Properties

Label 60.3.l.a.47.15
Level $60$
Weight $3$
Character 60.47
Analytic conductor $1.635$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [60,3,Mod(23,60)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("60.23"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(60, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 60.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.63488158616\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.15
Character \(\chi\) \(=\) 60.47
Dual form 60.3.l.a.23.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.07935 + 1.68375i) q^{2} +(-2.99716 + 0.130491i) q^{3} +(-1.67002 + 3.63470i) q^{4} +(1.65103 + 4.71955i) q^{5} +(-3.45469 - 4.90562i) q^{6} +(-1.91561 + 1.91561i) q^{7} +(-7.92245 + 1.11122i) q^{8} +(8.96594 - 0.782204i) q^{9} +(-6.16449 + 7.87394i) q^{10} +6.87236 q^{11} +(4.53101 - 11.1117i) q^{12} +(12.2746 - 12.2746i) q^{13} +(-5.29303 - 1.15780i) q^{14} +(-5.56425 - 13.9298i) q^{15} +(-10.4221 - 12.1400i) q^{16} +(-9.47120 + 9.47120i) q^{17} +(10.9944 + 14.2521i) q^{18} +33.2524 q^{19} +(-19.9114 - 1.88073i) q^{20} +(5.49143 - 5.99137i) q^{21} +(7.41767 + 11.5713i) q^{22} +(-7.20994 + 7.20994i) q^{23} +(23.5998 - 4.36430i) q^{24} +(-19.5482 + 15.5842i) q^{25} +(33.9159 + 7.41877i) q^{26} +(-26.7703 + 3.51436i) q^{27} +(-3.76357 - 10.1618i) q^{28} -2.29155 q^{29} +(17.4485 - 24.4039i) q^{30} -12.1558i q^{31} +(9.19168 - 30.6515i) q^{32} +(-20.5976 + 0.896780i) q^{33} +(-26.1698 - 5.72440i) q^{34} +(-12.2036 - 5.87810i) q^{35} +(-12.1302 + 33.8948i) q^{36} +(-20.7290 - 20.7290i) q^{37} +(35.8909 + 55.9886i) q^{38} +(-35.1872 + 38.3906i) q^{39} +(-18.3246 - 35.5557i) q^{40} -50.9173i q^{41} +(16.0151 + 2.77942i) q^{42} +(15.1975 + 15.1975i) q^{43} +(-11.4770 + 24.9790i) q^{44} +(18.4947 + 41.0237i) q^{45} +(-19.9218 - 4.35769i) q^{46} +(26.7793 + 26.7793i) q^{47} +(32.8208 + 35.0256i) q^{48} +41.6608i q^{49} +(-47.3392 - 16.0935i) q^{50} +(27.1508 - 29.6226i) q^{51} +(24.1157 + 65.1132i) q^{52} +(-15.5183 - 15.5183i) q^{53} +(-34.8118 - 41.2812i) q^{54} +(11.3465 + 32.4344i) q^{55} +(13.0477 - 17.3050i) q^{56} +(-99.6627 + 4.33913i) q^{57} +(-2.47338 - 3.85839i) q^{58} -63.0946i q^{59} +(59.9230 + 3.03861i) q^{60} +28.4752 q^{61} +(20.4672 - 13.1203i) q^{62} +(-15.6769 + 18.6737i) q^{63} +(61.5304 - 17.6071i) q^{64} +(78.1961 + 37.6648i) q^{65} +(-23.7419 - 33.7132i) q^{66} +(32.4542 - 32.4542i) q^{67} +(-18.6079 - 50.2420i) q^{68} +(20.6685 - 22.5502i) q^{69} +(-3.27465 - 26.8922i) q^{70} -88.8377 q^{71} +(-70.1630 + 16.1601i) q^{72} +(71.1740 - 71.1740i) q^{73} +(12.5286 - 57.2763i) q^{74} +(56.5556 - 49.2592i) q^{75} +(-55.5320 + 120.862i) q^{76} +(-13.1648 + 13.1648i) q^{77} +(-102.619 - 17.8095i) q^{78} -75.1410 q^{79} +(40.0882 - 69.2310i) q^{80} +(79.7763 - 14.0264i) q^{81} +(85.7318 - 54.9574i) q^{82} +(58.6543 - 58.6543i) q^{83} +(12.6061 + 29.9654i) q^{84} +(-60.3369 - 29.0625i) q^{85} +(-9.18537 + 41.9921i) q^{86} +(6.86815 - 0.299026i) q^{87} +(-54.4459 + 7.63668i) q^{88} +41.1063 q^{89} +(-49.1115 + 75.4192i) q^{90} +47.0267i q^{91} +(-14.1653 - 38.2467i) q^{92} +(1.58621 + 36.4327i) q^{93} +(-16.1854 + 73.9937i) q^{94} +(54.9006 + 156.936i) q^{95} +(-23.5492 + 93.0668i) q^{96} +(30.3484 + 30.3484i) q^{97} +(-70.1464 + 44.9665i) q^{98} +(61.6172 - 5.37559i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 4 q^{6} - 12 q^{10} - 20 q^{12} - 8 q^{13} - 36 q^{16} - 24 q^{18} - 24 q^{21} - 76 q^{22} - 8 q^{25} - 84 q^{28} + 68 q^{30} - 40 q^{33} + 172 q^{36} - 40 q^{37} + 104 q^{40} + 236 q^{42} - 104 q^{45}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/60\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(37\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07935 + 1.68375i 0.539674 + 0.841874i
\(3\) −2.99716 + 0.130491i −0.999054 + 0.0434969i
\(4\) −1.67002 + 3.63470i −0.417504 + 0.908675i
\(5\) 1.65103 + 4.71955i 0.330205 + 0.943909i
\(6\) −3.45469 4.90562i −0.575782 0.817603i
\(7\) −1.91561 + 1.91561i −0.273659 + 0.273659i −0.830571 0.556912i \(-0.811986\pi\)
0.556912 + 0.830571i \(0.311986\pi\)
\(8\) −7.92245 + 1.11122i −0.990306 + 0.138902i
\(9\) 8.96594 0.782204i 0.996216 0.0869115i
\(10\) −6.16449 + 7.87394i −0.616449 + 0.787394i
\(11\) 6.87236 0.624760 0.312380 0.949957i \(-0.398874\pi\)
0.312380 + 0.949957i \(0.398874\pi\)
\(12\) 4.53101 11.1117i 0.377585 0.925975i
\(13\) 12.2746 12.2746i 0.944199 0.944199i −0.0543246 0.998523i \(-0.517301\pi\)
0.998523 + 0.0543246i \(0.0173006\pi\)
\(14\) −5.29303 1.15780i −0.378073 0.0826999i
\(15\) −5.56425 13.9298i −0.370950 0.928653i
\(16\) −10.4221 12.1400i −0.651380 0.758751i
\(17\) −9.47120 + 9.47120i −0.557129 + 0.557129i −0.928489 0.371360i \(-0.878892\pi\)
0.371360 + 0.928489i \(0.378892\pi\)
\(18\) 10.9944 + 14.2521i 0.610800 + 0.791785i
\(19\) 33.2524 1.75013 0.875063 0.484010i \(-0.160820\pi\)
0.875063 + 0.484010i \(0.160820\pi\)
\(20\) −19.9114 1.88073i −0.995569 0.0940367i
\(21\) 5.49143 5.99137i 0.261497 0.285303i
\(22\) 7.41767 + 11.5713i 0.337167 + 0.525969i
\(23\) −7.20994 + 7.20994i −0.313476 + 0.313476i −0.846255 0.532779i \(-0.821148\pi\)
0.532779 + 0.846255i \(0.321148\pi\)
\(24\) 23.5998 4.36430i 0.983327 0.181846i
\(25\) −19.5482 + 15.5842i −0.781929 + 0.623368i
\(26\) 33.9159 + 7.41877i 1.30446 + 0.285337i
\(27\) −26.7703 + 3.51436i −0.991493 + 0.130162i
\(28\) −3.76357 10.1618i −0.134413 0.362921i
\(29\) −2.29155 −0.0790190 −0.0395095 0.999219i \(-0.512580\pi\)
−0.0395095 + 0.999219i \(0.512580\pi\)
\(30\) 17.4485 24.4039i 0.581617 0.813463i
\(31\) 12.1558i 0.392121i −0.980592 0.196061i \(-0.937185\pi\)
0.980592 0.196061i \(-0.0628149\pi\)
\(32\) 9.19168 30.6515i 0.287240 0.957859i
\(33\) −20.5976 + 0.896780i −0.624169 + 0.0271752i
\(34\) −26.1698 5.72440i −0.769701 0.168365i
\(35\) −12.2036 5.87810i −0.348673 0.167946i
\(36\) −12.1302 + 33.8948i −0.336950 + 0.941523i
\(37\) −20.7290 20.7290i −0.560244 0.560244i 0.369133 0.929377i \(-0.379655\pi\)
−0.929377 + 0.369133i \(0.879655\pi\)
\(38\) 35.8909 + 55.9886i 0.944497 + 1.47339i
\(39\) −35.1872 + 38.3906i −0.902235 + 0.984375i
\(40\) −18.3246 35.5557i −0.458115 0.888893i
\(41\) 50.9173i 1.24188i −0.783856 0.620942i \(-0.786750\pi\)
0.783856 0.620942i \(-0.213250\pi\)
\(42\) 16.0151 + 2.77942i 0.381313 + 0.0661766i
\(43\) 15.1975 + 15.1975i 0.353430 + 0.353430i 0.861384 0.507954i \(-0.169598\pi\)
−0.507954 + 0.861384i \(0.669598\pi\)
\(44\) −11.4770 + 24.9790i −0.260840 + 0.567704i
\(45\) 18.4947 + 41.0237i 0.410993 + 0.911639i
\(46\) −19.9218 4.35769i −0.433082 0.0947325i
\(47\) 26.7793 + 26.7793i 0.569772 + 0.569772i 0.932064 0.362293i \(-0.118006\pi\)
−0.362293 + 0.932064i \(0.618006\pi\)
\(48\) 32.8208 + 35.0256i 0.683767 + 0.729700i
\(49\) 41.6608i 0.850221i
\(50\) −47.3392 16.0935i −0.946784 0.321870i
\(51\) 27.1508 29.6226i 0.532368 0.580835i
\(52\) 24.1157 + 65.1132i 0.463763 + 1.25218i
\(53\) −15.5183 15.5183i −0.292799 0.292799i 0.545386 0.838185i \(-0.316383\pi\)
−0.838185 + 0.545386i \(0.816383\pi\)
\(54\) −34.8118 41.2812i −0.644662 0.764467i
\(55\) 11.3465 + 32.4344i 0.206299 + 0.589717i
\(56\) 13.0477 17.3050i 0.232994 0.309018i
\(57\) −99.6627 + 4.33913i −1.74847 + 0.0761251i
\(58\) −2.47338 3.85839i −0.0426445 0.0665240i
\(59\) 63.0946i 1.06940i −0.845042 0.534700i \(-0.820425\pi\)
0.845042 0.534700i \(-0.179575\pi\)
\(60\) 59.9230 + 3.03861i 0.998717 + 0.0506435i
\(61\) 28.4752 0.466806 0.233403 0.972380i \(-0.425014\pi\)
0.233403 + 0.972380i \(0.425014\pi\)
\(62\) 20.4672 13.1203i 0.330117 0.211617i
\(63\) −15.6769 + 18.6737i −0.248839 + 0.296408i
\(64\) 61.5304 17.6071i 0.961412 0.275111i
\(65\) 78.1961 + 37.6648i 1.20302 + 0.579458i
\(66\) −23.7419 33.7132i −0.359726 0.510806i
