Properties

Label 2970.2.i.b.1981.1
Level $2970$
Weight $2$
Character 2970.1981
Analytic conductor $23.716$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2970,2,Mod(991,2970)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2970, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2970.991"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2970 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2970.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7155694003\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1981.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2970.1981
Dual form 2970.2.i.b.991.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +1.00000 q^{10} +(-0.500000 - 0.866025i) q^{11} +(2.00000 - 3.46410i) q^{13} +(-0.500000 + 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +2.00000 q^{19} +(0.500000 + 0.866025i) q^{20} +(0.500000 - 0.866025i) q^{22} +(1.50000 - 2.59808i) q^{23} +(-0.500000 - 0.866025i) q^{25} +4.00000 q^{26} -1.00000 q^{28} +(-4.50000 - 7.79423i) q^{29} +(-1.00000 + 1.73205i) q^{31} +(0.500000 - 0.866025i) q^{32} +1.00000 q^{35} -4.00000 q^{37} +(1.00000 + 1.73205i) q^{38} +(-0.500000 + 0.866025i) q^{40} +(1.50000 - 2.59808i) q^{41} +(2.00000 + 3.46410i) q^{43} +1.00000 q^{44} +3.00000 q^{46} +(-4.50000 - 7.79423i) q^{47} +(3.00000 - 5.19615i) q^{49} +(0.500000 - 0.866025i) q^{50} +(2.00000 + 3.46410i) q^{52} -1.00000 q^{55} +(-0.500000 - 0.866025i) q^{56} +(4.50000 - 7.79423i) q^{58} +(0.500000 + 0.866025i) q^{61} -2.00000 q^{62} +1.00000 q^{64} +(-2.00000 - 3.46410i) q^{65} +(0.500000 - 0.866025i) q^{67} +(0.500000 + 0.866025i) q^{70} +12.0000 q^{71} +8.00000 q^{73} +(-2.00000 - 3.46410i) q^{74} +(-1.00000 + 1.73205i) q^{76} +(0.500000 - 0.866025i) q^{77} +(-1.00000 - 1.73205i) q^{79} -1.00000 q^{80} +3.00000 q^{82} +(4.50000 + 7.79423i) q^{83} +(-2.00000 + 3.46410i) q^{86} +(0.500000 + 0.866025i) q^{88} +3.00000 q^{89} +4.00000 q^{91} +(1.50000 + 2.59808i) q^{92} +(4.50000 - 7.79423i) q^{94} +(1.00000 - 1.73205i) q^{95} +(-4.00000 - 6.92820i) q^{97} +6.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + q^{5} + q^{7} - 2 q^{8} + 2 q^{10} - q^{11} + 4 q^{13} - q^{14} - q^{16} + 4 q^{19} + q^{20} + q^{22} + 3 q^{23} - q^{25} + 8 q^{26} - 2 q^{28} - 9 q^{29} - 2 q^{31} + q^{32}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2970\mathbb{Z}\right)^\times\).

\(n\) \(541\) \(1541\) \(2377\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i 0.944911 0.327327i \(-0.106148\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) −0.500000 + 0.866025i −0.133631 + 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 0 0
\(22\) 0.500000 0.866025i 0.106600 0.184637i
\(23\) 1.50000 2.59808i 0.312772 0.541736i −0.666190 0.745782i \(-0.732076\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −4.50000 7.79423i −0.835629 1.44735i −0.893517 0.449029i \(-0.851770\pi\)
0.0578882 0.998323i \(-0.481563\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 1.00000 + 1.73205i 0.162221 + 0.280976i
\(39\) 0 0
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) 1.50000 2.59808i 0.234261 0.405751i −0.724797 0.688963i \(-0.758066\pi\)
0.959058 + 0.283211i \(0.0913998\pi\)
\(42\) 0 0
\(43\) 2.00000 + 3.46410i 0.304997 + 0.528271i 0.977261 0.212041i \(-0.0680112\pi\)
−0.672264 + 0.740312i \(0.734678\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) −4.50000 7.79423i −0.656392 1.13691i −0.981543 0.191243i \(-0.938748\pi\)
0.325150 0.945662i \(-0.394585\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) 0 0
\(58\) 4.50000 7.79423i 0.590879 1.02343i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) 0 0
\(67\) 0.500000 0.866025i 0.0610847 0.105802i −0.833866 0.551967i \(-0.813877\pi\)
0.894951 + 0.446165i \(0.147211\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0.500000 + 0.866025i 0.0597614 + 0.103510i
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) −2.00000 3.46410i −0.232495 0.402694i
\(75\) 0 0
\(76\) −1.00000 + 1.73205i −0.114708 + 0.198680i
\(77\) 0.500000 0.866025i 0.0569803 0.0986928i
\(78\) 0 0
\(79\) −1.00000 1.73205i −0.112509 0.194871i 0.804272 0.594261i \(-0.202555\pi\)
−0.916781 + 0.399390i \(0.869222\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 3.00000 0.331295
\(83\) 4.50000 + 7.79423i 0.493939 + 0.855528i 0.999976 0.00698436i \(-0.00222321\pi\)
−0.506036 + 0.862512i \(0.668890\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.00000 + 3.46410i −0.215666 + 0.373544i
\(87\) 0 0
\(88\) 0.500000 + 0.866025i 0.0533002 + 0.0923186i
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 1.50000 + 2.59808i 0.156386 + 0.270868i
\(93\) 0 0
\(94\) 4.50000 7.79423i 0.464140 0.803913i
\(95\) 1.00000 1.73205i 0.102598 0.177705i
