0.196838i \(-0.936933\pi\)
0.196838 + 0.980436i \(0.436933\pi\)
\(678\) 94.1007 542.213i 0.138792 0.799724i
\(679\) −116.272 −0.171240
\(680\) 0 0
\(681\) 341.055 + 312.596i 0.500815 + 0.459026i
\(682\) −140.658 + 90.1673i −0.206244 + 0.132210i
\(683\) −378.401 + 378.401i −0.554028 + 0.554028i −0.927601 0.373573i \(-0.878133\pi\)
0.373573 + 0.927601i \(0.378133\pi\)
\(684\) −403.358 + 1127.08i −0.589705 + 1.64778i
\(685\) 0 0
\(686\) 104.967 479.870i 0.153013 0.699519i
\(687\) −29.1958 670.580i −0.0424975 0.976099i
\(688\) −26.1083 + 342.887i −0.0379481 + 0.498383i
\(689\) −380.962 −0.552920
\(690\) 0 0
\(691\) 690.583i 0.999396i 0.866200 + 0.499698i \(0.166556\pi\)
−0.866200 + 0.499698i \(0.833444\pi\)
\(692\) 731.503 270.923i 1.05708 0.391508i
\(693\) 107.737 128.332i 0.155465 0.185184i
\(694\) −206.432 + 943.730i −0.297452 + 1.35984i
\(695\) 0 0
\(696\) −54.0802 + 10.0010i −0.0777015 + 0.0143693i
\(697\) −482.247 482.247i −0.691890 0.691890i
\(698\) −320.129 + 205.215i −0.458638 + 0.294004i
\(699\) −195.242 178.950i −0.279316 0.256009i
\(700\) 0 0
\(701\) 129.593i 0.184869i 0.995719 + 0.0924343i \(0.0294648\pi\)
−0.995719 + 0.0924343i \(0.970535\pi\)
\(702\) 934.010 + 79.4100i 1.33050 + 0.113120i
\(703\) 689.289 + 689.289i 0.980496 + 0.980496i
\(704\) 422.859 121.002i 0.600652 0.171879i
\(705\) 0 0
\(706\) 40.1347 183.481i 0.0568480 0.259888i
\(707\) 238.105 + 238.105i 0.336783 + 0.336783i
\(708\) 701.089 + 285.883i 0.990238 + 0.403789i
\(709\) 86.8545i 0.122503i 0.998122 + 0.0612514i \(0.0195091\pi\)
−0.998122 + 0.0612514i \(0.980491\pi\)
\(710\) 0 0
\(711\) −673.710 + 58.7756i −0.947553 + 0.0826661i
\(712\) 325.662 45.6780i 0.457391 0.0641545i
\(713\) −87.6423 87.6423i −0.122920 0.122920i
\(714\) −178.007 + 125.358i −0.249309 + 0.175571i
\(715\) 0 0
\(716\) −388.807 178.643i −0.543026 0.249501i
\(717\) −40.4804 929.769i −0.0564581 1.29675i
\(718\) −676.872 + 433.901i −0.942719 + 0.604319i
\(719\) 104.099i 0.144782i 0.997376 + 0.0723912i \(0.0230630\pi\)
−0.997376 + 0.0723912i \(0.976937\pi\)
\(720\) 0 0
\(721\) 502.534 0.696996
\(722\) −803.812 1253.92i −1.11331 1.73673i
\(723\) −359.373 + 15.6464i −0.497059 + 0.0216410i
\(724\) 19.3817 42.1833i 0.0267703 0.0582642i
\(725\) 0 0
\(726\) 254.855 + 361.891i 0.351040 + 0.498472i
\(727\) −252.054 + 252.054i −0.346704 + 0.346704i −0.858880 0.512176i \(-0.828839\pi\)
0.512176 + 0.858880i \(0.328839\pi\)
\(728\) 52.2569 + 372.567i 0.0717814 + 0.511768i
\(729\) 704.298 188.161i 0.966116 0.258109i
\(730\) 0 0
\(731\) −287.877 −0.393812
\(732\) −129.021 + 316.408i −0.176259 + 0.432251i
\(733\) 795.114 795.114i 1.08474 1.08474i 0.0886791 0.996060i \(-0.471735\pi\)
0.996060 0.0886791i \(-0.0282646\pi\)
\(734\) −506.320 110.753i −0.689809 0.150889i
\(735\) 0 0