\(67\) 32.4542 32.4542i 0.484392 0.484392i −0.422139 0.906531i \(-0.638721\pi\)
0.906531 + 0.422139i \(0.138721\pi\)
\(68\) −18.6079 50.2420i −0.273646 0.738853i
\(69\) 20.6685 22.5502i 0.299544 0.326814i
\(70\) −3.27465 26.8922i −0.0467807 0.384175i
\(71\) −88.8377 −1.25124 −0.625618 0.780130i \(-0.715153\pi\)
−0.625618 + 0.780130i \(0.715153\pi\)
\(72\) −70.1630 + 16.1601i −0.974487 + 0.224446i
\(73\) 71.1740 71.1740i 0.974987 0.974987i −0.0247079 0.999695i \(-0.507866\pi\)
0.999695 + 0.0247079i \(0.00786556\pi\)
\(74\) 12.5286 57.2763i 0.169306 0.774004i
\(75\) 56.5556 49.2592i 0.754074 0.656789i
\(76\) −55.5320 + 120.862i −0.730685 + 1.59029i
\(77\) −13.1648 + 13.1648i −0.170971 + 0.170971i
\(78\) −102.619 17.8095i −1.31563 0.228327i
\(79\) −75.1410 −0.951153 −0.475576 0.879675i \(-0.657760\pi\)
−0.475576 + 0.879675i \(0.657760\pi\)
\(80\) 40.0882 69.2310i 0.501103 0.865388i
\(81\) 79.7763 14.0264i 0.984893 0.173165i
\(82\) 85.7318 54.9574i 1.04551 0.670213i
\(83\) 58.6543 58.6543i 0.706678 0.706678i −0.259157 0.965835i \(-0.583445\pi\)
0.965835 + 0.259157i \(0.0834448\pi\)
\(84\) 12.6061 + 29.9654i 0.150072 + 0.356731i
\(85\) −60.3369 29.0625i −0.709846 0.341912i
\(86\) −9.18537 + 41.9921i −0.106807 + 0.488281i
\(87\) 6.86815 0.299026i 0.0789442 0.00343708i
\(88\) −54.4459 + 7.63668i −0.618704 + 0.0867805i
\(89\) 41.1063 0.461868 0.230934 0.972969i \(-0.425822\pi\)
0.230934 + 0.972969i \(0.425822\pi\)
\(90\) −49.1115 + 75.4192i −0.545683 + 0.837992i
\(91\) 47.0267i 0.516777i
\(92\) −14.1653 38.2467i −0.153970 0.415725i
\(93\) 1.58621 + 36.4327i 0.0170561 + 0.391750i
\(94\) −16.1854 + 73.9937i −0.172185 + 0.787167i
\(95\) 54.9006 + 156.936i 0.577901 + 1.65196i
\(96\) −23.5492 + 93.0668i −0.245304 + 0.969446i
\(97\) 30.3484 + 30.3484i 0.312870 + 0.312870i 0.846020 0.533150i \(-0.178992\pi\)
−0.533150 + 0.846020i \(0.678992\pi\)
\(98\) −70.1464 + 44.9665i −0.715779 + 0.458842i
\(99\) 61.6172 5.37559i 0.622396 0.0542989i
\(100\) −23.9980 97.0778i −0.239980 0.970778i
\(101\) 124.297i 1.23067i 0.788267 + 0.615333i \(0.210978\pi\)
−0.788267 + 0.615333i \(0.789022\pi\)
\(102\) 79.1822 + 13.7420i 0.776296 + 0.134726i
\(103\) −131.168 131.168i −1.27348 1.27348i −0.944252 0.329223i \(-0.893213\pi\)
−0.329223 0.944252i \(-0.606787\pi\)
\(104\) −83.6050 + 110.884i −0.803895 + 1.06620i
\(105\) 37.3431 + 16.0251i 0.355648 + 0.152620i
\(106\) 9.37929 42.8786i 0.0884839 0.404516i
\(107\) 11.4672 + 11.4672i 0.107170 + 0.107170i 0.758659 0.651488i \(-0.225855\pi\)
−0.651488 + 0.758659i \(0.725855\pi\)
\(108\) 31.9332 103.171i 0.295678 0.955288i
\(109\) 80.0130i 0.734065i 0.930208 + 0.367032i \(0.119626\pi\)
−0.930208 + 0.367032i \(0.880374\pi\)
\(110\) −42.3646 + 54.1126i −0.385133 + 0.491933i
\(111\) 64.8331 + 59.4232i 0.584082 + 0.535345i
\(112\) 43.2203 + 3.29090i 0.385895 + 0.0293830i
\(113\) −64.8556 64.8556i −0.573943 0.573943i 0.359285 0.933228i \(-0.383021\pi\)
−0.933228 + 0.359285i \(0.883021\pi\)
\(114\) −114.877 163.124i −1.00769 1.43091i
\(115\) −45.9315 22.1238i −0.399404 0.192381i
\(116\) 3.82693 8.32910i 0.0329908 0.0718026i
\(117\) 100.452 119.654i 0.858564 1.02269i
\(118\) 106.235 68.1010i 0.900301 0.577127i
\(119\) 36.2863i 0.304927i
\(120\) 59.5615 + 104.175i 0.496346 + 0.868125i
\(121\) −73.7706 −0.609675
\(122\) 30.7346 + 47.9450i 0.251923 + 0.392992i
\(123\) 6.64423 + 152.607i 0.0540182 + 1.24071i
\(124\) 44.1825 + 20.3003i 0.356311 + 0.163712i
\(125\) −105.825 66.5288i −0.846600 0.532230i
\(126\) −48.3626 6.24053i −0.383830 0.0495280i
\(127\) −63.5895 + 63.5895i −0.500705 + 0.500705i −0.911657 0.410952i \(-0.865196\pi\)
0.410952 + 0.911657i \(0.365196\pi\)
\(128\) 96.0586 + 84.5975i 0.750458 + 0.660918i
\(129\) −47.5325 43.5662i −0.368469 0.337722i
\(130\) 20.9828 + 172.316i 0.161406 + 1.32551i
\(131\) −144.030 −1.09947 −0.549734 0.835340i \(-0.685271\pi\)
−0.549734 + 0.835340i \(0.685271\pi\)
\(132\) 31.1388 76.3636i 0.235900 0.578512i
\(133\) −63.6987 + 63.6987i −0.478938 + 0.478938i
\(134\) 89.6742 + 19.6154i 0.669210 + 0.146383i
\(135\) −60.7847 120.541i −0.450257 0.892899i
\(136\) 64.5105 85.5596i 0.474342 0.629115i
\(137\) 13.6200 13.6200i 0.0994161 0.0994161i −0.655649 0.755065i \(-0.727605\pi\)
0.755065 + 0.655649i \(0.227605\pi\)
\(138\) 60.2774 + 10.4611i 0.436793 + 0.0758051i
\(139\) 62.7261 0.451267 0.225634 0.974212i \(-0.427555\pi\)
0.225634 + 0.974212i \(0.427555\pi\)
\(140\) 41.7453 34.5397i 0.298180 0.246712i
\(141\) −83.7563 76.7674i −0.594016 0.544449i
\(142\) −95.8868 149.580i −0.675259 1.05338i
\(143\) 84.3554 84.3554i 0.589898 0.589898i
\(144\) −102.940 100.695i −0.714860 0.699268i
\(145\) −3.78341 10.8151i −0.0260925 0.0745867i
\(146\) 196.661 + 43.0176i 1.34699 + 0.294641i
\(147\) −5.43636 124.864i −0.0369820 0.849417i
\(148\) 109.962 40.7259i 0.742983 0.275175i
\(149\) −167.292 −1.12277 −0.561383 0.827556i \(-0.689730\pi\)
−0.561383 + 0.827556i \(0.689730\pi\)
\(150\) 143.983 + 42.0575i 0.959888 + 0.280384i
\(151\) 75.2596i 0.498408i 0.968451 + 0.249204i \(0.0801690\pi\)
−0.968451 + 0.249204i \(0.919831\pi\)
\(152\) −263.440 + 36.9506i −1.73316 + 0.243096i
\(153\) −77.5098 + 92.3266i −0.506600 + 0.603442i
\(154\) −36.3756 7.95681i −0.236205 0.0516676i
\(155\) 57.3696 20.0695i 0.370127 0.129480i
\(156\) −80.7752 192.008i −0.517790 1.23082i
\(157\) 71.6852 + 71.6852i 0.456593 + 0.456593i 0.897536 0.440942i \(-0.145356\pi\)
−0.440942 + 0.897536i \(0.645356\pi\)
\(158\) −81.1033 126.519i −0.513312 0.800751i
\(159\) 48.5359 + 44.4859i 0.305258 + 0.279786i
\(160\) 159.837 7.22585i 0.998980 0.0451615i
\(161\) 27.6229i 0.171571i
\(162\) 109.723 + 119.184i 0.677304 + 0.735703i
\(163\) 61.4502 + 61.4502i 0.376995 + 0.376995i 0.870017 0.493022i \(-0.164108\pi\)
−0.493022 + 0.870017i \(0.664108\pi\)
\(164\) 185.069 + 85.0327i 1.12847 + 0.518492i
\(165\) −38.2395 95.7306i −0.231755 0.580185i
\(166\) 162.067 + 35.4507i 0.976309 + 0.213558i
\(167\) 36.7847 + 36.7847i 0.220268 + 0.220268i 0.808611 0.588344i \(-0.200220\pi\)
−0.588344 + 0.808611i \(0.700220\pi\)
\(168\) −36.8479 + 53.5685i −0.219333 + 0.318860i
\(169\) 132.331i 0.783022i
\(170\) −16.1905 132.961i −0.0952385 0.782122i
\(171\) 298.139 26.0101i 1.74350 0.152106i
\(172\) −80.6184 + 29.8583i −0.468712 + 0.173595i
\(173\) 137.897 + 137.897i 0.797091 + 0.797091i 0.982636 0.185545i \(-0.0594051\pi\)
−0.185545 + 0.982636i \(0.559405\pi\)
\(174\) 7.91660 + 11.2415i 0.0454977 + 0.0646062i
\(175\) 7.59354 67.3001i 0.0433917 0.384572i
\(176\) −71.6244 83.4306i −0.406957 0.474038i
\(177\) 8.23327 + 189.105i 0.0465156 + 1.06839i
\(178\) 44.3680 + 69.2126i 0.249258 + 0.388835i
\(179\) 106.971i 0.597602i 0.954315 + 0.298801i \(0.0965867\pi\)
−0.954315 + 0.298801i \(0.903413\pi\)
\(180\) −179.995 1.28779i −0.999974 0.00715441i
\(181\) −11.6057 −0.0641199 −0.0320600 0.999486i \(-0.510207\pi\)
−0.0320600 + 0.999486i \(0.510207\pi\)
\(182\) −79.1812 + 50.7582i −0.435061 + 0.278891i
\(183\) −85.3446 + 3.71575i −0.466364 + 0.0203046i
\(184\) 49.1086 65.1322i 0.266895 0.353979i
\(185\) 63.6074 132.056i 0.343824 0.713815i
\(186\) −59.6315 + 41.9944i −0.320599 + 0.225776i
\(187\) −65.0895 + 65.0895i −0.348072 + 0.348072i
\(188\) −142.057 + 52.6128i −0.755620 + 0.279855i
\(189\) 44.5494 58.0137i 0.235711 0.306951i
\(190\) −204.984 + 261.827i −1.07886 + 1.37804i
\(191\) −135.925 −0.711648 −0.355824 0.934553i \(-0.615800\pi\)
−0.355824 + 0.934553i \(0.615800\pi\)
\(192\) −182.119 + 60.8005i −0.948536 + 0.316669i
\(193\) −62.7362 + 62.7362i −0.325058 + 0.325058i −0.850704 0.525646i \(-0.823824\pi\)
0.525646 + 0.850704i \(0.323824\pi\)
\(194\) −18.3426 + 83.8556i −0.0945494 + 0.432245i
\(195\) −239.281 102.684i −1.22708 0.526582i
\(196\) −151.425 69.5743i −0.772575 0.354971i