\(96\) 0 0
\(97\) −4.00000 6.92820i −0.406138 0.703452i 0.588315 0.808632i \(-0.299792\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(98\) 6.00000 0.606092
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 0 0
\(103\) 8.00000 13.8564i 0.788263 1.36531i −0.138767 0.990325i \(-0.544314\pi\)
0.927030 0.374987i \(-0.122353\pi\)
\(104\) −2.00000 + 3.46410i −0.196116 + 0.339683i
\(105\) 0 0
\(106\) 0 0
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) −0.500000 0.866025i −0.0476731 0.0825723i
\(111\) 0 0
\(112\) 0.500000 0.866025i 0.0472456 0.0818317i
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) −1.50000 2.59808i −0.139876 0.242272i
\(116\) 9.00000 0.835629
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) −0.500000 + 0.866025i −0.0452679 + 0.0784063i
\(123\) 0 0
\(124\) −1.00000 1.73205i −0.0898027 0.155543i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 2.00000 3.46410i 0.175412 0.303822i
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) 1.00000 + 1.73205i 0.0867110 + 0.150188i
\(134\) 1.00000 0.0863868
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) −0.500000 + 0.866025i −0.0422577 + 0.0731925i
\(141\) 0 0
\(142\) 6.00000 + 10.3923i 0.503509 + 0.872103i
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) −9.00000 −0.747409
\(146\) 4.00000 + 6.92820i 0.331042 + 0.573382i
\(147\) 0 0
\(148\) 2.00000 3.46410i 0.164399 0.284747i
\(149\) −7.50000 + 12.9904i −0.614424 + 1.06421i 0.376061 + 0.926595i \(0.377278\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) −2.00000 −0.162221
\(153\) 0 0
\(154\) 1.00000 0.0805823
\(155\) 1.00000 + 1.73205i 0.0803219 + 0.139122i
\(156\) 0 0
\(157\) 11.0000 19.0526i 0.877896 1.52056i 0.0242497 0.999706i \(-0.492280\pi\)
0.853646 0.520854i \(-0.174386\pi\)
\(158\) 1.00000 1.73205i 0.0795557 0.137795i
\(159\) 0 0
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 1.50000 + 2.59808i 0.117130 + 0.202876i
\(165\) 0 0
\(166\) −4.50000 + 7.79423i −0.349268 + 0.604949i
\(167\) −1.50000 + 2.59808i −0.116073 + 0.201045i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203697\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) 0.500000 0.866025i 0.0377964 0.0654654i
\(176\) −0.500000 + 0.866025i −0.0376889 + 0.0652791i
\(177\) 0 0
\(178\) 1.50000 + 2.59808i 0.112430 + 0.194734i
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) 2.00000 + 3.46410i 0.148250 + 0.256776i
\(183\) 0 0
\(184\) −1.50000 + 2.59808i −0.110581 + 0.191533i
\(185\) −2.00000 + 3.46410i −0.147043 + 0.254686i
\(186\) 0 0
\(187\) 0 0
\(188\) 9.00000 0.656392
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) 11.0000 19.0526i 0.791797 1.37143i −0.133056 0.991109i \(-0.542479\pi\)
0.924853 0.380325i \(-0.124188\pi\)
\(194\) 4.00000 6.92820i 0.287183 0.497416i
\(195\) 0 0
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) 3.00000 5.19615i 0.211079 0.365600i
\(203\) 4.50000 7.79423i 0.315838 0.547048i
\(204\) 0 0
\(205\) −1.50000 2.59808i −0.104765 0.181458i
\(206\) 16.0000 1.11477
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) −1.00000 1.73205i −0.0691714 0.119808i
\(210\) 0 0
\(211\) −4.00000 + 6.92820i −0.275371 + 0.476957i −0.970229 0.242190i \(-0.922134\pi\)
0.694857 + 0.719148i \(0.255467\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.50000 2.59808i −0.102538 0.177601i
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 2.50000 + 4.33013i 0.169321 + 0.293273i
\(219\) 0 0
\(220\) 0.500000 0.866025i 0.0337100 0.0583874i
\(221\) 0 0
\(222\) 0 0
\(223\) −2.50000 4.33013i −0.167412 0.289967i 0.770097 0.637927i \(-0.220208\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 0 0
\(229\) −8.50000 + 14.7224i −0.561696 + 0.972886i 0.435653 + 0.900115i \(0.356518\pi\)
−0.997349 + 0.0727709i \(0.976816\pi\)
\(230\) 1.50000 2.59808i 0.0989071 0.171312i
\(231\) 0 0
\(232\) 4.50000 + 7.79423i 0.295439 + 0.511716i
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.0000 25.9808i 0.970269 1.68056i 0.275533 0.961292i \(-0.411146\pi\)
0.694737 0.719264i \(-0.255521\pi\)
\(240\) 0 0
\(241\) −5.50000 9.52628i −0.354286 0.613642i 0.632709 0.774389i \(-0.281943\pi\)
−0.986996 + 0.160748i \(0.948609\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) −1.00000 −0.0640184
\(245\) −3.00000 5.19615i −0.191663 0.331970i
\(246\) 0 0
\(247\) 4.00000 6.92820i 0.254514 0.440831i
\(248\) 1.00000 1.73205i 0.0635001 0.109985i
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −3.00000 −0.188608
\(254\) −3.50000 6.06218i −0.219610 0.380375i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −12.0000 + 20.7846i −0.748539 + 1.29651i 0.199983 + 0.979799i \(0.435911\pi\)
−0.948523 + 0.316709i \(0.897422\pi\)
\(258\) 0 0
