Properties

Label 990.2.i.a.331.1
Level $990$
Weight $2$
Character 990.331
Analytic conductor $7.905$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(331,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.331"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 331.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 990.331
Dual form 990.2.i.a.661.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +1.73205i q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +1.00000 q^{10} +(0.500000 - 0.866025i) q^{11} +(-1.50000 - 0.866025i) q^{12} +(2.00000 + 3.46410i) q^{13} +(0.500000 + 0.866025i) q^{14} +(-1.50000 - 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.50000 + 2.59808i) q^{18} +2.00000 q^{19} +(-0.500000 + 0.866025i) q^{20} -1.73205i q^{21} +(0.500000 + 0.866025i) q^{22} +(-1.50000 - 2.59808i) q^{23} +(1.50000 - 0.866025i) q^{24} +(-0.500000 + 0.866025i) q^{25} -4.00000 q^{26} -5.19615i q^{27} -1.00000 q^{28} +(4.50000 - 7.79423i) q^{29} +(1.50000 - 0.866025i) q^{30} +(-1.00000 - 1.73205i) q^{31} +(-0.500000 - 0.866025i) q^{32} -1.73205i q^{33} -1.00000 q^{35} -3.00000 q^{36} -4.00000 q^{37} +(-1.00000 + 1.73205i) q^{38} +(6.00000 + 3.46410i) q^{39} +(-0.500000 - 0.866025i) q^{40} +(-1.50000 - 2.59808i) q^{41} +(1.50000 + 0.866025i) q^{42} +(2.00000 - 3.46410i) q^{43} -1.00000 q^{44} -3.00000 q^{45} +3.00000 q^{46} +(4.50000 - 7.79423i) q^{47} +1.73205i q^{48} +(3.00000 + 5.19615i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(2.00000 - 3.46410i) q^{52} +(4.50000 + 2.59808i) q^{54} -1.00000 q^{55} +(0.500000 - 0.866025i) q^{56} +(3.00000 - 1.73205i) q^{57} +(4.50000 + 7.79423i) q^{58} +1.73205i q^{60} +(0.500000 - 0.866025i) q^{61} +2.00000 q^{62} +(-1.50000 - 2.59808i) q^{63} +1.00000 q^{64} +(2.00000 - 3.46410i) q^{65} +(1.50000 + 0.866025i) q^{66} +(0.500000 + 0.866025i) q^{67} +(-4.50000 - 2.59808i) q^{69} +(0.500000 - 0.866025i) q^{70} -12.0000 q^{71} +(1.50000 - 2.59808i) q^{72} +8.00000 q^{73} +(2.00000 - 3.46410i) q^{74} +1.73205i q^{75} +(-1.00000 - 1.73205i) q^{76} +(-0.500000 - 0.866025i) q^{77} +(-6.00000 + 3.46410i) q^{78} +(-1.00000 + 1.73205i) q^{79} +1.00000 q^{80} +(-4.50000 - 7.79423i) q^{81} +3.00000 q^{82} +(-4.50000 + 7.79423i) q^{83} +(-1.50000 + 0.866025i) q^{84} +(2.00000 + 3.46410i) q^{86} -15.5885i q^{87} +(0.500000 - 0.866025i) q^{88} -3.00000 q^{89} +(1.50000 - 2.59808i) q^{90} +4.00000 q^{91} +(-1.50000 + 2.59808i) q^{92} +(-3.00000 - 1.73205i) q^{93} +(4.50000 + 7.79423i) q^{94} +(-1.00000 - 1.73205i) q^{95} +(-1.50000 - 0.866025i) q^{96} +(-4.00000 + 6.92820i) q^{97} -6.00000 q^{98} +(-1.50000 - 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 3 q^{3} - q^{4} - q^{5} + q^{7} + 2 q^{8} + 3 q^{9} + 2 q^{10} + q^{11} - 3 q^{12} + 4 q^{13} + q^{14} - 3 q^{15} - q^{16} + 3 q^{18} + 4 q^{19} - q^{20} + q^{22} - 3 q^{23} + 3 q^{24}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 1.50000 0.866025i 0.866025 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 1.73205i 0.707107i