\(197\) 96.9852 96.9852i 0.492311 0.492311i −0.416723 0.909034i \(-0.636821\pi\)
0.909034 + 0.416723i \(0.136821\pi\)
\(198\) 75.5575 + 97.9457i 0.381604 + 0.494675i
\(199\) −29.0286 −0.145872 −0.0729361 0.997337i \(-0.523237\pi\)
−0.0729361 + 0.997337i \(0.523237\pi\)
\(200\) 137.552 145.187i 0.687762 0.725936i
\(201\) −93.0356 + 101.506i −0.462864 + 0.505003i
\(202\) −209.285 + 134.160i −1.03607 + 0.664158i
\(203\) 4.38973 4.38973i 0.0216243 0.0216243i
\(204\) 62.3270 + 148.155i 0.305524 + 0.726251i
\(205\) 240.306 84.0658i 1.17223 0.410077i
\(206\) 79.2780 362.430i 0.384845 1.75937i
\(207\) −59.0043 + 70.2836i −0.285045 + 0.339534i
\(208\) −276.940 21.0869i −1.33144 0.101379i
\(209\) 228.522 1.09341
\(210\) 13.3238 + 80.1730i 0.0634468 + 0.381776i
\(211\) 376.951i 1.78650i −0.449561 0.893250i \(-0.648420\pi\)
0.449561 0.893250i \(-0.351580\pi\)
\(212\) 82.3204 30.4886i 0.388304 0.143814i
\(213\) 266.261 11.5925i 1.25005 0.0544249i
\(214\) −6.93079 + 31.6850i −0.0323869 + 0.148061i
\(215\) −46.6338 + 96.8167i −0.216901 + 0.450310i
\(216\) 208.181 57.5900i 0.963802 0.266620i
\(217\) 23.2857 + 23.2857i 0.107307 + 0.107307i
\(218\) −134.722 + 86.3619i −0.617990 + 0.396155i
\(219\) −204.032 + 222.608i −0.931655 + 1.01647i
\(220\) −136.838 12.9251i −0.621992 0.0587504i
\(221\) 232.510i 1.05208i
\(222\) −30.0763 + 173.301i −0.135479 + 0.780635i
\(223\) 255.505 + 255.505i 1.14576 + 1.14576i 0.987377 + 0.158385i \(0.0506288\pi\)
0.158385 + 0.987377i \(0.449371\pi\)
\(224\) 41.1087 + 76.3241i 0.183521 + 0.340733i
\(225\) −163.078 + 155.018i −0.724792 + 0.688968i
\(226\) 39.1988 179.202i 0.173446 0.792930i
\(227\) −109.045 109.045i −0.480375 0.480375i 0.424876 0.905251i \(-0.360318\pi\)
−0.905251 + 0.424876i \(0.860318\pi\)
\(228\) 150.667 369.490i 0.660820 1.62057i
\(229\) 223.738i 0.977023i −0.872557 0.488512i \(-0.837540\pi\)
0.872557 0.488512i \(-0.162460\pi\)
\(230\) −12.3250 101.216i −0.0535871 0.440071i
\(231\) 37.7391 41.1749i 0.163373 0.178246i
\(232\) 18.1547 2.54641i 0.0782530 0.0109759i
\(233\) 62.4244 + 62.4244i 0.267916 + 0.267916i 0.828260 0.560344i \(-0.189331\pi\)
−0.560344 + 0.828260i \(0.689331\pi\)
\(234\) 309.891 + 39.9871i 1.32432 + 0.170885i
\(235\) −82.1727 + 170.599i −0.349671 + 0.725955i
\(236\) 229.330 + 105.369i 0.971737 + 0.446479i
\(237\) 225.210 9.80522i 0.950252 0.0413722i
\(238\) 61.0970 39.1655i 0.256710 0.164561i
\(239\) 310.217i 1.29798i −0.760798 0.648989i \(-0.775192\pi\)
0.760798 0.648989i \(-0.224808\pi\)
\(240\) −111.117 + 212.728i −0.462987 + 0.886365i
\(241\) −119.905 −0.497529 −0.248765 0.968564i \(-0.580025\pi\)
−0.248765 + 0.968564i \(0.580025\pi\)
\(242\) −79.6242 124.211i −0.329026 0.513269i
\(243\) −237.272 + 52.4494i −0.976428 + 0.215841i
\(244\) −47.5540 + 103.499i −0.194893 + 0.424175i
\(245\) −196.620 + 68.7832i −0.802532 + 0.280748i
\(246\) −249.781 + 175.903i −1.01537 + 0.715055i
\(247\) 408.159 408.159i 1.65247 1.65247i
\(248\) 13.5077 + 96.3033i 0.0544664 + 0.388320i
\(249\) −168.142 + 183.450i −0.675271 + 0.736747i
\(250\) −2.20419 249.990i −0.00881676 0.999961i
\(251\) 336.252 1.33965 0.669825 0.742519i \(-0.266369\pi\)
0.669825 + 0.742519i \(0.266369\pi\)
\(252\) −41.6926 88.1662i −0.165447 0.349866i
\(253\) −49.5493 + 49.5493i −0.195847 + 0.195847i
\(254\) −175.704 38.4336i −0.691748 0.151313i
\(255\) 184.632 + 79.2317i 0.724047 + 0.310712i
\(256\) −38.7602 + 253.049i −0.151407 + 0.988472i
\(257\) 199.642 199.642i 0.776816 0.776816i −0.202472 0.979288i \(-0.564898\pi\)
0.979288 + 0.202472i \(0.0648975\pi\)
\(258\) 22.0505 127.056i 0.0854669 0.492464i
\(259\) 79.4176 0.306632
\(260\) −267.489 + 221.319i −1.02880 + 0.851225i
\(261\) −20.5459 + 1.79246i −0.0787200 + 0.00686766i
\(262\) −155.459 242.511i −0.593354 0.925613i
\(263\) 107.927 107.927i 0.410368 0.410368i −0.471499 0.881867i \(-0.656287\pi\)
0.881867 + 0.471499i \(0.156287\pi\)
\(264\) 162.187 29.9931i 0.614344 0.113610i
\(265\) 47.6183 98.8607i 0.179692 0.373059i
\(266\) −176.006 38.4995i −0.661675 0.144735i
\(267\) −123.202 + 5.36399i −0.461431 + 0.0200899i
\(268\) 63.7623 + 172.161i 0.237919 + 0.642390i
\(269\) −279.355 −1.03850 −0.519248 0.854624i \(-0.673788\pi\)
−0.519248 + 0.854624i \(0.673788\pi\)
\(270\) 137.353 232.452i 0.508717 0.860934i
\(271\) 353.019i 1.30265i 0.758797 + 0.651327i \(0.225787\pi\)
−0.758797 + 0.651327i \(0.774213\pi\)
\(272\) 213.690 + 16.2709i 0.785626 + 0.0598194i
\(273\) −6.13656 140.947i −0.0224782 0.516288i
\(274\) 37.6334 + 8.23194i 0.137348 + 0.0300436i
\(275\) −134.342 + 107.100i −0.488518 + 0.389455i
\(276\) 47.4464 + 112.783i 0.171907 + 0.408634i
\(277\) 9.06443 + 9.06443i 0.0327236 + 0.0327236i 0.723279 0.690556i \(-0.242634\pi\)
−0.690556 + 0.723279i \(0.742634\pi\)
\(278\) 67.7033 + 105.615i 0.243537 + 0.379910i
\(279\) −9.50828 108.988i −0.0340798 0.390637i
\(280\) 103.214 + 33.0081i 0.368621 + 0.117886i
\(281\) 204.501i 0.727762i −0.931445 0.363881i \(-0.881451\pi\)
0.931445 0.363881i \(-0.118549\pi\)
\(282\) 38.8548 223.883i 0.137783 0.793912i
\(283\) 4.95961 + 4.95961i 0.0175251 + 0.0175251i 0.715815 0.698290i \(-0.246055\pi\)
−0.698290 + 0.715815i \(0.746055\pi\)
\(284\) 148.360 322.898i 0.522396 1.13697i
\(285\) −185.025 463.199i −0.649209 1.62526i
\(286\) 233.082 + 50.9844i 0.814972 + 0.178267i
\(287\) 97.5378 + 97.5378i 0.339853 + 0.339853i
\(288\) 58.4364 282.009i 0.202904 0.979199i
\(289\) 109.593i 0.379214i
\(290\) 14.1263 18.0435i 0.0487112 0.0622191i
\(291\) −94.9192 86.9988i −0.326183 0.298965i
\(292\) 139.834 + 377.558i 0.478885 + 1.29301i
\(293\) −195.635 195.635i −0.667697 0.667697i 0.289485 0.957182i \(-0.406516\pi\)
−0.957182 + 0.289485i \(0.906516\pi\)
\(294\) 204.372 143.925i 0.695144 0.489542i
\(295\) 297.778 104.171i 1.00942 0.353122i
\(296\) 187.259 + 141.190i 0.632632 + 0.476994i
\(297\) −183.975 + 24.1520i −0.619445 + 0.0813198i
\(298\) −180.566 281.678i −0.605927 0.945227i
\(299\) 176.998i 0.591967i
\(300\) 84.5937 + 287.826i 0.281979 + 0.959421i
\(301\) −58.2251 −0.193439
\(302\) −126.718 + 81.2313i −0.419597 + 0.268978i
\(303\) −16.2196 372.539i −0.0535302 1.22950i
\(304\) −346.559 403.685i −1.14000 1.32791i
\(305\) 47.0133 + 134.390i 0.154142 + 0.440622i
\(306\) −239.115 30.8545i −0.781421 0.100832i
\(307\) −323.877 + 323.877i −1.05497 + 1.05497i −0.0565751 + 0.998398i \(0.518018\pi\)
−0.998398 + 0.0565751i \(0.981982\pi\)
\(308\) −25.8646 69.8355i −0.0839761 0.226739i
\(309\) 410.248 + 376.015i 1.32766 + 1.21688i
\(310\) 95.7137 + 74.9341i 0.308754 + 0.241723i
\(311\) −428.968 −1.37932 −0.689660 0.724133i \(-0.742240\pi\)
−0.689660 + 0.724133i \(0.742240\pi\)
\(312\) 236.108 343.248i 0.756757 1.10015i
\(313\) −144.149 + 144.149i −0.460541 + 0.460541i −0.898833 0.438292i \(-0.855584\pi\)
0.438292 + 0.898833i \(0.355584\pi\)
\(314\) −43.3266 + 198.073i −0.137983 + 0.630806i
\(315\) −114.014 43.1570i −0.361950 0.137006i
\(316\) 125.487 273.115i 0.397110 0.864288i
\(317\) −299.797 + 299.797i −0.945733 + 0.945733i −0.998601 0.0528685i \(-0.983164\pi\)
0.0528685 + 0.998601i \(0.483164\pi\)
\(318\) −22.5160 + 129.738i −0.0708049 + 0.407981i
\(319\) −15.7484 −0.0493679
\(320\) 184.686 + 261.326i 0.577144 + 0.816643i
\(321\) −35.8655 32.8727i −0.111730 0.102407i
\(322\) 46.5101 29.8148i 0.144441 0.0925924i
\(323\) −314.940 + 314.940i −0.975046 + 0.975046i
\(324\) −82.2461 + 313.387i −0.253846 + 0.967245i
\(325\) −48.6568 + 431.236i −0.149713 + 1.32688i
\(326\) −37.1405 + 169.793i −0.113928 + 0.520837i
\(327\) −10.4410 239.812i −0.0319296 0.733370i
\(328\) 56.5801 + 403.389i 0.172500 + 1.22985i
\(329\) −102.598 −0.311847
\(330\) 119.912 167.712i 0.363371 0.508219i
\(331\) 89.1276i 0.269268i 0.990895 + 0.134634i \(0.0429858\pi\)
−0.990895 + 0.134634i \(0.957014\pi\)