\(259\) −2.00000 3.46410i −0.124274 0.215249i
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.00000 + 1.73205i −0.0613139 + 0.106199i
\(267\) 0 0
\(268\) 0.500000 + 0.866025i 0.0305424 + 0.0529009i
\(269\) 9.00000 0.548740 0.274370 0.961624i \(-0.411531\pi\)
0.274370 + 0.961624i \(0.411531\pi\)
\(270\) 0 0
\(271\) −22.0000 −1.33640 −0.668202 0.743980i \(-0.732936\pi\)
−0.668202 + 0.743980i \(0.732936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −6.00000 + 10.3923i −0.362473 + 0.627822i
\(275\) −0.500000 + 0.866025i −0.0301511 + 0.0522233i
\(276\) 0 0
\(277\) 2.00000 + 3.46410i 0.120168 + 0.208138i 0.919834 0.392308i \(-0.128323\pi\)
−0.799666 + 0.600446i \(0.794990\pi\)
\(278\) 16.0000 0.959616
\(279\) 0 0
\(280\) −1.00000 −0.0597614
\(281\) 13.5000 + 23.3827i 0.805342 + 1.39489i 0.916060 + 0.401042i \(0.131352\pi\)
−0.110717 + 0.993852i \(0.535315\pi\)
\(282\) 0 0
\(283\) 3.50000 6.06218i 0.208053 0.360359i −0.743048 0.669238i \(-0.766621\pi\)
0.951101 + 0.308879i \(0.0999539\pi\)
\(284\) −6.00000 + 10.3923i −0.356034 + 0.616670i
\(285\) 0 0
\(286\) −2.00000 3.46410i −0.118262 0.204837i
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −4.50000 7.79423i −0.264249 0.457693i
\(291\) 0 0
\(292\) −4.00000 + 6.92820i −0.234082 + 0.405442i
\(293\) 6.00000 10.3923i 0.350524 0.607125i −0.635818 0.771839i \(-0.719337\pi\)
0.986341 + 0.164714i \(0.0526703\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) 0 0
\(298\) −15.0000 −0.868927
\(299\) −6.00000 10.3923i −0.346989 0.601003i
\(300\) 0 0
\(301\) −2.00000 + 3.46410i −0.115278 + 0.199667i
\(302\) −5.00000 + 8.66025i −0.287718 + 0.498342i
\(303\) 0 0
\(304\) −1.00000 1.73205i −0.0573539 0.0993399i
\(305\) 1.00000 0.0572598
\(306\) 0 0
\(307\) 23.0000 1.31268 0.656340 0.754466i \(-0.272104\pi\)
0.656340 + 0.754466i \(0.272104\pi\)
\(308\) 0.500000 + 0.866025i 0.0284901 + 0.0493464i
\(309\) 0 0
\(310\) −1.00000 + 1.73205i −0.0567962 + 0.0983739i
\(311\) −15.0000 + 25.9808i −0.850572 + 1.47323i 0.0301210 + 0.999546i \(0.490411\pi\)
−0.880693 + 0.473688i \(0.842923\pi\)
\(312\) 0 0
\(313\) −1.00000 1.73205i −0.0565233 0.0979013i 0.836379 0.548151i \(-0.184668\pi\)
−0.892903 + 0.450250i \(0.851335\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 15.0000 + 25.9808i 0.842484 + 1.45922i 0.887788 + 0.460252i \(0.152241\pi\)
−0.0453045 + 0.998973i \(0.514426\pi\)
\(318\) 0 0
\(319\) −4.50000 + 7.79423i −0.251952 + 0.436393i
\(320\) 0.500000 0.866025i 0.0279508 0.0484123i
\(321\) 0 0
\(322\) 1.50000 + 2.59808i 0.0835917 + 0.144785i
\(323\) 0 0
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 10.0000 + 17.3205i 0.553849 + 0.959294i
\(327\) 0 0
\(328\) −1.50000 + 2.59808i −0.0828236 + 0.143455i
\(329\) 4.50000 7.79423i 0.248093 0.429710i
\(330\) 0 0
\(331\) 17.0000 + 29.4449i 0.934405 + 1.61844i 0.775692 + 0.631111i \(0.217401\pi\)
0.158712 + 0.987325i \(0.449266\pi\)
\(332\) −9.00000 −0.493939
\(333\) 0 0
\(334\) −3.00000 −0.164153
\(335\) −0.500000 0.866025i −0.0273179 0.0473160i
\(336\) 0 0
\(337\) −1.00000 + 1.73205i −0.0544735 + 0.0943508i −0.891976 0.452082i \(-0.850681\pi\)
0.837503 + 0.546433i \(0.184015\pi\)
\(338\) 1.50000 2.59808i 0.0815892 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) −2.00000 3.46410i −0.107833 0.186772i
\(345\) 0 0
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) −5.50000 9.52628i −0.294408 0.509930i 0.680439 0.732805i \(-0.261789\pi\)
−0.974847 + 0.222875i \(0.928456\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −3.00000 5.19615i −0.159674 0.276563i 0.775077 0.631867i \(-0.217711\pi\)
−0.934751 + 0.355303i \(0.884378\pi\)
\(354\) 0 0
\(355\) 6.00000 10.3923i 0.318447 0.551566i
\(356\) −1.50000 + 2.59808i −0.0794998 + 0.137698i
\(357\) 0 0
\(358\) 3.00000 + 5.19615i 0.158555 + 0.274625i
\(359\) −30.0000 −1.58334 −0.791670 0.610949i \(-0.790788\pi\)
−0.791670 + 0.610949i \(0.790788\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) −12.5000 21.6506i −0.656985 1.13793i
\(363\) 0 0
\(364\) −2.00000 + 3.46410i −0.104828 + 0.181568i
\(365\) 4.00000 6.92820i 0.209370 0.362639i
\(366\) 0 0
\(367\) 2.00000 + 3.46410i 0.104399 + 0.180825i 0.913493 0.406855i \(-0.133375\pi\)
−0.809093 + 0.587680i \(0.800041\pi\)
\(368\) −3.00000 −0.156386
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 0 0
\(372\) 0 0
\(373\) 2.00000 3.46410i 0.103556 0.179364i −0.809591 0.586994i \(-0.800311\pi\)
0.913147 + 0.407630i \(0.133645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.50000 + 7.79423i 0.232070 + 0.401957i
\(377\) −36.0000 −1.85409
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 1.00000 + 1.73205i 0.0512989 + 0.0888523i
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 0 0