\(736\) 154.724 + 287.267i 0.210223 + 0.390308i
\(737\) −223.037 + 223.037i −0.302629 + 0.302629i
\(738\) −725.679 + 559.805i −0.983305 + 0.758543i
\(739\) 622.137 0.841863 0.420931 0.907092i \(-0.361703\pi\)
0.420931 + 0.907092i \(0.361703\pi\)
\(740\) 0 0
\(741\) −1170.06 + 1276.58i −1.57902 + 1.72278i
\(742\) −64.1718 100.106i −0.0864850 0.134914i
\(743\) 487.618 487.618i 0.656283 0.656283i −0.298216 0.954499i \(-0.596391\pi\)
0.954499 + 0.298216i \(0.0963914\pi\)
\(744\) −53.0514 286.874i −0.0713056 0.385583i
\(745\) 0 0
\(746\) −216.113 47.2726i −0.289696 0.0633681i
\(747\) −480.011 + 571.770i −0.642585 + 0.765422i
\(748\) 127.880 + 345.281i 0.170963 + 0.461606i
\(749\) −43.9335 −0.0586562
\(750\) 0 0
\(751\) 1089.00i 1.45007i 0.688711 + 0.725036i \(0.258177\pi\)
−0.688711 + 0.725036i \(0.741823\pi\)
\(752\) −46.0050 + 604.197i −0.0611769 + 0.803454i
\(753\) 1007.80 43.8778i 1.33838 0.0582706i
\(754\) −77.7199 17.0005i −0.103077 0.0225470i
\(755\) 0 0
\(756\) 136.464 + 258.808i 0.180508 + 0.342338i
\(757\) 628.144 + 628.144i 0.829781 + 0.829781i 0.987486 0.157705i \(-0.0504097\pi\)
−0.157705 + 0.987486i \(0.550410\pi\)
\(758\) 125.372 + 195.576i 0.165398 + 0.258016i
\(759\) 142.042 154.973i 0.187143 0.204181i
\(760\) 0 0
\(761\) 723.259i 0.950407i −0.879876 0.475203i \(-0.842375\pi\)
0.879876 0.475203i \(-0.157625\pi\)
\(762\) −531.628 92.2638i −0.697675 0.121081i
\(763\) 153.274 + 153.274i 0.200883 + 0.200883i
\(764\) 226.997 494.046i 0.297116 0.646657i
\(765\) 0 0
\(766\) 1215.11 + 265.794i 1.58631 + 0.346990i
\(767\) 774.460 + 774.460i 1.00973 + 1.00973i
\(768\) −83.1500 + 763.485i −0.108268 + 0.994122i
\(769\) 180.270i 0.234421i 0.993107 + 0.117210i \(0.0373952\pi\)
−0.993107 + 0.117210i \(0.962605\pi\)
\(770\) 0 0
\(771\) −572.307 + 624.410i −0.742292 + 0.809870i
\(772\) 123.257 + 332.798i 0.159659 + 0.431085i
\(773\) 482.107 + 482.107i 0.623683 + 0.623683i 0.946471 0.322788i \(-0.104620\pi\)
−0.322788 + 0.946471i \(0.604620\pi\)
\(774\) −49.5091 + 383.684i −0.0639653 + 0.495716i
\(775\) 0 0
\(776\) −274.157 206.710i −0.353296 0.266379i
\(777\) 238.027 10.3633i 0.306341 0.0133375i
\(778\) −130.585 203.709i −0.167848 0.261837i
\(779\) 1693.12i 2.17345i
\(780\) 0 0
\(781\) −610.525 −0.781722
\(782\) −229.956 + 147.410i −0.294061 + 0.188504i
\(783\) −61.3455 + 8.05334i −0.0783468 + 0.0102852i
\(784\) 505.764 434.193i 0.645107 0.553818i
\(785\) 0 0
\(786\) 497.580 + 706.557i 0.633053 + 0.898928i
\(787\) 279.225 279.225i 0.354797 0.354797i −0.507094 0.861891i \(-0.669280\pi\)
0.861891 + 0.507094i \(0.169280\pi\)
\(788\) −190.545 514.479i −0.241809 0.652892i
\(789\) −309.391 + 337.558i −0.392130 + 0.427830i
\(790\) 0 0
\(791\) 248.477 0.314130
\(792\) 482.186 111.058i 0.608820 0.140225i
\(793\) −349.521 + 349.521i −0.440758 + 0.440758i