\(332\) 115.237 + 311.144i 0.347100 + 0.937181i
\(333\) −202.070 169.641i −0.606815 0.509432i
\(334\) −22.2327 + 101.640i −0.0665649 + 0.304310i
\(335\) 206.752 + 99.5864i 0.617170 + 0.297273i
\(336\) −129.968 4.22350i −0.386808 0.0125699i
\(337\) −176.973 176.973i −0.525141 0.525141i 0.393978 0.919120i \(-0.371098\pi\)
−0.919120 + 0.393978i \(0.871098\pi\)
\(338\) 222.812 142.831i 0.659206 0.422577i
\(339\) 202.846 + 185.920i 0.598365 + 0.548435i
\(340\) 206.397 170.772i 0.607051 0.502270i
\(341\) 83.5387i 0.244982i
\(342\) 365.590 + 473.917i 1.06898 + 1.38572i
\(343\) −173.671 173.671i −0.506330 0.506330i
\(344\) −137.289 103.514i −0.399096 0.300912i
\(345\) 140.551 + 60.3151i 0.407394 + 0.174826i
\(346\) −83.3448 + 381.022i −0.240881 + 1.10122i
\(347\) 341.548 + 341.548i 0.984288 + 0.984288i 0.999878 0.0155906i \(-0.00496283\pi\)
−0.0155906 + 0.999878i \(0.504963\pi\)
\(348\) −10.3830 + 25.4630i −0.0298363 + 0.0731696i
\(349\) 190.129i 0.544782i −0.962187 0.272391i \(-0.912186\pi\)
0.962187 0.272391i \(-0.0878144\pi\)
\(350\) 121.513 59.8546i 0.347179 0.171013i
\(351\) −285.457 + 371.732i −0.813268 + 1.05906i
\(352\) 63.1686 210.648i 0.179456 0.598432i
\(353\) −66.4041 66.4041i −0.188114 0.188114i 0.606767 0.794880i \(-0.292466\pi\)
−0.794880 + 0.606767i \(0.792466\pi\)
\(354\) −309.518 + 217.972i −0.874345 + 0.615742i
\(355\) −146.673 419.274i −0.413165 1.18105i
\(356\) −68.6482 + 149.409i −0.192832 + 0.419688i
\(357\) 4.73503 + 108.756i 0.0132634 + 0.304638i
\(358\) −180.112 + 115.459i −0.503106 + 0.322510i
\(359\) 402.003i 1.11979i −0.828565 0.559893i \(-0.810842\pi\)
0.828565 0.559893i \(-0.189158\pi\)
\(360\) −192.109 304.457i −0.533637 0.845714i
\(361\) 744.721 2.06294
\(362\) −12.5266 19.5411i −0.0346038 0.0539809i
\(363\) 221.102 9.62639i 0.609098 0.0265190i
\(364\) −170.928 78.5354i −0.469582 0.215757i
\(365\) 453.419 + 218.399i 1.24224 + 0.598353i
\(366\) −98.3729 139.688i −0.268779 0.381662i
\(367\) −183.244 + 183.244i −0.499301 + 0.499301i −0.911220 0.411919i \(-0.864859\pi\)
0.411919 + 0.911220i \(0.364859\pi\)
\(368\) 162.672 + 12.3862i 0.442042 + 0.0336582i
\(369\) −39.8277 456.521i −0.107934 1.23719i
\(370\) 291.003 35.4352i 0.786495 0.0957709i
\(371\) 59.4543 0.160254
\(372\) −135.071 55.0779i −0.363094 0.148059i
\(373\) −78.2141 + 78.2141i −0.209689 + 0.209689i −0.804135 0.594446i \(-0.797371\pi\)
0.594446 + 0.804135i \(0.297371\pi\)
\(374\) −179.848 39.3401i −0.480878 0.105187i
\(375\) 325.856 + 185.588i 0.868949 + 0.494902i
\(376\) −241.915 182.400i −0.643391 0.485106i
\(377\) −28.1278 + 28.1278i −0.0746096 + 0.0746096i
\(378\) 145.765 + 12.3930i 0.385621 + 0.0327857i
\(379\) −116.155 −0.306478 −0.153239 0.988189i \(-0.548970\pi\)
−0.153239 + 0.988189i \(0.548970\pi\)
\(380\) −662.101 62.5388i −1.74237 0.164576i
\(381\) 182.290 198.886i 0.478452 0.522010i
\(382\) −146.710 228.863i −0.384058 0.599118i
\(383\) 439.765 439.765i 1.14821 1.14821i 0.161308 0.986904i \(-0.448429\pi\)
0.986904 0.161308i \(-0.0515712\pi\)
\(384\) −298.942 241.018i −0.778496 0.627650i
\(385\) −83.8673 40.3964i −0.217837 0.104926i
\(386\) −173.346 37.9178i −0.449083 0.0982326i
\(387\) 148.147 + 124.372i 0.382810 + 0.321376i
\(388\) −160.990 + 59.6250i −0.414922 + 0.153673i
\(389\) 120.985 0.311017 0.155508 0.987835i \(-0.450298\pi\)
0.155508 + 0.987835i \(0.450298\pi\)
\(390\) −85.3744 513.721i −0.218909 1.31723i
\(391\) 136.574i 0.349293i
\(392\) −46.2942 330.056i −0.118098 0.841979i
\(393\) 431.682 18.7946i 1.09843 0.0478235i
\(394\) 267.980 + 58.6179i 0.680151 + 0.148776i
\(395\) −124.060 354.632i −0.314076 0.897802i
\(396\) −83.3631 + 232.937i −0.210513 + 0.588226i
\(397\) −549.267 549.267i −1.38355 1.38355i −0.838233 0.545313i \(-0.816411\pi\)
−0.545313 0.838233i \(-0.683589\pi\)
\(398\) −31.3319 48.8768i −0.0787234 0.122806i
\(399\) 182.603 199.227i 0.457652 0.499317i
\(400\) 392.926 + 74.8960i 0.982314 + 0.187240i
\(401\) 177.597i 0.442885i 0.975173 + 0.221442i \(0.0710765\pi\)
−0.975173 + 0.221442i \(0.928924\pi\)
\(402\) −271.328 47.0887i −0.674944 0.117136i
\(403\) −149.207 149.207i −0.370240 0.370240i
\(404\) −451.783 207.578i −1.11827 0.513808i
\(405\) 197.911 + 353.350i 0.488669 + 0.872469i
\(406\) 12.1292 + 2.65315i 0.0298750 + 0.00653486i
\(407\) −142.457 142.457i −0.350018 0.350018i
\(408\) −182.184 + 264.854i −0.446529 + 0.649152i
\(409\) 348.822i 0.852865i 0.904519 + 0.426433i \(0.140230\pi\)
−0.904519 + 0.426433i \(0.859770\pi\)
\(410\) 400.920 + 313.879i 0.977853 + 0.765559i
\(411\) −39.0441 + 42.5986i −0.0949977 + 0.103646i
\(412\) 695.809 257.703i 1.68886 0.625494i
\(413\) 120.865 + 120.865i 0.292651 + 0.292651i
\(414\) −182.026 23.4880i −0.439676 0.0567342i
\(415\) 373.661 + 179.982i 0.900389 + 0.433691i
\(416\) −263.410 489.058i −0.633197 1.17562i
\(417\) −188.000 + 8.18518i −0.450840 + 0.0196287i
\(418\) 246.655 + 384.774i 0.590084 + 0.920512i
\(419\) 104.631i 0.249716i 0.992175 + 0.124858i \(0.0398476\pi\)
−0.992175 + 0.124858i \(0.960152\pi\)
\(420\) −120.610 + 108.969i −0.287167 + 0.259449i
\(421\) 207.644 0.493217 0.246609 0.969115i \(-0.420684\pi\)
0.246609 + 0.969115i \(0.420684\pi\)
\(422\) 634.691 406.862i 1.50401 0.964127i
\(423\) 261.048 + 219.155i 0.617136 + 0.518096i
\(424\) 140.187 + 105.699i 0.330631 + 0.249290i
\(425\) 37.5441 332.746i 0.0883390 0.782932i
\(426\) 306.907 + 435.804i 0.720439 + 1.02301i
\(427\) −54.5474 + 54.5474i −0.127746 + 0.127746i
\(428\) −60.8303 + 22.5294i −0.142127 + 0.0526389i
\(429\) −241.819 + 263.834i −0.563681 + 0.614998i
\(430\) −213.349 + 25.9794i −0.496161 + 0.0604171i
\(431\) 135.966 0.315467 0.157734 0.987482i \(-0.449581\pi\)
0.157734 + 0.987482i \(0.449581\pi\)
\(432\) 321.667 + 288.365i 0.744599 + 0.667512i
\(433\) 426.207 426.207i 0.984312 0.984312i −0.0155664 0.999879i \(-0.504955\pi\)
0.999879 + 0.0155664i \(0.00495515\pi\)
\(434\) −14.0739 + 64.3407i −0.0324284 + 0.148250i
\(435\) 12.7508 + 31.9208i 0.0293121 + 0.0733812i
\(436\) −290.823 133.623i −0.667026 0.306475i
\(437\) −239.748 + 239.748i −0.548622 + 0.548622i
\(438\) −595.037 103.268i −1.35853 0.235772i
\(439\) −408.305 −0.930080 −0.465040 0.885290i \(-0.653960\pi\)
−0.465040 + 0.885290i \(0.653960\pi\)
\(440\) −125.933 244.352i −0.286212 0.555345i
\(441\) 32.5873 + 373.529i 0.0738940 + 0.847004i
\(442\) −391.488 + 250.959i −0.885720 + 0.567781i
\(443\) −354.483 + 354.483i −0.800188 + 0.800188i −0.983125 0.182937i \(-0.941440\pi\)
0.182937 + 0.983125i \(0.441440\pi\)
\(444\) −324.258 + 136.411i −0.730311 + 0.307232i
\(445\) 67.8676 + 194.003i 0.152511 + 0.435962i
\(446\) −154.427 + 705.985i −0.346250 + 1.58293i
\(447\) 501.401 21.8301i 1.12170 0.0488368i
\(448\) −84.1400 + 151.597i −0.187813 + 0.338386i
\(449\) 452.663 1.00816 0.504079 0.863657i \(-0.331832\pi\)
0.504079 + 0.863657i \(0.331832\pi\)
\(450\) −437.029 107.265i −0.971175 0.238366i
\(451\) 349.922i 0.775880i
\(452\) 344.041 127.421i 0.761152 0.281904i
\(453\) −9.82069 225.565i −0.0216792 0.497936i
\(454\) 65.9070 301.302i 0.145170 0.663661i
\(455\) −221.945 + 77.6424i −0.487791 + 0.170643i
\(456\) 784.751 145.123i 1.72095 0.318253i
\(457\) 270.489 + 270.489i 0.591879 + 0.591879i 0.938139 0.346260i \(-0.112548\pi\)
−0.346260 + 0.938139i \(0.612548\pi\)
\(458\) 376.719 241.491i 0.822531 0.527274i
\(459\) 220.262 286.832i 0.479873 0.624906i
\(460\) 157.120 130.000i 0.341565 0.282609i
\(461\) 582.469i 1.26349i −0.775176 0.631745i \(-0.782339\pi\)
0.775176 0.631745i \(-0.217661\pi\)
\(462\) 110.062 + 19.1012i 0.238229 + 0.0413445i
\(463\) −318.146 318.146i −0.687140 0.687140i 0.274459 0.961599i \(-0.411501\pi\)
−0.961599 + 0.274459i \(0.911501\pi\)
\(464\) 23.8827 + 27.8195i 0.0514714 + 0.0599558i