\(385\) −0.500000 0.866025i −0.0254824 0.0441367i
\(386\) 22.0000 1.11977
\(387\) 0 0
\(388\) 8.00000 0.406138
\(389\) 7.50000 + 12.9904i 0.380265 + 0.658638i 0.991100 0.133120i \(-0.0424994\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.00000 + 5.19615i −0.151523 + 0.262445i
\(393\) 0 0
\(394\) 9.00000 + 15.5885i 0.453413 + 0.785335i
\(395\) −2.00000 −0.100631
\(396\) 0 0
\(397\) −16.0000 −0.803017 −0.401508 0.915855i \(-0.631514\pi\)
−0.401508 + 0.915855i \(0.631514\pi\)
\(398\) −2.00000 3.46410i −0.100251 0.173640i
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 9.00000 15.5885i 0.449439 0.778450i −0.548911 0.835881i \(-0.684957\pi\)
0.998350 + 0.0574304i \(0.0182907\pi\)
\(402\) 0 0
\(403\) 4.00000 + 6.92820i 0.199254 + 0.345118i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 9.00000 0.446663
\(407\) 2.00000 + 3.46410i 0.0991363 + 0.171709i
\(408\) 0 0
\(409\) −1.00000 + 1.73205i −0.0494468 + 0.0856444i −0.889689 0.456566i \(-0.849079\pi\)
0.840243 + 0.542211i \(0.182412\pi\)
\(410\) 1.50000 2.59808i 0.0740797 0.128310i
\(411\) 0 0
\(412\) 8.00000 + 13.8564i 0.394132 + 0.682656i
\(413\) 0 0
\(414\) 0 0
\(415\) 9.00000 0.441793
\(416\) −2.00000 3.46410i −0.0980581 0.169842i
\(417\) 0 0
\(418\) 1.00000 1.73205i 0.0489116 0.0847174i
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) −7.00000 12.1244i −0.341159 0.590905i 0.643489 0.765455i \(-0.277486\pi\)
−0.984648 + 0.174550i \(0.944153\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.500000 + 0.866025i −0.0241967 + 0.0419099i
\(428\) 1.50000 2.59808i 0.0725052 0.125583i
\(429\) 0 0
\(430\) 2.00000 + 3.46410i 0.0964486 + 0.167054i
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) −1.00000 1.73205i −0.0480015 0.0831411i
\(435\) 0 0
\(436\) −2.50000 + 4.33013i −0.119728 + 0.207375i
\(437\) 3.00000 5.19615i 0.143509 0.248566i
\(438\) 0 0
\(439\) 11.0000 + 19.0526i 0.525001 + 0.909329i 0.999576 + 0.0291138i \(0.00926853\pi\)
−0.474575 + 0.880215i \(0.657398\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) 0 0
\(443\) −13.5000 23.3827i −0.641404 1.11094i −0.985119 0.171871i \(-0.945019\pi\)
0.343715 0.939074i \(-0.388315\pi\)
\(444\) 0 0
\(445\) 1.50000 2.59808i 0.0711068 0.123161i
\(446\) 2.50000 4.33013i 0.118378 0.205037i
\(447\) 0 0
\(448\) 0.500000 + 0.866025i 0.0236228 + 0.0409159i
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −3.00000 −0.141264
\(452\) −3.00000 5.19615i −0.141108 0.244406i
\(453\) 0 0
\(454\) −6.00000 + 10.3923i −0.281594 + 0.487735i
\(455\) 2.00000 3.46410i 0.0937614 0.162400i
\(456\) 0 0
\(457\) −13.0000 22.5167i −0.608114 1.05328i −0.991551 0.129718i \(-0.958593\pi\)
0.383437 0.923567i \(-0.374740\pi\)
\(458\) −17.0000 −0.794358
\(459\) 0 0
\(460\) 3.00000 0.139876
\(461\) 16.5000 + 28.5788i 0.768482 + 1.33105i 0.938386 + 0.345589i \(0.112321\pi\)
−0.169904 + 0.985461i \(0.554346\pi\)
\(462\) 0 0
\(463\) −16.0000 + 27.7128i −0.743583 + 1.28792i 0.207271 + 0.978284i \(0.433542\pi\)
−0.950854 + 0.309640i \(0.899791\pi\)
\(464\) −4.50000 + 7.79423i −0.208907 + 0.361838i
\(465\) 0 0
\(466\) −12.0000 20.7846i −0.555889 0.962828i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 1.00000 0.0461757
\(470\) −4.50000 7.79423i −0.207570 0.359521i
\(471\) 0 0
\(472\) 0 0
\(473\) 2.00000 3.46410i 0.0919601 0.159280i
\(474\) 0 0
\(475\) −1.00000 1.73205i −0.0458831 0.0794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 30.0000 1.37217
\(479\) −15.0000 25.9808i −0.685367 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287954 0.957644i \(-0.407025\pi\)
\(480\) 0 0
\(481\) −8.00000 + 13.8564i −0.364769 + 0.631798i
\(482\) 5.50000 9.52628i 0.250518 0.433910i
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.0227273 0.0393648i
\(485\) −8.00000 −0.363261
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) −0.500000 0.866025i −0.0226339 0.0392031i
\(489\) 0 0
\(490\) 3.00000 5.19615i 0.135526 0.234738i
\(491\) −9.00000 + 15.5885i −0.406164 + 0.703497i −0.994456 0.105151i \(-0.966467\pi\)
0.588292 + 0.808649i \(0.299801\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 6.00000 + 10.3923i 0.269137 + 0.466159i
\(498\) 0 0
\(499\) 8.00000 13.8564i 0.358129 0.620298i −0.629519 0.776985i \(-0.716748\pi\)
0.987648 + 0.156687i \(0.0500814\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) 0 0
\(502\) 6.00000 + 10.3923i 0.267793 + 0.463831i
\(503\) −27.0000 −1.20387 −0.601935 0.798545i \(-0.705603\pi\)
−0.601935 + 0.798545i \(0.705603\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) −1.50000 2.59808i −0.0666831 0.115499i
\(507\) 0 0
\(508\) 3.50000 6.06218i 0.155287 0.268966i
\(509\) −13.5000 + 23.3827i −0.598377 + 1.03642i 0.394684 + 0.918817i \(0.370854\pi\)
−0.993061 + 0.117602i \(0.962479\pi\)
