Properties

Label 300.3
Level 300
Weight 3
Dimension 1895
Nonzero newspaces 12
Newform subspaces 39
Sturm bound 14400
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 39 \)
Sturm bound: \(14400\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(300))\).

Total New Old
Modular forms 5080 1975 3105
Cusp forms 4520 1895 2625
Eisenstein series 560 80 480

Trace form

\( 1895 q - 2 q^{2} + q^{3} - 24 q^{4} - 12 q^{5} - 28 q^{6} - 54 q^{7} - 8 q^{8} - 57 q^{9} + 32 q^{11} + 66 q^{12} - 34 q^{13} + 216 q^{14} + 14 q^{15} + 172 q^{16} - 120 q^{17} + 44 q^{18} - 94 q^{19}+ \cdots - 1120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(300))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
300.3.b \(\chi_{300}(149, \cdot)\) 300.3.b.a 2 1
300.3.b.b 2
300.3.b.c 4
300.3.b.d 4
300.3.c \(\chi_{300}(151, \cdot)\) 300.3.c.a 2 1
300.3.c.b 2
300.3.c.c 2
300.3.c.d 8
300.3.c.e 8
300.3.c.f 8
300.3.c.g 8
300.3.f \(\chi_{300}(199, \cdot)\) 300.3.f.a 4 1
300.3.f.b 16
300.3.f.c 16
300.3.g \(\chi_{300}(101, \cdot)\) 300.3.g.a 1 1
300.3.g.b 1
300.3.g.c 1
300.3.g.d 2
300.3.g.e 2
300.3.g.f 2
300.3.g.g 2
300.3.g.h 2
300.3.k \(\chi_{300}(157, \cdot)\) 300.3.k.a 4 2
300.3.k.b 4
300.3.k.c 4
300.3.l \(\chi_{300}(107, \cdot)\) 300.3.l.a 4 2
300.3.l.b 4
300.3.l.c 4
300.3.l.d 4
300.3.l.e 8
300.3.l.f 8
300.3.l.g 40
300.3.l.h 64
300.3.p \(\chi_{300}(31, \cdot)\) 300.3.p.a 240 4
300.3.q \(\chi_{300}(29, \cdot)\) 300.3.q.a 80 4
300.3.s \(\chi_{300}(41, \cdot)\) 300.3.s.a 80 4
300.3.t \(\chi_{300}(19, \cdot)\) 300.3.t.a 240 4
300.3.u \(\chi_{300}(23, \cdot)\) 300.3.u.a 928 8
300.3.v \(\chi_{300}(13, \cdot)\) 300.3.v.a 80 8

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(300))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(300)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 2}\)