\(465\) −169.327 + 67.6376i −0.364144 + 0.145457i
\(466\) −37.7293 + 172.485i −0.0809642 + 0.370139i
\(467\) −554.211 554.211i −1.18675 1.18675i −0.977961 0.208786i \(-0.933049\pi\)
−0.208786 0.977961i \(-0.566951\pi\)
\(468\) 267.151 + 564.938i 0.570837 + 1.20713i
\(469\) 124.340i 0.265116i
\(470\) −375.939 + 45.7778i −0.799871 + 0.0973997i
\(471\) −224.206 205.498i −0.476022 0.436301i
\(472\) 70.1118 + 499.864i 0.148542 + 1.05903i
\(473\) 104.443 + 104.443i 0.220809 + 0.220809i
\(474\) 259.589 + 368.613i 0.547657 + 0.777665i
\(475\) −650.025 + 518.212i −1.36847 + 1.09097i
\(476\) 131.890 + 60.5987i 0.277080 + 0.127308i
\(477\) −151.275 126.998i −0.317138 0.266243i
\(478\) 522.327 334.832i 1.09273 0.700485i
\(479\) 857.141i 1.78944i 0.446629 + 0.894719i \(0.352625\pi\)
−0.446629 + 0.894719i \(0.647375\pi\)
\(480\) −478.114 + 42.5142i −0.996070 + 0.0885714i
\(481\) −508.880 −1.05796
\(482\) −129.419 201.889i −0.268504 0.418857i
\(483\) 3.60454 + 82.7904i 0.00746281 + 0.171409i
\(484\) 123.198 268.134i 0.254542 0.553996i
\(485\) −93.1246 + 193.337i −0.192010 + 0.398632i
\(486\) −344.411 342.895i −0.708664 0.705546i
\(487\) −97.7824 + 97.7824i −0.200785 + 0.200785i −0.800336 0.599551i \(-0.795346\pi\)
0.599551 + 0.800336i \(0.295346\pi\)
\(488\) −225.593 + 31.6421i −0.462281 + 0.0648403i
\(489\) −192.195 176.157i −0.393036 0.360240i
\(490\) −328.035 256.818i −0.669460 0.524119i
\(491\) 770.213 1.56866 0.784331 0.620342i \(-0.213006\pi\)
0.784331 + 0.620342i \(0.213006\pi\)
\(492\) −565.777 230.707i −1.14995 0.468916i
\(493\) 21.7037 21.7037i 0.0440238 0.0440238i
\(494\) 1127.78 + 246.692i 2.28296 + 0.499376i
\(495\) 127.102 + 281.930i 0.256772 + 0.569556i
\(496\) −147.571 + 126.688i −0.297522 + 0.255420i
\(497\) 170.179 170.179i 0.342412 0.342412i
\(498\) −490.368 85.1031i −0.984675 0.170890i
\(499\) 66.3836 0.133033 0.0665166 0.997785i \(-0.478811\pi\)
0.0665166 + 0.997785i \(0.478811\pi\)
\(500\) 418.542 273.538i 0.837083 0.547075i
\(501\) −115.050 105.450i −0.229640 0.210478i
\(502\) 362.933 + 566.164i 0.722974 + 1.12782i
\(503\) −349.224 + 349.224i −0.694282 + 0.694282i −0.963171 0.268889i \(-0.913344\pi\)
0.268889 + 0.963171i \(0.413344\pi\)
\(504\) 103.449 165.362i 0.205256 0.328099i
\(505\) −586.626 + 205.218i −1.16164 + 0.406372i
\(506\) −136.910 29.9477i −0.270572 0.0591851i
\(507\) 17.2680 + 396.617i 0.0340591 + 0.782281i
\(508\) −124.933 337.325i −0.245932 0.664025i
\(509\) 447.822 0.879807 0.439904 0.898045i \(-0.355013\pi\)
0.439904 + 0.898045i \(0.355013\pi\)
\(510\) 65.8758 + 396.392i 0.129168 + 0.777240i
\(511\) 272.684i 0.533628i
\(512\) −467.906 + 207.865i −0.913879 + 0.405987i
\(513\) −890.176 + 116.861i −1.73524 + 0.227799i
\(514\) 551.629 + 120.664i 1.07321 + 0.234754i
\(515\) 402.491 835.615i 0.781536 1.62255i
\(516\) 237.730 100.010i 0.460717 0.193818i
\(517\) 184.037 + 184.037i 0.355971 + 0.355971i
\(518\) 85.7192 + 133.719i 0.165481 + 0.258145i
\(519\) −431.293 395.304i −0.831007 0.761665i
\(520\) −661.359 211.504i −1.27184 0.406739i
\(521\) 373.093i 0.716109i −0.933701 0.358054i \(-0.883440\pi\)
0.933701 0.358054i \(-0.116560\pi\)
\(522\) −25.1942 32.6595i −0.0482648 0.0625660i
\(523\) 593.137 + 593.137i 1.13411 + 1.13411i 0.989488 + 0.144618i \(0.0461953\pi\)
0.144618 + 0.989488i \(0.453805\pi\)
\(524\) 240.533 523.507i 0.459032 0.999058i
\(525\) −13.9770 + 202.700i −0.0266229 + 0.386096i
\(526\) 298.212 + 65.2311i 0.566943 + 0.124013i
\(527\) 115.130 + 115.130i 0.218462 + 0.218462i
\(528\) 225.557 + 240.709i 0.427191 + 0.455888i
\(529\) 425.033i 0.803466i
\(530\) 217.853 26.5278i 0.411044 0.0500525i
\(531\) −49.3529 565.703i −0.0929432 1.06535i
\(532\) −125.148 337.904i −0.235240 0.635157i
\(533\) −624.988 624.988i −1.17259 1.17259i
\(534\) −142.010 201.652i −0.265935 0.377625i
\(535\) −35.1874 + 73.0527i −0.0657708 + 0.136547i
\(536\) −221.053 + 293.181i −0.412413 + 0.546979i
\(537\) −13.9587 320.609i −0.0259939 0.597036i
\(538\) −301.522 470.364i −0.560449 0.874283i
\(539\) 286.308i 0.531184i
\(540\) 539.643 19.6280i 0.999339 0.0363482i
\(541\) −46.0398 −0.0851012 −0.0425506 0.999094i \(-0.513548\pi\)
−0.0425506 + 0.999094i \(0.513548\pi\)
\(542\) −594.395 + 381.030i −1.09667 + 0.703008i
\(543\) 34.7842 1.51444i 0.0640592 0.00278902i
\(544\) 203.250 + 377.362i 0.373621 + 0.693681i
\(545\) −377.625 + 132.104i −0.692890 + 0.242392i
\(546\) 230.695 162.463i 0.422519 0.297551i
\(547\) 586.492 586.492i 1.07220 1.07220i 0.0750146 0.997182i \(-0.476100\pi\)
0.997182 0.0750146i \(-0.0239004\pi\)
\(548\) 26.7590 + 72.2503i 0.0488303 + 0.131844i
\(549\) 255.307 22.2734i 0.465040 0.0405708i
\(550\) −325.332 110.600i −0.591513 0.201092i
\(551\) −76.1995 −0.138293
\(552\) −138.687 + 201.620i −0.251245 + 0.365254i
\(553\) 143.941 143.941i 0.260292 0.260292i
\(554\) −5.47855 + 25.0459i −0.00988908 + 0.0452092i
\(555\) −173.409 + 404.092i −0.312449 + 0.728094i
\(556\) −104.754 + 227.991i −0.188406 + 0.410055i
\(557\) −413.911 + 413.911i −0.743108 + 0.743108i −0.973175 0.230067i \(-0.926106\pi\)
0.230067 + 0.973175i \(0.426106\pi\)
\(558\) 173.245 133.645i 0.310475 0.239508i
\(559\) 373.086 0.667416
\(560\) 55.8263 + 209.413i 0.0996899 + 0.373953i
\(561\) 186.590 203.577i 0.332603 0.362883i
\(562\) 344.328 220.728i 0.612684 0.392754i
\(563\) −185.957 + 185.957i −0.330296 + 0.330296i −0.852699 0.522403i \(-0.825036\pi\)
0.522403 + 0.852699i \(0.325036\pi\)
\(564\) 418.901 176.226i 0.742732 0.312458i
\(565\) 199.011 413.167i 0.352231 0.731269i
\(566\) −2.99759 + 13.7039i −0.00529610 + 0.0242118i
\(567\) −125.951 + 179.690i −0.222137 + 0.316913i
\(568\) 703.812 98.7180i 1.23911 0.173799i
\(569\) −745.467 −1.31014 −0.655068 0.755570i \(-0.727360\pi\)
−0.655068 + 0.755570i \(0.727360\pi\)
\(570\) 580.204 811.487i 1.01790 1.42366i
\(571\) 406.663i 0.712195i −0.934449 0.356097i \(-0.884107\pi\)
0.934449 0.356097i \(-0.115893\pi\)
\(572\) 165.732 + 447.481i 0.289741 + 0.782310i
\(573\) 407.388 17.7369i 0.710975 0.0309545i
\(574\) −58.9519 + 269.506i −0.102704 + 0.469523i
\(575\) 28.5804 253.303i 0.0497050 0.440526i
\(576\) 537.906 205.994i 0.933864 0.357628i
\(577\) 73.9694 + 73.9694i 0.128197 + 0.128197i 0.768294 0.640097i \(-0.221106\pi\)
−0.640097 + 0.768294i \(0.721106\pi\)
\(578\) −184.527 + 118.289i −0.319251 + 0.204652i
\(579\) 179.844 196.217i 0.310611 0.338889i
\(580\) 45.6279 + 4.30979i 0.0786688 + 0.00743068i
\(581\) 224.718i 0.386778i
\(582\) 44.0333 253.722i 0.0756586 0.435949i
\(583\) −106.648 106.648i −0.182929 0.182929i
\(584\) −484.783 + 642.962i −0.830108 + 1.10096i
\(585\) 730.564 + 276.535i 1.24883 + 0.472710i
\(586\) 118.242 540.559i 0.201778 0.922456i
\(587\) −422.201 422.201i −0.719251 0.719251i 0.249200 0.968452i \(-0.419832\pi\)
−0.968452 + 0.249200i \(0.919832\pi\)
\(588\) 462.923 + 188.766i 0.787284 + 0.321030i
\(589\) 404.208i 0.686261i
\(590\) 496.804 + 388.946i 0.842040 + 0.659231i
\(591\) −278.025 + 303.336i −0.470431 + 0.513259i
\(592\) −35.6111 + 467.690i −0.0601538 + 0.790017i
\(593\) 406.869 + 406.869i 0.686119 + 0.686119i 0.961372 0.275253i \(-0.0887616\pi\)
−0.275253 + 0.961372i \(0.588762\pi\)
\(594\) −239.239 283.700i −0.402759 0.477609i
\(595\) 171.255 59.9097i 0.287823 0.100689i
\(596\) 279.381 608.056i 0.468759 1.02023i
\(597\) 87.0033 3.78796i 0.145734 0.00634500i
\(598\) −298.020 + 191.043i −0.498362 + 0.319469i
\(599\) 293.225i 0.489525i −0.969583 0.244762i \(-0.921290\pi\)
0.969583 0.244762i \(-0.0787100\pi\)
\(600\) −393.321 + 453.099i −0.655535 + 0.755165i
\(601\) −1087.24 −1.80905 −0.904523 0.426424i \(-0.859773\pi\)
−0.904523 + 0.426424i \(0.859773\pi\)
\(602\) −62.8451 98.0363i −0.104394 0.162851i
\(603\) 265.597 316.369i 0.440459 0.524658i
\(604\) −273.546 125.685i −0.452891 0.208087i