\(510\) 0 0
\(511\) 4.00000 + 6.92820i 0.176950 + 0.306486i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −24.0000 −1.05859
\(515\) −8.00000 13.8564i −0.352522 0.610586i
\(516\) 0 0
\(517\) −4.50000 + 7.79423i −0.197910 + 0.342790i
\(518\) 2.00000 3.46410i 0.0878750 0.152204i
\(519\) 0 0
\(520\) 2.00000 + 3.46410i 0.0877058 + 0.151911i
\(521\) −15.0000 −0.657162 −0.328581 0.944476i \(-0.606570\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(522\) 0 0
\(523\) 11.0000 0.480996 0.240498 0.970650i \(-0.422689\pi\)
0.240498 + 0.970650i \(0.422689\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) −6.00000 10.3923i −0.259889 0.450141i
\(534\) 0 0
\(535\) −1.50000 + 2.59808i −0.0648507 + 0.112325i
\(536\) −0.500000 + 0.866025i −0.0215967 + 0.0374066i
\(537\) 0 0
\(538\) 4.50000 + 7.79423i 0.194009 + 0.336033i
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −43.0000 −1.84871 −0.924357 0.381528i \(-0.875398\pi\)
−0.924357 + 0.381528i \(0.875398\pi\)
\(542\) −11.0000 19.0526i −0.472490 0.818377i
\(543\) 0 0
\(544\) 0 0
\(545\) 2.50000 4.33013i 0.107088 0.185482i
\(546\) 0 0
\(547\) 12.5000 + 21.6506i 0.534461 + 0.925714i 0.999189 + 0.0402607i \(0.0128188\pi\)
−0.464728 + 0.885454i \(0.653848\pi\)
\(548\) −12.0000 −0.512615
\(549\) 0 0
\(550\) −1.00000 −0.0426401
\(551\) −9.00000 15.5885i −0.383413 0.664091i
\(552\) 0 0
\(553\) 1.00000 1.73205i 0.0425243 0.0736543i
\(554\) −2.00000 + 3.46410i −0.0849719 + 0.147176i
\(555\) 0 0
\(556\) 8.00000 + 13.8564i 0.339276 + 0.587643i
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) −0.500000 0.866025i −0.0211289 0.0365963i
\(561\) 0 0
\(562\) −13.5000 + 23.3827i −0.569463 + 0.986339i
\(563\) 19.5000 33.7750i 0.821827 1.42345i −0.0824933 0.996592i \(-0.526288\pi\)
0.904320 0.426855i \(-0.140378\pi\)
\(564\) 0 0
\(565\) 3.00000 + 5.19615i 0.126211 + 0.218604i
\(566\) 7.00000 0.294232
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −15.0000 25.9808i −0.628833 1.08917i −0.987786 0.155815i \(-0.950200\pi\)
0.358954 0.933355i \(-0.383134\pi\)
\(570\) 0 0
\(571\) 11.0000 19.0526i 0.460336 0.797325i −0.538642 0.842535i \(-0.681062\pi\)
0.998978 + 0.0452101i \(0.0143957\pi\)
\(572\) 2.00000 3.46410i 0.0836242 0.144841i
\(573\) 0 0
\(574\) 1.50000 + 2.59808i 0.0626088 + 0.108442i
\(575\) −3.00000 −0.125109
\(576\) 0 0
\(577\) 20.0000 0.832611 0.416305 0.909225i \(-0.363325\pi\)
0.416305 + 0.909225i \(0.363325\pi\)
\(578\) −8.50000 14.7224i −0.353553 0.612372i
\(579\) 0 0
\(580\) 4.50000 7.79423i 0.186852 0.323638i
\(581\) −4.50000 + 7.79423i −0.186691 + 0.323359i
\(582\) 0 0
\(583\) 0 0
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 12.0000 0.495715
\(587\) 10.5000 + 18.1865i 0.433381 + 0.750639i 0.997162 0.0752860i \(-0.0239870\pi\)
−0.563781 + 0.825925i \(0.690654\pi\)
\(588\) 0 0
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 + 3.46410i 0.0821995 + 0.142374i
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −7.50000 12.9904i −0.307212 0.532107i
\(597\) 0 0
\(598\) 6.00000 10.3923i 0.245358 0.424973i
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 5.00000 + 8.66025i 0.203954 + 0.353259i 0.949799 0.312861i \(-0.101287\pi\)
−0.745845 + 0.666120i \(0.767954\pi\)
\(602\) −4.00000 −0.163028
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 0.500000 + 0.866025i 0.0203279 + 0.0352089i
\(606\) 0 0
\(607\) 21.5000 37.2391i 0.872658 1.51149i 0.0134214 0.999910i \(-0.495728\pi\)
0.859237 0.511578i \(-0.170939\pi\)
\(608\) 1.00000 1.73205i 0.0405554 0.0702439i
\(609\) 0 0
\(610\) 0.500000 + 0.866025i 0.0202444 + 0.0350643i
\(611\) −36.0000 −1.45640
\(612\) 0 0
\(613\) 8.00000 0.323117 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(614\) 11.5000 + 19.9186i 0.464102 + 0.803849i
\(615\) 0 0
\(616\) −0.500000 + 0.866025i −0.0201456 + 0.0348932i
\(617\) −3.00000 + 5.19615i −0.120775 + 0.209189i −0.920074 0.391745i \(-0.871871\pi\)
0.799298 + 0.600935i \(0.205205\pi\)
\(618\) 0 0
\(619\) −13.0000 22.5167i −0.522514 0.905021i −0.999657 0.0261952i \(-0.991661\pi\)
0.477143 0.878826i \(-0.341672\pi\)
\(620\) −2.00000 −0.0803219
\(621\) 0 0
\(622\) −30.0000 −1.20289
\(623\) 1.50000 + 2.59808i 0.0600962 + 0.104090i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 1.00000 1.73205i 0.0399680 0.0692267i
\(627\) 0 0
\(628\) 11.0000 + 19.0526i 0.438948 + 0.760280i
\(629\) 0 0
\(630\) 0 0
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) 1.00000 + 1.73205i 0.0397779 + 0.0688973i
\(633\) 0 0
\(634\) −15.0000 + 25.9808i −0.595726 + 1.03183i
\(635\) −3.50000 + 6.06218i −0.138893 + 0.240570i
\(636\) 0 0
\(637\) −12.0000 20.7846i −0.475457 0.823516i
\(638\) −9.00000 −0.356313