\(794\) 331.978 1517.68i 0.418108 1.91143i
\(795\) 0 0
\(796\) 48.4782 105.510i 0.0609023 0.132550i
\(797\) −861.626 + 861.626i −1.08109 + 1.08109i −0.0846783 + 0.996408i \(0.526986\pi\)
−0.996408 + 0.0846783i \(0.973014\pi\)
\(798\) −532.541 92.4222i −0.667345 0.115817i
\(799\) −507.264 −0.634873
\(800\) 0 0
\(801\) 368.557 32.1535i 0.460121 0.0401417i
\(802\) 299.028 191.689i 0.372853 0.239013i
\(803\) −489.134 + 489.134i −0.609133 + 0.609133i
\(804\) −213.571 507.672i −0.265636 0.631433i
\(805\) 0 0
\(806\) 90.1807 412.273i 0.111887 0.511505i
\(807\) −837.273 + 36.4533i −1.03751 + 0.0451714i
\(808\) 138.121 + 984.738i 0.170942 + 1.21874i
\(809\) −430.022 −0.531548 −0.265774 0.964035i \(-0.585627\pi\)
−0.265774 + 0.964035i \(0.585627\pi\)
\(810\) 0 0
\(811\) 1351.37i 1.66630i −0.553047 0.833150i \(-0.686535\pi\)
0.553047 0.833150i \(-0.313465\pi\)
\(812\) −8.62442 23.2863i −0.0106212 0.0286777i
\(813\) 46.0658 + 1058.06i 0.0566614 + 1.30142i
\(814\) 86.1013 393.623i 0.105776 0.483567i
\(815\) 0 0
\(816\) −642.587 20.8819i −0.787484 0.0255905i
\(817\) −505.353 505.353i −0.618547 0.618547i
\(818\) 587.328 376.500i 0.718005 0.460269i
\(819\) 36.7845 + 421.639i 0.0449139 + 0.514822i
\(820\) 0 0
\(821\) 901.925i 1.09857i −0.835636 0.549284i \(-0.814900\pi\)
0.835636 0.549284i \(-0.185100\pi\)
\(822\) 113.867 + 19.7616i 0.138525 + 0.0240409i
\(823\) −512.252 512.252i −0.622421 0.622421i 0.323729 0.946150i \(-0.395063\pi\)
−0.946150 + 0.323729i \(0.895063\pi\)
\(824\) 1184.93 + 893.415i 1.43802 + 1.08424i
\(825\) 0 0
\(826\) −73.0508 + 333.961i −0.0884393 + 0.404312i
\(827\) −683.717 683.717i −0.826744 0.826744i 0.160321 0.987065i \(-0.448747\pi\)
−0.987065 + 0.160321i \(0.948747\pi\)
\(828\) 156.922 + 331.838i 0.189519 + 0.400770i
\(829\) 1001.78i 1.20842i 0.796827 + 0.604208i \(0.206510\pi\)
−0.796827 + 0.604208i \(0.793490\pi\)
\(830\) 0 0
\(831\) −28.3504 25.9847i −0.0341160 0.0312692i
\(832\) −539.140 + 971.380i −0.648005 + 1.16752i
\(833\) 394.578 + 394.578i 0.473683 + 0.473683i
\(834\) −216.699 307.711i −0.259832 0.368957i
\(835\) 0 0
\(836\) −381.636 + 830.610i −0.456503 + 0.993553i
\(837\) −42.7197 325.413i −0.0510391 0.388785i
\(838\) 176.173 112.933i 0.210230 0.134765i
\(839\) 189.192i 0.225497i 0.993624 + 0.112749i \(0.0359654\pi\)
−0.993624 + 0.112749i \(0.964035\pi\)
\(840\) 0 0
\(841\) −835.749 −0.993756
\(842\) −224.120 349.621i −0.266176 0.415227i
\(843\) −26.6855 612.923i −0.0316554 0.727073i
\(844\) 1370.10 + 629.515i 1.62335 + 0.745871i
\(845\) 0 0
\(846\) −87.2393 + 676.084i −0.103120 + 0.799154i
\(847\) −141.316 + 141.316i −0.166843 + 0.166843i
\(848\) 26.6595 350.126i 0.0314381 0.412885i
\(849\) −15.5119 14.2176i −0.0182708 0.0167462i
\(850\) 0 0
\(851\) 298.910 0.351246
\(852\) 402.525 987.138i 0.472447 1.15861i