\(605\) −121.797 348.164i −0.201318 0.575478i
\(606\) 609.755 429.409i 1.00620 0.708595i
\(607\) −74.9651 + 74.9651i −0.123501 + 0.123501i −0.766156 0.642655i \(-0.777833\pi\)
0.642655 + 0.766156i \(0.277833\pi\)
\(608\) 305.645 1019.23i 0.502706 1.67637i
\(609\) −12.5839 + 13.7295i −0.0206632 + 0.0225444i
\(610\) −175.535 + 224.212i −0.287762 + 0.367560i
\(611\) 657.409 1.07596
\(612\) −206.137 435.912i −0.336825 0.712274i
\(613\) 22.9005 22.9005i 0.0373581 0.0373581i −0.688181 0.725539i \(-0.741590\pi\)
0.725539 + 0.688181i \(0.241590\pi\)
\(614\) −894.903 195.751i −1.45750 0.318813i
\(615\) −709.267 + 283.316i −1.15328 + 0.460677i
\(616\) 89.6684 118.926i 0.145566 0.193062i
\(617\) 115.002 115.002i 0.186389 0.186389i −0.607744 0.794133i \(-0.707925\pi\)
0.794133 + 0.607744i \(0.207925\pi\)
\(618\) −190.315 + 1096.60i −0.307953 + 1.77444i
\(619\) 710.704 1.14815 0.574074 0.818803i \(-0.305362\pi\)
0.574074 + 0.818803i \(0.305362\pi\)
\(620\) −22.8617 + 242.038i −0.0368737 + 0.390383i
\(621\) 167.674 218.351i 0.270006 0.351612i
\(622\) −463.006 722.275i −0.744383 1.16121i
\(623\) −78.7438 + 78.7438i −0.126394 + 0.126394i
\(624\) 832.787 + 27.0627i 1.33459 + 0.0433697i
\(625\) 139.266 609.287i 0.222825 0.974858i
\(626\) −398.299 87.1240i −0.636260 0.139176i
\(627\) −684.918 + 29.8201i −1.09237 + 0.0475599i
\(628\) −380.270 + 140.839i −0.605525 + 0.224265i
\(629\) 392.657 0.624256
\(630\) −50.3955 238.553i −0.0799929 0.378655i
\(631\) 209.771i 0.332443i 0.986088 + 0.166221i \(0.0531566\pi\)
−0.986088 + 0.166221i \(0.946843\pi\)
\(632\) 595.301 83.4980i 0.941932 0.132117i
\(633\) 49.1887 + 1129.78i 0.0777072 + 1.78481i
\(634\) −828.369 181.198i −1.30658 0.285801i
\(635\) −405.102 195.126i −0.637956 0.307285i
\(636\) −242.749 + 102.121i −0.381681 + 0.160568i
\(637\) 511.370 + 511.370i 0.802778 + 0.802778i
\(638\) −16.9980 26.5163i −0.0266426 0.0415616i
\(639\) −796.514 + 69.4892i −1.24650 + 0.108747i
\(640\) −240.666 + 593.026i −0.376041 + 0.926603i
\(641\) 1193.44i 1.86184i 0.365221 + 0.930921i \(0.380993\pi\)
−0.365221 + 0.930921i \(0.619007\pi\)
\(642\) 16.6381 95.8695i 0.0259160 0.149329i
\(643\) 424.387 + 424.387i 0.660012 + 0.660012i 0.955383 0.295371i \(-0.0954433\pi\)
−0.295371 + 0.955383i \(0.595443\pi\)
\(644\) 100.401 + 46.1308i 0.155902 + 0.0716316i
\(645\) 127.135 296.261i 0.197109 0.459319i
\(646\) −870.209 190.350i −1.34707 0.294659i
\(647\) 556.306 + 556.306i 0.859824 + 0.859824i 0.991317 0.131493i \(-0.0419772\pi\)
−0.131493 + 0.991317i \(0.541977\pi\)
\(648\) −616.437 + 199.772i −0.951292 + 0.308290i
\(649\) 433.609i 0.668119i
\(650\) −778.610 + 383.528i −1.19786 + 0.590042i
\(651\) −72.8296 66.7525i −0.111873 0.102538i
\(652\) −325.976 + 120.730i −0.499963 + 0.185169i
\(653\) 730.267 + 730.267i 1.11833 + 1.11833i 0.991987 + 0.126340i \(0.0403230\pi\)
0.126340 + 0.991987i \(0.459677\pi\)
\(654\) 392.513 276.420i 0.600174 0.422661i
\(655\) −237.798 679.757i −0.363050 1.03780i
\(656\) −618.137 + 530.664i −0.942281 + 0.808939i
\(657\) 582.470 693.815i 0.886560 1.05604i
\(658\) −110.738 172.748i −0.168295 0.262536i
\(659\) 929.519i 1.41050i 0.708959 + 0.705250i \(0.249165\pi\)
−0.708959 + 0.705250i \(0.750835\pi\)
\(660\) 411.813 + 20.8824i 0.623958 + 0.0316400i
\(661\) 564.895 0.854607 0.427303 0.904108i \(-0.359464\pi\)
0.427303 + 0.904108i \(0.359464\pi\)
\(662\) −150.068 + 96.1997i −0.226690 + 0.145317i
\(663\) −30.3404 696.870i −0.0457623 1.05109i
\(664\) −399.508 + 529.863i −0.601668 + 0.797986i
\(665\) −405.797 195.461i −0.610221 0.293926i
\(666\) 67.5293 523.336i 0.101395 0.785789i
\(667\) 16.5220 16.5220i 0.0247705 0.0247705i
\(668\) −195.132 + 72.2703i −0.292114 + 0.108189i
\(669\) −799.131 732.449i −1.19452 1.09484i
\(670\) 55.4789 + 455.607i 0.0828043 + 0.680010i
\(671\) 195.692 0.291642
\(672\) −133.169 223.391i −0.198168 0.332428i
\(673\) 301.487 301.487i 0.447975 0.447975i −0.446706 0.894681i \(-0.647403\pi\)
0.894681 + 0.446706i \(0.147403\pi\)
\(674\) 106.962 488.992i 0.158698 0.725508i
\(675\) 468.543 485.893i 0.694138 0.719842i
\(676\) 480.983 + 220.995i 0.711513 + 0.326915i
\(677\) 530.496 530.496i 0.783598 0.783598i −0.196838 0.980436i \(-0.563067\pi\)
0.980436 + 0.196838i \(0.0630672\pi\)
\(678\) −94.1007 + 542.213i −0.138792 + 0.799724i
\(679\) −116.272 −0.171240
\(680\) 510.311 + 163.199i 0.750458 + 0.239999i
\(681\) 341.055 + 312.596i 0.500815 + 0.459026i
\(682\) 140.658 90.1673i 0.206244 0.132210i
\(683\) 378.401 378.401i 0.554028 0.554028i −0.373573 0.927601i \(-0.621867\pi\)
0.927601 + 0.373573i \(0.121867\pi\)
\(684\) −403.358 + 1127.08i −0.589705 + 1.64778i
\(685\) 86.7672 + 41.7932i 0.126667 + 0.0610120i
\(686\) 104.967 479.870i 0.153013 0.699519i
\(687\) 29.1958 + 670.580i 0.0424975 + 0.976099i
\(688\) 26.1083 342.887i 0.0379481 0.498383i
\(689\) −380.962 −0.552920
\(690\) 50.1479 + 301.753i 0.0726782 + 0.437324i
\(691\) 690.583i 0.999396i 0.866200 + 0.499698i \(0.166556\pi\)
−0.866200 + 0.499698i \(0.833444\pi\)
\(692\) −731.503 + 270.923i −1.05708 + 0.391508i
\(693\) −107.737 + 128.332i −0.155465 + 0.185184i
\(694\) −206.432 + 943.730i −0.297452 + 1.35984i
\(695\) 103.563 + 296.039i 0.149011 + 0.425955i
\(696\) −54.0802 + 10.0010i −0.0777015 + 0.0143693i
\(697\) 482.247 + 482.247i 0.691890 + 0.691890i
\(698\) 320.129 205.215i 0.458638 0.294004i
\(699\) −195.242 178.950i −0.279316 0.256009i
\(700\) 231.934 + 139.993i 0.331335 + 0.199989i
\(701\) 129.593i 0.184869i 0.995719 + 0.0924343i \(0.0294648\pi\)
−0.995719 + 0.0924343i \(0.970535\pi\)
\(702\) −934.010 79.4100i −1.33050 0.113120i
\(703\) −689.289 689.289i −0.980496 0.980496i
\(704\) 422.859 121.002i 0.600652 0.171879i
\(705\) 224.023 522.036i 0.317763 0.740477i
\(706\) 40.1347 183.481i 0.0568480 0.259888i
\(707\) −238.105 238.105i −0.336783 0.336783i
\(708\) −701.089 285.883i −0.990238 0.403789i
\(709\) 86.8545i 0.122503i 0.998122 + 0.0612514i \(0.0195091\pi\)
−0.998122 + 0.0612514i \(0.980491\pi\)
\(710\) 547.640 699.503i 0.771323 0.985216i
\(711\) −673.710 + 58.7756i −0.947553 + 0.0826661i
\(712\) −325.662 + 45.6780i −0.457391 + 0.0641545i
\(713\) 87.6423 + 87.6423i 0.122920 + 0.122920i
\(714\) −178.007 + 125.358i −0.249309 + 0.175571i
\(715\) 537.392 + 258.846i 0.751597 + 0.362022i
\(716\) −388.807 178.643i −0.543026 0.249501i
\(717\) 40.4804 + 929.769i 0.0564581 + 1.29675i
\(718\) 676.872 433.901i 0.942719 0.604319i
\(719\) 104.099i 0.144782i 0.997376 + 0.0723912i \(0.0230630\pi\)
−0.997376 + 0.0723912i \(0.976937\pi\)
\(720\) 305.276 652.079i 0.423995 0.905665i
\(721\) 502.534 0.696996
\(722\) 803.812 + 1253.92i 1.11331 + 1.73673i
\(723\) 359.373 15.6464i 0.497059 0.0216410i
\(724\) 19.3817 42.1833i 0.0267703 0.0582642i
\(725\) 44.7957 35.7120i 0.0617872 0.0492579i
\(726\) 254.855 + 361.891i 0.351040 + 0.498472i
\(727\) 252.054 252.054i 0.346704 0.346704i −0.512176 0.858880i \(-0.671161\pi\)
0.858880 + 0.512176i \(0.171161\pi\)
\(728\) −52.2569 372.567i −0.0717814 0.511768i
\(729\) 704.298 188.161i 0.966116 0.258109i
\(730\) 121.668 + 999.172i 0.166669 + 1.36873i
\(731\) −287.877 −0.393812
\(732\) 129.021 316.408i 0.176259 0.432251i
\(733\) −795.114 + 795.114i −1.08474 + 1.08474i −0.0886791 + 0.996060i \(0.528265\pi\)
−0.996060 + 0.0886791i \(0.971735\pi\)
\(734\) −506.320 110.753i −0.689809 0.150889i
\(735\) 580.327 231.811i 0.789560 0.315390i
\(736\) 154.724 + 287.267i 0.210223 + 0.390308i
\(737\) 223.037 223.037i 0.302629 0.302629i
\(738\) 725.679 559.805i 0.983305 0.758543i
\(739\) 622.137 0.841863 0.420931 0.907092i \(-0.361703\pi\)
0.420931 + 0.907092i \(0.361703\pi\)
\(740\) 373.757 + 451.729i 0.505078 + 0.610445i
\(741\) −1170.06 + 1276.58i −1.57902 + 1.72278i
\(742\) 64.1718 + 100.106i 0.0864850 + 0.134914i