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 1.00000 0.316228
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) −1.50000 0.866025i −0.433013 0.250000i
\(13\) 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i \(0.0205004\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 0.500000 + 0.866025i 0.133631 + 0.231455i
\(15\) −1.50000 0.866025i −0.387298 0.223607i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.50000 + 2.59808i 0.353553 + 0.612372i
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 1.73205i 0.377964i
\(22\) 0.500000 + 0.866025i 0.106600 + 0.184637i
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 1.50000 0.866025i 0.306186 0.176777i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −4.00000 −0.784465
\(27\) 5.19615i 1.00000i
\(28\) −1.00000 −0.188982
\(29\) 4.50000 7.79423i 0.835629 1.44735i −0.0578882 0.998323i \(-0.518437\pi\)
0.893517 0.449029i \(-0.148230\pi\)
\(30\) 1.50000 0.866025i 0.273861 0.158114i
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.73205i 0.301511i
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) −3.00000 −0.500000
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) −1.00000 + 1.73205i −0.162221 + 0.280976i
\(39\) 6.00000 + 3.46410i 0.960769 + 0.554700i
\(40\) −0.500000 0.866025i −0.0790569 0.136931i
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 1.50000 + 0.866025i 0.231455 + 0.133631i
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) −1.00000 −0.150756
\(45\) −3.00000 −0.447214
\(46\) 3.00000 0.442326
\(47\) 4.50000 7.79423i 0.656392 1.13691i −0.325150 0.945662i \(-0.605415\pi\)
0.981543 0.191243i \(-0.0612518\pi\)
\(48\) 1.73205i 0.250000i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) 0 0
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 4.50000 + 2.59808i 0.612372 + 0.353553i
\(55\) −1.00000 −0.134840
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 3.00000 1.73205i 0.397360 0.229416i
\(58\) 4.50000 + 7.79423i 0.590879 + 1.02343i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 1.73205i 0.223607i
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 2.00000 0.254000
\(63\) −1.50000 2.59808i −0.188982 0.327327i
\(64\) 1.00000 0.125000
\(65\) 2.00000 3.46410i 0.248069 0.429669i
\(66\) 1.50000 + 0.866025i 0.184637 + 0.106600i
\(67\) 0.500000 + 0.866025i 0.0610847 + 0.105802i 0.894951 0.446165i \(-0.147211\pi\)
−0.833866 + 0.551967i \(0.813877\pi\)
\(68\) 0 0
\(69\) −4.50000 2.59808i −0.541736 0.312772i
\(70\) 0.500000 0.866025i 0.0597614 0.103510i
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 2.00000 3.46410i 0.232495 0.402694i
\(75\) 1.73205i 0.200000i
\(76\) −1.00000 1.73205i −0.114708 0.198680i
\(77\) −0.500000 0.866025i −0.0569803 0.0986928i
\(78\) −6.00000 + 3.46410i −0.679366 + 0.392232i
\(79\) −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i \(-0.869222\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(80\) 1.00000 0.111803