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −1.50000 2.59808i −0.0592464 0.102618i 0.834881 0.550431i \(-0.185536\pi\)
−0.894127 + 0.447813i \(0.852203\pi\)
\(642\) 0 0
\(643\) 15.5000 26.8468i 0.611260 1.05873i −0.379768 0.925082i \(-0.623996\pi\)
0.991028 0.133652i \(-0.0426705\pi\)
\(644\) −1.50000 + 2.59808i −0.0591083 + 0.102379i
\(645\) 0 0
\(646\) 0 0
\(647\) 33.0000 1.29736 0.648682 0.761060i \(-0.275321\pi\)
0.648682 + 0.761060i \(0.275321\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −2.00000 3.46410i −0.0784465 0.135873i
\(651\) 0 0
\(652\) −10.0000 + 17.3205i −0.391630 + 0.678323i
\(653\) −15.0000 + 25.9808i −0.586995 + 1.01671i 0.407628 + 0.913148i \(0.366356\pi\)
−0.994623 + 0.103558i \(0.966977\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) 0 0
\(658\) 9.00000 0.350857
\(659\) −6.00000 10.3923i −0.233727 0.404827i 0.725175 0.688565i \(-0.241759\pi\)
−0.958902 + 0.283738i \(0.908425\pi\)
\(660\) 0 0
\(661\) −19.0000 + 32.9090i −0.739014 + 1.28001i 0.213925 + 0.976850i \(0.431375\pi\)
−0.952940 + 0.303160i \(0.901958\pi\)
\(662\) −17.0000 + 29.4449i −0.660724 + 1.14441i
\(663\) 0 0
\(664\) −4.50000 7.79423i −0.174634 0.302475i
\(665\) 2.00000 0.0775567
\(666\) 0 0
\(667\) −27.0000 −1.04544
\(668\) −1.50000 2.59808i −0.0580367 0.100523i
\(669\) 0 0
\(670\) 0.500000 0.866025i 0.0193167 0.0334575i
\(671\) 0.500000 0.866025i 0.0193023 0.0334325i
\(672\) 0 0
\(673\) −19.0000 32.9090i −0.732396 1.26855i −0.955856 0.293834i \(-0.905069\pi\)
0.223460 0.974713i \(-0.428265\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 6.00000 + 10.3923i 0.230599 + 0.399409i 0.957984 0.286820i \(-0.0925982\pi\)
−0.727386 + 0.686229i \(0.759265\pi\)
\(678\) 0 0
\(679\) 4.00000 6.92820i 0.153506 0.265880i
\(680\) 0 0
\(681\) 0 0
\(682\) 1.00000 + 1.73205i 0.0382920 + 0.0663237i
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 6.50000 + 11.2583i 0.248171 + 0.429845i
\(687\) 0 0
\(688\) 2.00000 3.46410i 0.0762493 0.132068i
\(689\) 0 0
\(690\) 0 0
\(691\) 14.0000 + 24.2487i 0.532585 + 0.922464i 0.999276 + 0.0380440i \(0.0121127\pi\)
−0.466691 + 0.884420i \(0.654554\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 0 0
\(695\) −8.00000 13.8564i −0.303457 0.525603i
\(696\) 0 0
\(697\) 0 0
\(698\) 5.50000 9.52628i 0.208178 0.360575i
\(699\) 0 0
\(700\) 0.500000 + 0.866025i 0.0188982 + 0.0327327i
\(701\) 33.0000 1.24639 0.623196 0.782065i \(-0.285834\pi\)
0.623196 + 0.782065i \(0.285834\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) −0.500000 0.866025i −0.0188445 0.0326396i
\(705\) 0 0
\(706\) 3.00000 5.19615i 0.112906 0.195560i
\(707\) 3.00000 5.19615i 0.112827 0.195421i
\(708\) 0 0
\(709\) 9.50000 + 16.4545i 0.356780 + 0.617961i 0.987421 0.158114i \(-0.0505412\pi\)
−0.630641 + 0.776075i \(0.717208\pi\)
\(710\) 12.0000 0.450352
\(711\) 0 0
\(712\) −3.00000 −0.112430
\(713\) 3.00000 + 5.19615i 0.112351 + 0.194597i
\(714\) 0 0
\(715\) −2.00000 + 3.46410i −0.0747958 + 0.129550i
\(716\) −3.00000 + 5.19615i −0.112115 + 0.194189i
\(717\) 0 0
\(718\) −15.0000 25.9808i −0.559795 0.969593i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) −7.50000 12.9904i −0.279121 0.483452i
\(723\) 0 0
\(724\) 12.5000 21.6506i 0.464559 0.804640i
\(725\) −4.50000 + 7.79423i −0.167126 + 0.289470i
\(726\) 0 0
\(727\) 18.5000 + 32.0429i 0.686127 + 1.18841i 0.973081 + 0.230463i \(0.0740239\pi\)
−0.286954 + 0.957944i \(0.592643\pi\)
\(728\) −4.00000 −0.148250
\(729\) 0 0
\(730\) 8.00000 0.296093
\(731\) 0 0
\(732\) 0 0
\(733\) 2.00000 3.46410i 0.0738717 0.127950i −0.826723 0.562609i \(-0.809798\pi\)
0.900595 + 0.434659i \(0.143131\pi\)
\(734\) −2.00000 + 3.46410i −0.0738213 + 0.127862i
\(735\) 0 0
\(736\) −1.50000 2.59808i −0.0552907 0.0957664i
\(737\) −1.00000 −0.0368355
\(738\) 0 0
\(739\) −34.0000 −1.25071 −0.625355 0.780340i \(-0.715046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) −2.00000 3.46410i −0.0735215 0.127343i
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5000 18.1865i 0.385208 0.667199i −0.606590 0.795015i \(-0.707463\pi\)
0.991798 + 0.127815i \(0.0407965\pi\)
\(744\) 0 0
\(745\) 7.50000 + 12.9904i 0.274779 + 0.475931i
\(746\) 4.00000 0.146450
\(747\) 0 0
\(748\) 0 0
\(749\) −1.50000 2.59808i −0.0548088 0.0949316i
\(750\) 0 0
\(751\) −7.00000 + 12.1244i −0.255434 + 0.442424i −0.965013 0.262201i \(-0.915552\pi\)
0.709580 + 0.704625i \(0.248885\pi\)
\(752\) −4.50000 + 7.79423i −0.164098 + 0.284226i
\(753\) 0 0
\(754\) −18.0000 31.1769i −0.655521 1.13540i
\(755\) 10.0000 0.363937
\(756\) 0 0
\(757\) −52.0000 −1.88997 −0.944986 0.327111i \(-0.893925\pi\)
−0.944986 + 0.327111i \(0.893925\pi\)
\(758\) −2.00000 3.46410i −0.0726433 0.125822i
\(759\) 0 0
\(760\) −1.00000 + 1.73205i −0.0362738 + 0.0628281i