\(853\) 430.775 430.775i 0.505011 0.505011i −0.407980 0.912991i \(-0.633767\pi\)
0.912991 + 0.407980i \(0.133767\pi\)
\(854\) −150.720 32.9685i −0.176487 0.0386048i
\(855\) 0 0
\(856\) −103.591 78.1059i −0.121018 0.0912452i
\(857\) 684.012 684.012i 0.798147 0.798147i −0.184656 0.982803i \(-0.559117\pi\)
0.982803 + 0.184656i \(0.0591172\pi\)
\(858\) 705.237 + 122.393i 0.821955 + 0.142650i
\(859\) −1397.70 −1.62712 −0.813560 0.581481i \(-0.802473\pi\)
−0.813560 + 0.581481i \(0.802473\pi\)
\(860\) 0 0
\(861\) −305.064 279.609i −0.354314 0.324749i
\(862\) −146.755 228.933i −0.170249 0.265584i
\(863\) 90.1987 90.1987i 0.104518 0.104518i −0.652914 0.757432i \(-0.726454\pi\)
0.757432 + 0.652914i \(0.226454\pi\)
\(864\) −138.344 + 852.852i −0.160120 + 0.987098i
\(865\) 0 0
\(866\) 1177.65 + 257.600i 1.35987 + 0.297459i
\(867\) 14.3009 + 328.468i 0.0164947 + 0.378855i
\(868\) 123.524 45.7491i 0.142309 0.0527063i
\(869\) −516.396 −0.594242
\(870\) 0 0
\(871\) 796.724i 0.914724i
\(872\) 88.9118 + 633.899i 0.101963 + 0.726949i
\(873\) −295.841 248.363i −0.338878 0.284494i
\(874\) −662.446 144.904i −0.757948 0.165794i
\(875\) 0 0
\(876\) −468.374 1113.36i −0.534674 1.27095i
\(877\) −19.3296 19.3296i −0.0220406 0.0220406i 0.696001 0.718041i \(-0.254961\pi\)
−0.718041 + 0.696001i \(0.754961\pi\)
\(878\) 440.703 + 687.483i 0.501940 + 0.783010i
\(879\) 611.879 + 560.822i 0.696108 + 0.638022i
\(880\) 0 0
\(881\) 721.297i 0.818725i 0.912372 + 0.409363i \(0.134249\pi\)
−0.912372 + 0.409363i \(0.865751\pi\)
\(882\) 593.756 458.036i 0.673192 0.519315i
\(883\) 941.983 + 941.983i 1.06680 + 1.06680i 0.997603 + 0.0691949i \(0.0220430\pi\)
0.0691949 + 0.997603i \(0.477957\pi\)
\(884\) −845.104 388.296i −0.956000 0.439248i
\(885\) 0 0
\(886\) −979.471 214.250i −1.10550 0.241817i
\(887\) −489.902 489.902i −0.552313 0.552313i 0.374795 0.927108i \(-0.377713\pi\)
−0.927108 + 0.374795i \(0.877713\pi\)
\(888\) 579.669 + 398.734i 0.652781 + 0.449025i
\(889\) 243.626i 0.274045i
\(890\) 0 0
\(891\) 548.252 96.3944i 0.615322 0.108187i
\(892\) 1355.38 501.986i 1.51949 0.562765i
\(893\) −890.475 890.475i −0.997172 0.997172i
\(894\) 577.942 + 820.671i 0.646468 + 0.917976i
\(895\) 0 0
\(896\) −346.067 + 21.9551i −0.386236 + 0.0245035i
\(897\) 23.0966 + 530.492i 0.0257487 + 0.591407i
\(898\) −488.581 762.171i −0.544077 0.848743i
\(899\) 27.8555i 0.0309850i
\(900\) 0 0
\(901\) 293.954 0.326253
\(902\) −589.180 + 377.687i −0.653193 + 0.418722i
\(903\) −174.510 + 7.59784i −0.193256 + 0.00841399i
\(904\) 585.884 + 441.746i 0.648101 + 0.488658i
\(905\) 0 0
\(906\) 369.195 259.999i 0.407500 0.286974i
\(907\) −193.827 + 193.827i −0.213701 + 0.213701i −0.805838 0.592137i \(-0.798285\pi\)
0.592137 + 0.805838i \(0.298285\pi\)
\(908\) −578.454 + 214.239i −0.637064 + 0.235946i