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 3.00000 0.331295
\(83\) −4.50000 + 7.79423i −0.493939 + 0.855528i −0.999976 0.00698436i \(-0.997777\pi\)
0.506036 + 0.862512i \(0.331110\pi\)
\(84\) −1.50000 + 0.866025i −0.163663 + 0.0944911i
\(85\) 0 0
\(86\) 2.00000 + 3.46410i 0.215666 + 0.373544i
\(87\) 15.5885i 1.67126i
\(88\) 0.500000 0.866025i 0.0533002 0.0923186i
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 1.50000 2.59808i 0.158114 0.273861i
\(91\) 4.00000 0.419314
\(92\) −1.50000 + 2.59808i −0.156386 + 0.270868i
\(93\) −3.00000 1.73205i −0.311086 0.179605i
\(94\) 4.50000 + 7.79423i 0.464140 + 0.803913i
\(95\) −1.00000 1.73205i −0.102598 0.177705i
\(96\) −1.50000 0.866025i −0.153093 0.0883883i
\(97\) −4.00000 + 6.92820i −0.406138 + 0.703452i −0.994453 0.105180i \(-0.966458\pi\)
0.588315 + 0.808632i \(0.299792\pi\)
\(98\) −6.00000 −0.606092
\(99\) −1.50000 2.59808i −0.150756 0.261116i
\(100\) 1.00000 0.100000
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) 0 0
\(103\) 8.00000 + 13.8564i 0.788263 + 1.36531i 0.927030 + 0.374987i \(0.122353\pi\)
−0.138767 + 0.990325i \(0.544314\pi\)
\(104\) 2.00000 + 3.46410i 0.196116 + 0.339683i
\(105\) −1.50000 + 0.866025i −0.146385 + 0.0845154i
\(106\) 0 0
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) −4.50000 + 2.59808i −0.433013 + 0.250000i
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0.500000 0.866025i 0.0476731 0.0825723i
\(111\) −6.00000 + 3.46410i −0.569495 + 0.328798i
\(112\) 0.500000 + 0.866025i 0.0472456 + 0.0818317i
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 3.46410i 0.324443i
\(115\) −1.50000 + 2.59808i −0.139876 + 0.242272i
\(116\) −9.00000 −0.835629
\(117\) 12.0000 1.10940
\(118\) 0 0
\(119\) 0 0
\(120\) −1.50000 0.866025i −0.136931 0.0790569i
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0.500000 + 0.866025i 0.0452679 + 0.0784063i
\(123\) −4.50000 2.59808i −0.405751 0.234261i
\(124\) −1.00000 + 1.73205i −0.0898027 + 0.155543i
\(125\) 1.00000 0.0894427
\(126\) 3.00000 0.267261
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 6.92820i 0.609994i
\(130\) 2.00000 + 3.46410i 0.175412 + 0.303822i
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) −1.50000 + 0.866025i −0.130558 + 0.0753778i
\(133\) 1.00000 1.73205i 0.0867110 0.150188i
\(134\) −1.00000 −0.0863868
\(135\) −4.50000 + 2.59808i −0.387298 + 0.223607i
\(136\) 0 0
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) 4.50000 2.59808i 0.383065 0.221163i
\(139\) 8.00000 + 13.8564i 0.678551 + 1.17529i 0.975417 + 0.220366i \(0.0707252\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0.500000 + 0.866025i 0.0422577 + 0.0731925i
\(141\) 15.5885i 1.31278i
\(142\) 6.00000 10.3923i 0.503509 0.872103i
\(143\) 4.00000 0.334497
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) −9.00000 −0.747409
\(146\) −4.00000 + 6.92820i −0.331042 + 0.573382i
\(147\) 9.00000 + 5.19615i 0.742307 + 0.428571i
\(148\) 2.00000 + 3.46410i 0.164399 + 0.284747i