\(761\) 10.5000 18.1865i 0.380625 0.659261i −0.610527 0.791995i \(-0.709042\pi\)
0.991152 + 0.132734i \(0.0423756\pi\)
\(762\) 0 0
\(763\) 2.50000 + 4.33013i 0.0905061 + 0.156761i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −5.50000 + 9.52628i −0.198335 + 0.343526i −0.947989 0.318304i \(-0.896887\pi\)
0.749654 + 0.661830i \(0.230220\pi\)
\(770\) 0.500000 0.866025i 0.0180187 0.0312094i
\(771\) 0 0
\(772\) 11.0000 + 19.0526i 0.395899 + 0.685717i
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 4.00000 + 6.92820i 0.143592 + 0.248708i
\(777\) 0 0
\(778\) −7.50000 + 12.9904i −0.268888 + 0.465728i
\(779\) 3.00000 5.19615i 0.107486 0.186171i
\(780\) 0 0
\(781\) −6.00000 10.3923i −0.214697 0.371866i
\(782\) 0 0
\(783\) 0 0
\(784\) −6.00000 −0.214286
\(785\) −11.0000 19.0526i −0.392607 0.680015i
\(786\) 0 0
\(787\) 2.00000 3.46410i 0.0712923 0.123482i −0.828176 0.560469i \(-0.810621\pi\)
0.899468 + 0.436987i \(0.143954\pi\)
\(788\) −9.00000 + 15.5885i −0.320612 + 0.555316i
\(789\) 0 0
\(790\) −1.00000 1.73205i −0.0355784 0.0616236i
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) −8.00000 13.8564i −0.283909 0.491745i
\(795\) 0 0
\(796\) 2.00000 3.46410i 0.0708881 0.122782i
\(797\) 24.0000 41.5692i 0.850124 1.47246i −0.0309726 0.999520i \(-0.509860\pi\)
0.881096 0.472937i \(-0.156806\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 18.0000 0.635602
\(803\) −4.00000 6.92820i −0.141157 0.244491i
\(804\) 0 0
\(805\) 1.50000 2.59808i 0.0528681 0.0915702i
\(806\) −4.00000 + 6.92820i −0.140894 + 0.244036i
\(807\) 0 0
\(808\) 3.00000 + 5.19615i 0.105540 + 0.182800i
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 4.50000 + 7.79423i 0.157919 + 0.273524i
\(813\) 0 0
\(814\) −2.00000 + 3.46410i −0.0701000 + 0.121417i
\(815\) 10.0000 17.3205i 0.350285 0.606711i
\(816\) 0 0
\(817\) 4.00000 + 6.92820i 0.139942 + 0.242387i
\(818\) −2.00000 −0.0699284
\(819\) 0 0
\(820\) 3.00000 0.104765
\(821\) 25.5000 + 44.1673i 0.889956 + 1.54145i 0.839926 + 0.542702i \(0.182599\pi\)
0.0500305 + 0.998748i \(0.484068\pi\)
\(822\) 0 0
\(823\) 9.50000 16.4545i 0.331149 0.573567i −0.651588 0.758573i \(-0.725897\pi\)
0.982737 + 0.185006i \(0.0592303\pi\)
\(824\) −8.00000 + 13.8564i −0.278693 + 0.482711i
\(825\) 0 0
\(826\) 0 0
\(827\) 39.0000 1.35616 0.678081 0.734987i \(-0.262812\pi\)
0.678081 + 0.734987i \(0.262812\pi\)
\(828\) 0 0
\(829\) −1.00000 −0.0347314 −0.0173657 0.999849i \(-0.505528\pi\)
−0.0173657 + 0.999849i \(0.505528\pi\)
\(830\) 4.50000 + 7.79423i 0.156197 + 0.270542i
\(831\) 0 0
\(832\) 2.00000 3.46410i 0.0693375 0.120096i
\(833\) 0 0
\(834\) 0 0
\(835\) 1.50000 + 2.59808i 0.0519096 + 0.0899101i
\(836\) 2.00000 0.0691714
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) −15.0000 25.9808i −0.517858 0.896956i −0.999785 0.0207443i \(-0.993396\pi\)
0.481927 0.876211i \(-0.339937\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) 7.00000 12.1244i 0.241236 0.417833i
\(843\) 0 0
\(844\) −4.00000 6.92820i −0.137686 0.238479i
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −1.00000 −0.0343604
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.00000 + 10.3923i −0.205677 + 0.356244i
\(852\) 0 0
\(853\) −1.00000 1.73205i −0.0342393 0.0593043i 0.848398 0.529359i \(-0.177568\pi\)
−0.882637 + 0.470055i \(0.844234\pi\)
\(854\) −1.00000 −0.0342193
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 24.0000 + 41.5692i 0.819824 + 1.41998i 0.905811 + 0.423681i \(0.139262\pi\)
−0.0859870 + 0.996296i \(0.527404\pi\)
\(858\) 0 0
\(859\) −22.0000 + 38.1051i −0.750630 + 1.30013i 0.196887 + 0.980426i \(0.436917\pi\)
−0.947518 + 0.319704i \(0.896417\pi\)
\(860\) −2.00000 + 3.46410i −0.0681994 + 0.118125i
\(861\) 0 0
\(862\) −18.0000 31.1769i −0.613082 1.06189i
\(863\) 39.0000 1.32758 0.663788 0.747921i \(-0.268948\pi\)
0.663788 + 0.747921i \(0.268948\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 1.00000 + 1.73205i 0.0339814 + 0.0588575i
\(867\) 0 0
\(868\) 1.00000 1.73205i 0.0339422 0.0587896i
\(869\) −1.00000 + 1.73205i −0.0339227 + 0.0587558i
\(870\) 0 0
\(871\) −2.00000 3.46410i −0.0677674 0.117377i
\(872\) −5.00000 −0.169321
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) −0.500000 0.866025i −0.0169031 0.0292770i
\(876\) 0 0
\(877\) 11.0000 19.0526i 0.371444 0.643359i −0.618344 0.785907i \(-0.712196\pi\)
0.989788 + 0.142548i \(0.0455296\pi\)
\(878\) −11.0000 + 19.0526i −0.371232 + 0.642993i
\(879\) 0 0
\(880\) 0.500000 + 0.866025i 0.0168550 + 0.0291937i
\(881\) −57.0000 −1.92038 −0.960189 0.279350i \(-0.909881\pi\)
−0.960189 + 0.279350i \(0.909881\pi\)
\(882\) 0 0
\(883\) −7.00000 −0.235569 −0.117784 0.993039i \(-0.537579\pi\)
−0.117784 + 0.993039i \(0.537579\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 13.5000 23.3827i 0.453541 0.785557i