\(743\) −487.618 + 487.618i −0.656283 + 0.656283i −0.954499 0.298216i \(-0.903609\pi\)
0.298216 + 0.954499i \(0.403609\pi\)
\(744\) −53.0514 286.874i −0.0713056 0.385583i
\(745\) −276.204 789.542i −0.370743 1.05979i
\(746\) −216.113 47.2726i −0.289696 0.0633681i
\(747\) 480.011 571.770i 0.642585 0.765422i
\(748\) −127.880 345.281i −0.170963 0.461606i
\(749\) −43.9335 −0.0586562
\(750\) 39.2277 + 748.973i 0.0523037 + 0.998631i
\(751\) 1089.00i 1.45007i 0.688711 + 0.725036i \(0.258177\pi\)
−0.688711 + 0.725036i \(0.741823\pi\)
\(752\) 46.0050 604.197i 0.0611769 0.803454i
\(753\) −1007.80 + 43.8778i −1.33838 + 0.0582706i
\(754\) −77.7199 17.0005i −0.103077 0.0225470i
\(755\) −355.191 + 124.256i −0.470452 + 0.164577i
\(756\) 136.464 + 258.808i 0.180508 + 0.342338i
\(757\) −628.144 628.144i −0.829781 0.829781i 0.157705 0.987486i \(-0.449590\pi\)
−0.987486 + 0.157705i \(0.949590\pi\)
\(758\) −125.372 195.576i −0.165398 0.258016i
\(759\) 142.042 154.973i 0.187143 0.204181i
\(760\) −609.337 1182.31i −0.801759 1.55567i
\(761\) 723.259i 0.950407i −0.879876 0.475203i \(-0.842375\pi\)
0.879876 0.475203i \(-0.157625\pi\)
\(762\) 531.628 + 92.2638i 0.697675 + 0.121081i
\(763\) −153.274 153.274i −0.200883 0.200883i
\(764\) 226.997 494.046i 0.297116 0.646657i
\(765\) −563.710 213.377i −0.736876 0.278925i
\(766\) 1215.11 + 265.794i 1.58631 + 0.346990i
\(767\) −774.460 774.460i −1.00973 1.00973i
\(768\) 83.1500 763.485i 0.108268 0.994122i
\(769\) 180.270i 0.234421i 0.993107 + 0.117210i \(0.0373952\pi\)
−0.993107 + 0.117210i \(0.962605\pi\)
\(770\) −22.5046 184.813i −0.0292267 0.240017i
\(771\) −572.307 + 624.410i −0.742292 + 0.809870i
\(772\) −123.257 332.798i −0.159659 0.431085i
\(773\) −482.107 482.107i −0.623683 0.623683i 0.322788 0.946471i \(-0.395380\pi\)
−0.946471 + 0.322788i \(0.895380\pi\)
\(774\) −49.5091 + 383.684i −0.0639653 + 0.495716i
\(775\) 189.438 + 237.623i 0.244436 + 0.306611i
\(776\) −274.157 206.710i −0.353296 0.266379i
\(777\) −238.027 + 10.3633i −0.306341 + 0.0133375i
\(778\) 130.585 + 203.709i 0.167848 + 0.261837i
\(779\) 1693.12i 2.17345i
\(780\) 772.828 698.232i 0.990805 0.895170i
\(781\) −610.525 −0.781722
\(782\) 229.956 147.410i 0.294061 0.188504i
\(783\) 61.3455 8.05334i 0.0783468 0.0102852i
\(784\) 505.764 434.193i 0.645107 0.553818i
\(785\) −219.967 + 456.676i −0.280213 + 0.581752i
\(786\) 497.580 + 706.557i 0.633053 + 0.898928i
\(787\) −279.225 + 279.225i −0.354797 + 0.354797i −0.861891 0.507094i \(-0.830720\pi\)
0.507094 + 0.861891i \(0.330720\pi\)
\(788\) 190.545 + 514.479i 0.241809 + 0.652892i
\(789\) −309.391 + 337.558i −0.392130 + 0.427830i
\(790\) 463.207 591.656i 0.586337 0.748932i
\(791\) 248.477 0.314130
\(792\) −482.186 + 111.058i −0.608820 + 0.140225i
\(793\) 349.521 349.521i 0.440758 0.440758i
\(794\) 331.978 1517.68i 0.418108 1.91143i
\(795\) −129.819 + 302.515i −0.163295 + 0.380522i
\(796\) 48.4782 105.510i 0.0609023 0.132550i
\(797\) 861.626 861.626i 1.08109 1.08109i 0.0846783 0.996408i \(-0.473014\pi\)
0.996408 0.0846783i \(-0.0269863\pi\)
\(798\) 532.541 + 92.4222i 0.667345 + 0.115817i
\(799\) −507.264 −0.634873
\(800\) 297.998 + 742.427i 0.372497 + 0.928033i
\(801\) 368.557 32.1535i 0.460121 0.0401417i
\(802\) −299.028 + 191.689i −0.372853 + 0.239013i
\(803\) 489.134 489.134i 0.609133 0.609133i
\(804\) −213.571 507.672i −0.265636 0.631433i
\(805\) 130.368 45.6062i 0.161947 0.0566537i
\(806\) 90.1807 412.273i 0.111887 0.511505i
\(807\) 837.273 36.4533i 1.03751 0.0451714i
\(808\) −138.121 984.738i −0.170942 1.21874i
\(809\) −430.022 −0.531548 −0.265774 0.964035i \(-0.585627\pi\)
−0.265774 + 0.964035i \(0.585627\pi\)
\(810\) −381.338 + 714.620i −0.470787 + 0.882247i
\(811\) 1351.37i 1.66630i −0.553047 0.833150i \(-0.686535\pi\)
0.553047 0.833150i \(-0.313465\pi\)
\(812\) 8.62442 + 23.2863i 0.0106212 + 0.0286777i
\(813\) −46.0658 1058.06i −0.0566614 1.30142i
\(814\) 86.1013 393.623i 0.105776 0.483567i
\(815\) −188.561 + 391.473i −0.231363 + 0.480335i
\(816\) −642.587 20.8819i −0.787484 0.0255905i
\(817\) 505.353 + 505.353i 0.618547 + 0.618547i
\(818\) −587.328 + 376.500i −0.718005 + 0.460269i
\(819\) 36.7845 + 421.639i 0.0449139 + 0.514822i
\(820\) −95.7618 + 1013.83i −0.116783 + 1.23638i
\(821\) 901.925i 1.09857i −0.835636 0.549284i \(-0.814900\pi\)
0.835636 0.549284i \(-0.185100\pi\)
\(822\) −113.867 19.7616i −0.138525 0.0240409i
\(823\) 512.252 + 512.252i 0.622421 + 0.622421i 0.946150 0.323729i \(-0.104937\pi\)
−0.323729 + 0.946150i \(0.604937\pi\)
\(824\) 1184.93 + 893.415i 1.43802 + 1.08424i
\(825\) 388.670 338.527i 0.471115 0.410336i
\(826\) −73.0508 + 333.961i −0.0884393 + 0.404312i
\(827\) 683.717 + 683.717i 0.826744 + 0.826744i 0.987065 0.160321i \(-0.0512530\pi\)
−0.160321 + 0.987065i \(0.551253\pi\)
\(828\) −156.922 331.838i −0.189519 0.400770i
\(829\) 1001.78i 1.20842i 0.796827 + 0.604208i \(0.206510\pi\)
−0.796827 + 0.604208i \(0.793490\pi\)
\(830\) 100.267 + 823.414i 0.120803 + 0.992065i
\(831\) −28.3504 25.9847i −0.0341160 0.0312692i
\(832\) 539.140 971.380i 0.648005 1.16752i
\(833\) −394.578 394.578i −0.473683 0.473683i
\(834\) −216.699 307.711i −0.259832 0.368957i
\(835\) −112.874 + 234.340i −0.135179 + 0.280646i
\(836\) −381.636 + 830.610i −0.456503 + 0.993553i
\(837\) 42.7197 + 325.413i 0.0510391 + 0.388785i
\(838\) −176.173 + 112.933i −0.210230 + 0.134765i
\(839\) 189.192i 0.225497i 0.993624 + 0.112749i \(0.0359654\pi\)
−0.993624 + 0.112749i \(0.964035\pi\)
\(840\) −313.656 85.4622i −0.373400 0.101741i
\(841\) −835.749 −0.993756
\(842\) 224.120 + 349.621i 0.266176 + 0.415227i
\(843\) 26.6855 + 612.923i 0.0316554 + 0.727073i
\(844\) 1370.10 + 629.515i 1.62335 + 0.745871i
\(845\) 624.541 218.482i 0.739102 0.258558i
\(846\) −87.2393 + 676.084i −0.103120 + 0.799154i
\(847\) 141.316 141.316i 0.166843 0.166843i
\(848\) −26.6595 + 350.126i −0.0314381 + 0.412885i
\(849\) −15.5119 14.2176i −0.0182708 0.0167462i
\(850\) 600.784 295.934i 0.706804 0.348157i
\(851\) 298.910 0.351246
\(852\) −402.525 + 987.138i −0.472447 + 1.15861i
\(853\) −430.775 + 430.775i −0.505011 + 0.505011i −0.912991 0.407980i \(-0.866233\pi\)
0.407980 + 0.912991i \(0.366233\pi\)
\(854\) −150.720 32.9685i −0.176487 0.0386048i
\(855\) 614.991 + 1364.14i 0.719288 + 1.59548i
\(856\) −103.591 78.1059i −0.121018 0.0912452i
\(857\) −684.012 + 684.012i −0.798147 + 0.798147i −0.982803 0.184656i \(-0.940883\pi\)
0.184656 + 0.982803i \(0.440883\pi\)
\(858\) −705.237 122.393i −0.821955 0.142650i
\(859\) −1397.70 −1.62712 −0.813560 0.581481i \(-0.802473\pi\)
−0.813560 + 0.581481i \(0.802473\pi\)
\(860\) −274.021 331.185i −0.318629 0.385099i
\(861\) −305.064 279.609i −0.354314 0.324749i
\(862\) 146.755 + 228.933i 0.170249 + 0.265584i
\(863\) −90.1987 + 90.1987i −0.104518 + 0.104518i −0.757432 0.652914i \(-0.773546\pi\)
0.652914 + 0.757432i \(0.273546\pi\)
\(864\) −138.344 + 852.852i −0.160120 + 0.987098i
\(865\) −423.138 + 878.481i −0.489177 + 1.01558i
\(866\) 1177.65 + 257.600i 1.35987 + 0.297459i
\(867\) −14.3009 328.468i −0.0164947 0.378855i
\(868\) −123.524 + 45.7491i −0.142309 + 0.0527063i
\(869\) −516.396 −0.594242
\(870\) −39.9841 + 55.9227i −0.0459588 + 0.0642790i
\(871\) 796.724i 0.914724i
\(872\) −88.9118 633.899i −0.101963 0.726949i
\(873\) 295.841 + 248.363i 0.338878 + 0.284494i
\(874\) −662.446 144.904i −0.757948 0.165794i
\(875\) 330.163 75.2763i 0.377329 0.0860300i
\(876\) −468.374 1113.36i −0.534674 1.27095i
\(877\) 19.3296 + 19.3296i 0.0220406 + 0.0220406i 0.718041 0.696001i \(-0.245039\pi\)
−0.696001 + 0.718041i \(0.745039\pi\)
\(878\) −440.703 687.483i −0.501940 0.783010i
\(879\) 611.879 + 560.822i 0.696108 + 0.638022i
\(880\) 275.501 475.781i 0.313069 0.540660i
\(881\) 721.297i 0.818725i 0.912372 + 0.409363i \(0.134249\pi\)