\(149\) 7.50000 + 12.9904i 0.614424 + 1.06421i 0.990485 + 0.137619i \(0.0439449\pi\)
−0.376061 + 0.926595i \(0.622722\pi\)
\(150\) −1.50000 0.866025i −0.122474 0.0707107i
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 2.00000 0.162221
\(153\) 0 0
\(154\) 1.00000 0.0805823
\(155\) −1.00000 + 1.73205i −0.0803219 + 0.139122i
\(156\) 6.92820i 0.554700i
\(157\) 11.0000 + 19.0526i 0.877896 + 1.52056i 0.853646 + 0.520854i \(0.174386\pi\)
0.0242497 + 0.999706i \(0.492280\pi\)
\(158\) −1.00000 1.73205i −0.0795557 0.137795i
\(159\) 0 0
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) −3.00000 −0.236433
\(162\) 9.00000 0.707107
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) −1.50000 + 2.59808i −0.117130 + 0.202876i
\(165\) −1.50000 + 0.866025i −0.116775 + 0.0674200i
\(166\) −4.50000 7.79423i −0.349268 0.604949i
\(167\) 1.50000 + 2.59808i 0.116073 + 0.201045i 0.918208 0.396098i \(-0.129636\pi\)
−0.802135 + 0.597143i \(0.796303\pi\)
\(168\) 1.73205i 0.133631i
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 3.00000 5.19615i 0.229416 0.397360i
\(172\) −4.00000 −0.304997
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 13.5000 + 7.79423i 1.02343 + 0.590879i
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) 0.500000 + 0.866025i 0.0376889 + 0.0652791i
\(177\) 0 0
\(178\) 1.50000 2.59808i 0.112430 0.194734i
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 1.50000 + 2.59808i 0.111803 + 0.193649i
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) −2.00000 + 3.46410i −0.148250 + 0.256776i
\(183\) 1.73205i 0.128037i
\(184\) −1.50000 2.59808i −0.110581 0.191533i
\(185\) 2.00000 + 3.46410i 0.147043 + 0.254686i
\(186\) 3.00000 1.73205i 0.219971 0.127000i
\(187\) 0 0
\(188\) −9.00000 −0.656392
\(189\) −4.50000 2.59808i −0.327327 0.188982i
\(190\) 2.00000 0.145095
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 1.50000 0.866025i 0.108253 0.0625000i
\(193\) 11.0000 + 19.0526i 0.791797 + 1.37143i 0.924853 + 0.380325i \(0.124188\pi\)
−0.133056 + 0.991109i \(0.542479\pi\)
\(194\) −4.00000 6.92820i −0.287183 0.497416i
\(195\) 6.92820i 0.496139i
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 3.00000 0.213201
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 1.50000 + 0.866025i 0.105802 + 0.0610847i
\(202\) 3.00000 + 5.19615i 0.211079 + 0.365600i
\(203\) −4.50000 7.79423i −0.315838 0.547048i
\(204\) 0 0
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) −16.0000 −1.11477
\(207\) −9.00000 −0.625543
\(208\) −4.00000 −0.277350
\(209\) 1.00000 1.73205i 0.0691714 0.119808i
\(210\) 1.73205i 0.119523i
\(211\) −4.00000 6.92820i −0.275371 0.476957i 0.694857 0.719148i \(-0.255467\pi\)
−0.970229 + 0.242190i \(0.922134\pi\)
\(212\) 0 0
\(213\) −18.0000 + 10.3923i −1.23334 + 0.712069i
\(214\) −1.50000 + 2.59808i −0.102538 + 0.177601i
\(215\) −4.00000 −0.272798
\(216\) 5.19615i 0.353553i
\(217\) −2.00000 −0.135769
\(218\) −2.50000 + 4.33013i −0.169321 + 0.293273i
\(219\) 12.0000 6.92820i 0.810885 0.468165i
\(220\) 0.500000 + 0.866025i 0.0337100 + 0.0583874i