\(887\) 24.0000 41.5692i 0.805841 1.39576i −0.109881 0.993945i \(-0.535047\pi\)
0.915722 0.401813i \(-0.131620\pi\)
\(888\) 0 0
\(889\) −3.50000 6.06218i −0.117386 0.203319i
\(890\) 3.00000 0.100560
\(891\) 0 0
\(892\) 5.00000 0.167412
\(893\) −9.00000 15.5885i −0.301174 0.521648i
\(894\) 0 0
\(895\) 3.00000 5.19615i 0.100279 0.173688i
\(896\) −0.500000 + 0.866025i −0.0167038 + 0.0289319i
\(897\) 0 0
\(898\) −3.00000 5.19615i −0.100111 0.173398i
\(899\) 18.0000 0.600334
\(900\) 0 0
\(901\) 0 0
\(902\) −1.50000 2.59808i −0.0499445 0.0865065i
\(903\) 0 0
\(904\) 3.00000 5.19615i 0.0997785 0.172821i
\(905\) −12.5000 + 21.6506i −0.415514 + 0.719691i
\(906\) 0 0
\(907\) 24.5000 + 42.4352i 0.813509 + 1.40904i 0.910393 + 0.413744i \(0.135779\pi\)
−0.0968843 + 0.995296i \(0.530888\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 4.00000 0.132599
\(911\) 3.00000 + 5.19615i 0.0993944 + 0.172156i 0.911434 0.411446i \(-0.134976\pi\)
−0.812040 + 0.583602i \(0.801643\pi\)
\(912\) 0 0
\(913\) 4.50000 7.79423i 0.148928 0.257951i
\(914\) 13.0000 22.5167i 0.430002 0.744785i
\(915\) 0 0
\(916\) −8.50000 14.7224i −0.280848 0.486443i
\(917\) 0 0
\(918\) 0 0
\(919\) 44.0000 1.45143 0.725713 0.687998i \(-0.241510\pi\)
0.725713 + 0.687998i \(0.241510\pi\)
\(920\) 1.50000 + 2.59808i 0.0494535 + 0.0856560i
\(921\) 0 0
\(922\) −16.5000 + 28.5788i −0.543399 + 0.941194i
\(923\) 24.0000 41.5692i 0.789970 1.36827i
\(924\) 0 0
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) −32.0000 −1.05159
\(927\) 0 0
\(928\) −9.00000 −0.295439
\(929\) 27.0000 + 46.7654i 0.885841 + 1.53432i 0.844746 + 0.535167i \(0.179751\pi\)
0.0410949 + 0.999155i \(0.486915\pi\)
\(930\) 0 0
\(931\) 6.00000 10.3923i 0.196642 0.340594i
\(932\) 12.0000 20.7846i 0.393073 0.680823i
\(933\) 0 0
\(934\) −6.00000 10.3923i −0.196326 0.340047i
\(935\) 0 0
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0.500000 + 0.866025i 0.0163256 + 0.0282767i
\(939\) 0 0
\(940\) 4.50000 7.79423i 0.146774 0.254220i
\(941\) −7.50000 + 12.9904i −0.244493 + 0.423474i −0.961989 0.273088i \(-0.911955\pi\)
0.717496 + 0.696563i \(0.245288\pi\)
\(942\) 0 0
\(943\) −4.50000 7.79423i −0.146540 0.253815i
\(944\) 0 0
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) 7.50000 + 12.9904i 0.243717 + 0.422131i 0.961770 0.273858i \(-0.0882998\pi\)
−0.718053 + 0.695988i \(0.754966\pi\)
\(948\) 0 0
\(949\) 16.0000 27.7128i 0.519382 0.899596i
\(950\) 1.00000 1.73205i 0.0324443 0.0561951i
\(951\) 0 0
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 15.0000 + 25.9808i 0.485135 + 0.840278i
\(957\) 0 0
\(958\) 15.0000 25.9808i 0.484628 0.839400i
\(959\) −6.00000 + 10.3923i −0.193750 + 0.335585i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) −16.0000 −0.515861
\(963\) 0 0
\(964\) 11.0000 0.354286
\(965\) −11.0000 19.0526i −0.354103 0.613324i
\(966\) 0 0
\(967\) −11.5000 + 19.9186i −0.369815 + 0.640538i −0.989536 0.144283i \(-0.953912\pi\)
0.619721 + 0.784822i \(0.287246\pi\)
\(968\) 0.500000 0.866025i 0.0160706 0.0278351i
\(969\) 0 0
\(970\) −4.00000 6.92820i −0.128432 0.222451i
\(971\) −36.0000 −1.15529 −0.577647 0.816286i \(-0.696029\pi\)
−0.577647 + 0.816286i \(0.696029\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) −8.00000 13.8564i −0.256337 0.443988i
\(975\) 0 0
\(976\) 0.500000 0.866025i 0.0160046 0.0277208i
\(977\) 24.0000 41.5692i 0.767828 1.32992i −0.170910 0.985287i \(-0.554671\pi\)
0.938738 0.344631i \(-0.111996\pi\)
\(978\) 0 0
\(979\) −1.50000 2.59808i −0.0479402 0.0830349i
\(980\) 6.00000 0.191663
\(981\) 0 0
\(982\) −18.0000 −0.574403
\(983\) −4.50000 7.79423i −0.143528 0.248597i 0.785295 0.619122i \(-0.212511\pi\)
−0.928823 + 0.370525i \(0.879178\pi\)
\(984\) 0 0
\(985\) 9.00000 15.5885i 0.286764 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 4.00000 + 6.92820i 0.127257 + 0.220416i
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 1.00000 + 1.73205i 0.0317500 + 0.0549927i
\(993\) 0 0
\(994\) −6.00000 + 10.3923i −0.190308 + 0.329624i
\(995\) −2.00000 + 3.46410i −0.0634043 + 0.109819i
\(996\) 0 0
\(997\) 23.0000 + 39.8372i 0.728417 + 1.26166i 0.957552 + 0.288261i \(0.0930771\pi\)
−0.229135 + 0.973395i \(0.573590\pi\)
\(998\) 16.0000 0.506471
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2970.2.i.b.1981.1 2
3.2 odd 2 990.2.i.a.661.1 yes 2
9.2 odd 6 990.2.i.a.331.1 2
9.4 even 3 8910.2.a.c.1.1 1
9.5 odd 6 8910.2.a.m.1.1 1
9.7 even 3 inner 2970.2.i.b.991.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.i.a.331.1 2 9.2 odd 6
990.2.i.a.661.1 yes 2 3.2 odd 2
2970.2.i.b.991.1 2 9.7 even 3 inner
2970.2.i.b.1981.1 2 1.1 even 1 trivial
8910.2.a.c.1.1 1 9.4 even 3
8910.2.a.m.1.1 1 9.5 odd 6