\(909\) 97.2258 + 1114.44i 0.106959 + 1.22601i
\(910\) 0 0
\(911\) −830.304 −0.911421 −0.455710 0.890128i \(-0.650615\pi\)
−0.455710 + 0.890128i \(0.650615\pi\)
\(912\) −1091.37 1164.68i −1.19668 1.27707i
\(913\) −403.093 + 403.093i −0.441504 + 0.441504i
\(914\) −163.484 + 747.386i −0.178866 + 0.817709i
\(915\) 0 0
\(916\) 813.222 + 373.647i 0.887797 + 0.407911i
\(917\) −275.906 + 275.906i −0.300879 + 0.300879i
\(918\) −720.692 61.2736i −0.785067 0.0667468i
\(919\) −1072.00 −1.16649 −0.583245 0.812296i \(-0.698217\pi\)
−0.583245 + 0.812296i \(0.698217\pi\)
\(920\) 0 0
\(921\) 928.448 1012.97i 1.00809 1.09986i
\(922\) −980.731 + 628.687i −1.06370 + 0.681873i
\(923\) 1090.45 1090.45i 1.18141 1.18141i
\(924\) 86.6334 + 205.933i 0.0937591 + 0.222871i
\(925\) 0 0
\(926\) 192.288 879.068i 0.207654 0.949317i
\(927\) 1278.64 + 1073.44i 1.37934 + 1.15798i
\(928\) 21.0632 70.2394i 0.0226974 0.0756890i
\(929\) 1289.64 1.38821 0.694103 0.719876i \(-0.255801\pi\)
0.694103 + 0.719876i \(0.255801\pi\)
\(930\) 0 0
\(931\) 1385.32i 1.48799i
\(932\) 331.144 122.644i 0.355304 0.131592i
\(933\) −1285.69 + 55.9764i −1.37801 + 0.0599962i
\(934\) 334.966 1531.34i 0.358636 1.63955i
\(935\) 0 0
\(936\) −662.864 + 1059.58i −0.708188 + 1.13203i
\(937\) 507.002 + 507.002i 0.541091 + 0.541091i 0.923849 0.382758i \(-0.125026\pi\)
−0.382758 + 0.923849i \(0.625026\pi\)
\(938\) 209.357 134.206i 0.223195 0.143076i
\(939\) 413.229 450.849i 0.440073 0.480138i
\(940\) 0 0
\(941\) 707.695i 0.752067i 0.926606 + 0.376033i \(0.122712\pi\)
−0.926606 + 0.376033i \(0.877288\pi\)
\(942\) −104.010 + 599.310i −0.110414 + 0.636211i
\(943\) −367.111 367.111i −0.389301 0.389301i
\(944\) −765.970 + 657.578i −0.811409 + 0.696586i
\(945\) 0 0
\(946\) −63.1252 + 288.585i −0.0667286 + 0.305058i
\(947\) −233.033 233.033i −0.246075 0.246075i 0.573283 0.819358i \(-0.305670\pi\)
−0.819358 + 0.573283i \(0.805670\pi\)
\(948\) 340.465 834.945i 0.359140 0.880744i
\(949\) 1747.26i 1.84116i
\(950\) 0 0
\(951\) 859.420 937.662i 0.903701 0.985974i
\(952\) −40.3220 287.476i −0.0423550 0.301971i
\(953\) 414.033 + 414.033i 0.434452 + 0.434452i 0.890140 0.455688i \(-0.150607\pi\)
−0.455688 + 0.890140i \(0.650607\pi\)
\(954\) 50.5544 391.784i 0.0529920 0.410675i
\(955\) 0 0
\(956\) 1127.54 + 518.067i 1.17944 + 0.541911i
\(957\) −47.2004 + 2.05502i −0.0493212 + 0.00214735i
\(958\) 1443.21 925.153i 1.50648 0.965713i
\(959\) 52.1813i 0.0544122i
\(960\) 0 0
\(961\) 813.238 0.846241
\(962\) 549.259 + 856.826i 0.570955 + 0.890671i
\(963\) −111.784 93.8447i −0.116079 0.0974504i
\(964\) 200.243 435.817i 0.207721 0.452093i
\(965\) 0 0
\(966\) −135.508 + 95.4288i −0.140277 + 0.0987875i
\(967\) 534.588 534.588i 0.552831 0.552831i −0.374426 0.927257i \(-0.622160\pi\)
0.927257 + 0.374426i \(0.122160\pi\)