\(221\) 0 0
\(222\) 6.92820i 0.464991i
\(223\) −2.50000 + 4.33013i −0.167412 + 0.289967i −0.937509 0.347960i \(-0.886874\pi\)
0.770097 + 0.637927i \(0.220208\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 1.50000 + 2.59808i 0.100000 + 0.173205i
\(226\) −6.00000 −0.399114
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) −3.00000 1.73205i −0.198680 0.114708i
\(229\) −8.50000 14.7224i −0.561696 0.972886i −0.997349 0.0727709i \(-0.976816\pi\)
0.435653 0.900115i \(-0.356518\pi\)
\(230\) −1.50000 2.59808i −0.0989071 0.171312i
\(231\) −1.50000 0.866025i −0.0986928 0.0569803i
\(232\) 4.50000 7.79423i 0.295439 0.511716i
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) −6.00000 + 10.3923i −0.392232 + 0.679366i
\(235\) −9.00000 −0.587095
\(236\) 0 0
\(237\) 3.46410i 0.225018i
\(238\) 0 0
\(239\) −15.0000 25.9808i −0.970269 1.68056i −0.694737 0.719264i \(-0.744479\pi\)
−0.275533 0.961292i \(-0.588854\pi\)
\(240\) 1.50000 0.866025i 0.0968246 0.0559017i
\(241\) −5.50000 + 9.52628i −0.354286 + 0.613642i −0.986996 0.160748i \(-0.948609\pi\)
0.632709 + 0.774389i \(0.281943\pi\)
\(242\) 1.00000 0.0642824
\(243\) −13.5000 7.79423i −0.866025 0.500000i
\(244\) −1.00000 −0.0640184
\(245\) 3.00000 5.19615i 0.191663 0.331970i
\(246\) 4.50000 2.59808i 0.286910 0.165647i
\(247\) 4.00000 + 6.92820i 0.254514 + 0.440831i
\(248\) −1.00000 1.73205i −0.0635001 0.109985i
\(249\) 15.5885i 0.987878i
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) −1.50000 + 2.59808i −0.0944911 + 0.163663i
\(253\) −3.00000 −0.188608
\(254\) 3.50000 6.06218i 0.219610 0.380375i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 12.0000 + 20.7846i 0.748539 + 1.29651i 0.948523 + 0.316709i \(0.102578\pi\)
−0.199983 + 0.979799i \(0.564089\pi\)
\(258\) 6.00000 + 3.46410i 0.373544 + 0.215666i
\(259\) −2.00000 + 3.46410i −0.124274 + 0.215249i
\(260\) −4.00000 −0.248069
\(261\) −13.5000 23.3827i −0.835629 1.44735i
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 1.73205i 0.106600i
\(265\) 0 0
\(266\) 1.00000 + 1.73205i 0.0613139 + 0.106199i
\(267\) −4.50000 + 2.59808i −0.275396 + 0.159000i
\(268\) 0.500000 0.866025i 0.0305424 0.0529009i
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 5.19615i 0.316228i
\(271\) −22.0000 −1.33640 −0.668202 0.743980i \(-0.732936\pi\)
−0.668202 + 0.743980i \(0.732936\pi\)
\(272\) 0 0
\(273\) 6.00000 3.46410i 0.363137 0.209657i
\(274\) −6.00000 10.3923i −0.362473 0.627822i
\(275\) 0.500000 + 0.866025i 0.0301511 + 0.0522233i
\(276\) 5.19615i 0.312772i
\(277\) 2.00000 3.46410i 0.120168 0.208138i −0.799666 0.600446i \(-0.794990\pi\)
0.919834 + 0.392308i \(0.128323\pi\)
\(278\) −16.0000 −0.959616
\(279\) −6.00000 −0.359211
\(280\) −1.00000 −0.0597614
\(281\) −13.5000 + 23.3827i −0.805342 + 1.39489i 0.110717 + 0.993852i \(0.464685\pi\)
−0.916060 + 0.401042i \(0.868648\pi\)
\(282\) 13.5000 + 7.79423i 0.803913 + 0.464140i