−0.912372 + 0.409363i \(0.865751\pi\)
\(882\) −593.756 + 458.036i −0.673192 + 0.519315i
\(883\) −941.983 941.983i −1.06680 1.06680i −0.997603 0.0691949i \(-0.977957\pi\)
−0.0691949 0.997603i \(-0.522043\pi\)
\(884\) −845.104 388.296i −0.956000 0.439248i
\(885\) −878.895 + 351.074i −0.993102 + 0.396694i
\(886\) −979.471 214.250i −1.10550 0.241817i
\(887\) 489.902 + 489.902i 0.552313 + 0.552313i 0.927108 0.374795i \(-0.122287\pi\)
−0.374795 + 0.927108i \(0.622287\pi\)
\(888\) −579.669 398.734i −0.652781 0.449025i
\(889\) 243.626i 0.274045i
\(890\) −253.399 + 323.669i −0.284718 + 0.363673i
\(891\) 548.252 96.3944i 0.615322 0.108187i
\(892\) −1355.38 + 501.986i −1.51949 + 0.562765i
\(893\) 890.475 + 890.475i 0.997172 + 0.997172i
\(894\) 577.942 + 820.671i 0.646468 + 0.917976i
\(895\) −504.853 + 176.612i −0.564082 + 0.197331i
\(896\) −346.067 + 21.9551i −0.386236 + 0.0245035i
\(897\) −23.0966 530.492i −0.0257487 0.591407i
\(898\) 488.581 + 762.171i 0.544077 + 0.848743i
\(899\) 27.8555i 0.0309850i
\(900\) −291.099 851.623i −0.323444 0.946247i
\(901\) 293.954 0.326253
\(902\) 589.180 377.687i 0.653193 0.418722i
\(903\) 174.510 7.59784i 0.193256 0.00841399i
\(904\) 585.884 + 441.746i 0.648101 + 0.488658i
\(905\) −19.1613 54.7736i −0.0211727 0.0605234i
\(906\) 369.195 259.999i 0.407500 0.286974i
\(907\) 193.827 193.827i 0.213701 0.213701i −0.592137 0.805838i \(-0.701715\pi\)
0.805838 + 0.592137i \(0.201715\pi\)
\(908\) 578.454 214.239i 0.637064 0.235946i
\(909\) 97.2258 + 1114.44i 0.106959 + 1.22601i
\(910\) −370.286 289.896i −0.406908 0.318567i
\(911\) −830.304 −0.911421 −0.455710 0.890128i \(-0.650615\pi\)
−0.455710 + 0.890128i \(0.650615\pi\)
\(912\) 1091.37 + 1164.68i 1.19668 + 1.27707i
\(913\) 403.093 403.093i 0.441504 0.441504i
\(914\) −163.484 + 747.386i −0.178866 + 0.817709i
\(915\) −158.443 396.653i −0.173162 0.433501i
\(916\) 813.222 + 373.647i 0.887797 + 0.407911i
\(917\) 275.906 275.906i 0.300879 0.300879i
\(918\) 720.692 + 61.2736i 0.785067 + 0.0667468i
\(919\) −1072.00 −1.16649 −0.583245 0.812296i \(-0.698217\pi\)
−0.583245 + 0.812296i \(0.698217\pi\)
\(920\) 388.474 + 124.235i 0.422254 + 0.135038i
\(921\) 928.448 1012.97i 1.00809 1.09986i
\(922\) 980.731 628.687i 1.06370 0.681873i
\(923\) −1090.45 + 1090.45i −1.18141 + 1.18141i
\(924\) 86.6334 + 205.933i 0.0937591 + 0.222871i
\(925\) 728.260 + 82.1703i 0.787308 + 0.0888328i
\(926\) 192.288 879.068i 0.207654 0.949317i
\(927\) −1278.64 1073.44i −1.37934 1.15798i
\(928\) −21.0632 + 70.2394i −0.0226974 + 0.0756890i
\(929\) 1289.64 1.38821 0.694103 0.719876i \(-0.255801\pi\)
0.694103 + 0.719876i \(0.255801\pi\)
\(930\) −296.648 212.100i −0.318976 0.228064i
\(931\) 1385.32i 1.48799i
\(932\) −331.144 + 122.644i −0.355304 + 0.131592i
\(933\) 1285.69 55.9764i 1.37801 0.0599962i
\(934\) 334.966 1531.34i 0.358636 1.63955i
\(935\) −414.657 199.728i −0.443484 0.213613i
\(936\) −662.864 + 1059.58i −0.708188 + 1.13203i
\(937\) −507.002 507.002i −0.541091 0.541091i 0.382758 0.923849i \(-0.374974\pi\)
−0.923849 + 0.382758i \(0.874974\pi\)
\(938\) −209.357 + 134.206i −0.223195 + 0.143076i
\(939\) 413.229 450.849i 0.440073 0.480138i
\(940\) −482.848 583.577i −0.513668 0.620827i
\(941\) 707.695i 0.752067i 0.926606 + 0.376033i \(0.122712\pi\)
−0.926606 + 0.376033i \(0.877288\pi\)
\(942\) 104.010 599.310i 0.110414 0.636211i
\(943\) 367.111 + 367.111i 0.389301 + 0.389301i
\(944\) −765.970 + 657.578i −0.811409 + 0.696586i
\(945\) 347.351 + 114.471i 0.367567 + 0.121133i
\(946\) −63.1252 + 288.585i −0.0667286 + 0.305058i
\(947\) 233.033 + 233.033i 0.246075 + 0.246075i 0.819358 0.573283i \(-0.194330\pi\)
−0.573283 + 0.819358i \(0.694330\pi\)
\(948\) −340.465 + 834.945i −0.359140 + 0.880744i
\(949\) 1747.26i 1.84116i
\(950\) −1574.14 535.148i −1.65699 0.563313i
\(951\) 859.420 937.662i 0.903701 0.985974i
\(952\) 40.3220 + 287.476i 0.0423550 + 0.301971i
\(953\) −414.033 414.033i −0.434452 0.434452i 0.455688 0.890140i \(-0.349393\pi\)
−0.890140 + 0.455688i \(0.849393\pi\)
\(954\) 50.5544 391.784i 0.0529920 0.410675i
\(955\) −224.416 641.503i −0.234990 0.671731i
\(956\) 1127.54 + 518.067i 1.17944 + 0.541911i
\(957\) 47.2004 2.05502i 0.0493212 0.00214735i
\(958\) −1443.21 + 925.153i −1.50648 + 0.965713i
\(959\) 52.1813i 0.0544122i
\(960\) −587.634 759.135i −0.612119 0.790766i
\(961\) 813.238 0.846241
\(962\) −549.259 856.826i −0.570955 0.890671i
\(963\) 111.784 + 93.8447i 0.116079 + 0.0974504i
\(964\) 200.243 435.817i 0.207721 0.452093i
\(965\) −399.665 192.507i −0.414161 0.199489i
\(966\) −135.508 + 95.4288i −0.140277 + 0.0987875i
\(967\) −534.588 + 534.588i −0.552831 + 0.552831i −0.927257 0.374426i \(-0.877840\pi\)
0.374426 + 0.927257i \(0.377840\pi\)
\(968\) 584.444 81.9752i 0.603765 0.0846851i
\(969\) 902.828 985.022i 0.931711 1.01653i
\(970\) −426.044 + 51.8791i −0.439221 + 0.0534836i
\(971\) −438.396 −0.451490 −0.225745 0.974186i \(-0.572482\pi\)
−0.225745 + 0.974186i \(0.572482\pi\)
\(972\) 205.611 950.004i 0.211533 0.977371i
\(973\) −120.159 + 120.159i −0.123493 + 0.123493i
\(974\) −270.182 59.0997i −0.277394 0.0606773i
\(975\) 89.5598 1298.83i 0.0918562 1.33214i
\(976\) −296.771 345.689i −0.304068 0.354190i
\(977\) −1230.19 + 1230.19i −1.25915 + 1.25915i −0.307644 + 0.951501i \(0.599541\pi\)
−0.951501 + 0.307644i \(0.900459\pi\)
\(978\) 89.1597 513.743i 0.0911654 0.525299i
\(979\) 282.497 0.288557
\(980\) 78.3529 829.525i 0.0799520 0.846454i
\(981\) 62.5865 + 717.392i 0.0637987 + 0.731287i
\(982\) 831.328 + 1296.85i 0.846566 + 1.32062i
\(983\) 1245.00 1245.00i 1.26653 1.26653i 0.318665 0.947867i \(-0.396765\pi\)
0.947867 0.318665i \(-0.103235\pi\)
\(984\) −222.218 1201.64i −0.225832 1.22118i
\(985\) 617.852 + 297.601i 0.627260 + 0.302133i
\(986\) 59.9695 + 13.1177i 0.0608210 + 0.0133040i
\(987\) 307.501 13.3880i 0.311551 0.0135644i
\(988\) 801.903 + 2165.17i 0.811643 + 2.19147i
\(989\) −219.146 −0.221584
\(990\) −337.512 + 518.308i −0.340921 + 0.523544i
\(991\) 1328.35i 1.34041i −0.742176 0.670205i \(-0.766206\pi\)
0.742176 0.670205i \(-0.233794\pi\)
\(992\) −372.592 111.732i −0.375597 0.112633i
\(993\) −11.6303 267.130i −0.0117123 0.269013i
\(994\) 470.220 + 102.856i 0.473059 + 0.103477i
\(995\) −47.9270 137.002i −0.0481678 0.137690i
\(996\) −385.985 917.512i −0.387536 0.921197i
\(997\) −553.349 553.349i −0.555014 0.555014i 0.372870 0.927884i \(-0.378374\pi\)
−0.927884 + 0.372870i \(0.878374\pi\)
\(998\) 71.6510 + 111.773i 0.0717945 + 0.111997i
\(999\) 627.771 + 482.073i 0.628400 + 0.482555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 60.3.l.a.47.15 yes 40
3.2 odd 2 inner 60.3.l.a.47.6 yes 40
4.3 odd 2 inner 60.3.l.a.47.5 yes 40
5.2 odd 4 300.3.l.g.143.5 40
5.3 odd 4 inner 60.3.l.a.23.16 yes 40
5.4 even 2 300.3.l.g.107.6 40
12.11 even 2 inner 60.3.l.a.47.16 yes 40
15.2 even 4 300.3.l.g.143.16 40
15.8 even 4 inner 60.3.l.a.23.5 40
15.14 odd 2 300.3.l.g.107.15 40
20.3 even 4 inner 60.3.l.a.23.6 yes 40
20.7 even 4 300.3.l.g.143.15 40
20.19 odd 2 300.3.l.g.107.16 40
60.23 odd 4 inner 60.3.l.a.23.15 yes 40
60.47 odd 4 300.3.l.g.143.6 40
60.59 even 2 300.3.l.g.107.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.3.l.a.23.5 40 15.8 even 4 inner
60.3.l.a.23.6 yes 40 20.3 even 4 inner
60.3.l.a.23.15 yes 40 60.23 odd 4 inner
60.3.l.a.23.16 yes 40 5.3 odd 4 inner
60.3.l.a.47.5 yes 40 4.3 odd 2 inner
60.3.l.a.47.6 yes 40 3.2 odd 2 inner
60.3.l.a.47.15 yes 40 1.1 even 1 trivial
60.3.l.a.47.16 yes 40 12.11 even 2 inner
300.3.l.g.107.5 40 60.59 even 2
300.3.l.g.107.6 40 5.4 even 2
300.3.l.g.107.15 40 15.14 odd 2
300.3.l.g.107.16 40 20.19 odd 2
300.3.l.g.143.5 40 5.2 odd 4
300.3.l.g.143.6 40 60.47 odd 4
300.3.l.g.143.15 40 20.7 even 4
300.3.l.g.143.16 40 15.2 even 4