\(968\) −584.444 + 81.9752i −0.603765 + 0.0846851i
\(969\) 902.828 985.022i 0.931711 1.01653i
\(970\) 0 0
\(971\) −438.396 −0.451490 −0.225745 0.974186i \(-0.572482\pi\)
−0.225745 + 0.974186i \(0.572482\pi\)
\(972\) −205.611 + 950.004i −0.211533 + 0.977371i
\(973\) 120.159 120.159i 0.123493 0.123493i
\(974\) −270.182 59.0997i −0.277394 0.0606773i
\(975\) 0 0
\(976\) −296.771 345.689i −0.304068 0.354190i
\(977\) 1230.19 1230.19i 1.25915 1.25915i 0.307644 0.951501i \(-0.400459\pi\)
0.951501 0.307644i \(-0.0995406\pi\)
\(978\) −89.1597 + 513.743i −0.0911654 + 0.525299i
\(979\) 282.497 0.288557
\(980\) 0 0
\(981\) 62.5865 + 717.392i 0.0637987 + 0.731287i
\(982\) −831.328 1296.85i −0.846566 1.32062i
\(983\) −1245.00 + 1245.00i −1.26653 + 1.26653i −0.318665 + 0.947867i \(0.603235\pi\)
−0.947867 + 0.318665i \(0.896765\pi\)
\(984\) −222.218 1201.64i −0.225832 1.22118i
\(985\) 0 0
\(986\) 59.9695 + 13.1177i 0.0608210 + 0.0133040i
\(987\) −307.501 + 13.3880i −0.311551 + 0.0135644i
\(988\) −801.903 2165.17i −0.811643 2.19147i
\(989\) −219.146 −0.221584
\(990\) 0 0
\(991\) 1328.35i 1.34041i −0.742176 0.670205i \(-0.766206\pi\)
0.742176 0.670205i \(-0.233794\pi\)
\(992\) 372.592 + 111.732i 0.375597 + 0.112633i
\(993\) 11.6303 + 267.130i 0.0117123 + 0.269013i
\(994\) 470.220 + 102.856i 0.473059 + 0.103477i
\(995\) 0 0
\(996\) −385.985 917.512i −0.387536 0.921197i
\(997\) 553.349 + 553.349i 0.555014 + 0.555014i 0.927884 0.372870i \(-0.121626\pi\)
−0.372870 + 0.927884i \(0.621626\pi\)
\(998\) −71.6510 111.773i −0.0717945 0.111997i
\(999\) 627.771 + 482.073i 0.628400 + 0.482555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.3.l.g.107.6 40
3.2 odd 2 inner 300.3.l.g.107.15 40
4.3 odd 2 inner 300.3.l.g.107.16 40
5.2 odd 4 60.3.l.a.23.16 yes 40
5.3 odd 4 inner 300.3.l.g.143.5 40
5.4 even 2 60.3.l.a.47.15 yes 40
12.11 even 2 inner 300.3.l.g.107.5 40
15.2 even 4 60.3.l.a.23.5 40
15.8 even 4 inner 300.3.l.g.143.16 40
15.14 odd 2 60.3.l.a.47.6 yes 40
20.3 even 4 inner 300.3.l.g.143.15 40
20.7 even 4 60.3.l.a.23.6 yes 40
20.19 odd 2 60.3.l.a.47.5 yes 40
60.23 odd 4 inner 300.3.l.g.143.6 40
60.47 odd 4 60.3.l.a.23.15 yes 40
60.59 even 2 60.3.l.a.47.16 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.3.l.a.23.5 40 15.2 even 4
60.3.l.a.23.6 yes 40 20.7 even 4
60.3.l.a.23.15 yes 40 60.47 odd 4
60.3.l.a.23.16 yes 40 5.2 odd 4
60.3.l.a.47.5 yes 40 20.19 odd 2
60.3.l.a.47.6 yes 40 15.14 odd 2
60.3.l.a.47.15 yes 40 5.4 even 2
60.3.l.a.47.16 yes 40 60.59 even 2
300.3.l.g.107.5 40 12.11 even 2 inner
300.3.l.g.107.6 40 1.1 even 1 trivial
300.3.l.g.107.15 40 3.2 odd 2 inner
300.3.l.g.107.16 40 4.3 odd 2 inner
300.3.l.g.143.5 40 5.3 odd 4 inner
300.3.l.g.143.6 40 60.23 odd 4 inner
300.3.l.g.143.15 40 20.3 even 4 inner
300.3.l.g.143.16 40 15.8 even 4 inner