\(283\) 3.50000 + 6.06218i 0.208053 + 0.360359i 0.951101 0.308879i \(-0.0999539\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 6.00000 + 10.3923i 0.356034 + 0.616670i
\(285\) −3.00000 1.73205i −0.177705 0.102598i
\(286\) −2.00000 + 3.46410i −0.118262 + 0.204837i
\(287\) −3.00000 −0.177084
\(288\) −3.00000 −0.176777
\(289\) −17.0000 −1.00000
\(290\) 4.50000 7.79423i 0.264249 0.457693i
\(291\) 13.8564i 0.812277i
\(292\) −4.00000 6.92820i −0.234082 0.405442i
\(293\) −6.00000 10.3923i −0.350524 0.607125i 0.635818 0.771839i \(-0.280663\pi\)
−0.986341 + 0.164714i \(0.947330\pi\)
\(294\) −9.00000 + 5.19615i −0.524891 + 0.303046i
\(295\) 0 0
\(296\) −4.00000 −0.232495
\(297\) −4.50000 2.59808i −0.261116 0.150756i
\(298\) −15.0000 −0.868927
\(299\) 6.00000 10.3923i 0.346989 0.601003i
\(300\) 1.50000 0.866025i 0.0866025 0.0500000i
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 5.00000 + 8.66025i 0.287718 + 0.498342i
\(303\) 10.3923i 0.597022i
\(304\) −1.00000 + 1.73205i −0.0573539 + 0.0993399i
\(305\) −1.00000 −0.0572598
\(306\) 0 0
\(307\) 23.0000 1.31268 0.656340 0.754466i \(-0.272104\pi\)
0.656340 + 0.754466i \(0.272104\pi\)
\(308\) −0.500000 + 0.866025i −0.0284901 + 0.0493464i
\(309\) 24.0000 + 13.8564i 1.36531 + 0.788263i
\(310\) −1.00000 1.73205i −0.0567962 0.0983739i
\(311\) 15.0000 + 25.9808i 0.850572 + 1.47323i 0.880693 + 0.473688i \(0.157077\pi\)
−0.0301210 + 0.999546i \(0.509589\pi\)
\(312\) 6.00000 + 3.46410i 0.339683 + 0.196116i
\(313\) −1.00000 + 1.73205i −0.0565233 + 0.0979013i −0.892903 0.450250i \(-0.851335\pi\)
0.836379 + 0.548151i \(0.184668\pi\)
\(314\) −22.0000 −1.24153
\(315\) −1.50000 + 2.59808i −0.0845154 + 0.146385i
\(316\) 2.00000 0.112509
\(317\) −15.0000 + 25.9808i −0.842484 + 1.45922i 0.0453045 + 0.998973i \(0.485574\pi\)
−0.887788 + 0.460252i \(0.847759\pi\)
\(318\) 0 0
\(319\) −4.50000 7.79423i −0.251952 0.436393i
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) 4.50000 2.59808i 0.251166 0.145010i
\(322\) 1.50000 2.59808i 0.0835917 0.144785i
\(323\) 0 0
\(324\) −4.50000 + 7.79423i −0.250000 + 0.433013i
\(325\) −4.00000 −0.221880
\(326\) −10.0000 + 17.3205i −0.553849 + 0.959294i
\(327\) 7.50000 4.33013i 0.414751 0.239457i
\(328\) −1.50000 2.59808i −0.0828236 0.143455i
\(329\) −4.50000 7.79423i −0.248093 0.429710i
\(330\) 1.73205i 0.0953463i
\(331\) 17.0000 29.4449i 0.934405 1.61844i 0.158712 0.987325i \(-0.449266\pi\)
0.775692 0.631111i \(-0.217401\pi\)
\(332\) 9.00000 0.493939
\(333\) −6.00000 + 10.3923i −0.328798 + 0.569495i
\(334\) −3.00000 −0.164153
\(335\) 0.500000 0.866025i 0.0273179 0.0473160i
\(336\) 1.50000 + 0.866025i 0.0818317 + 0.0472456i
\(337\) −1.00000 1.73205i −0.0544735 0.0943508i 0.837503 0.546433i \(-0.184015\pi\)
−0.891976 + 0.452082i \(0.850681\pi\)
\(338\) −1.50000 2.59808i −0.0815892 0.141317i
\(339\) 9.00000 + 5.19615i 0.488813 + 0.282216i
\(340\) 0 0
\(341\) −2.00000 −0.108306
\(342\) 3.00000 + 5.19615i 0.162221 + 0.280976i
\(343\) 13.0000 0.701934
\(344\) 2.00000 3.46410i 0.107833 0.186772i
\(345\) 5.19615i 0.279751i
\(346\) 3.00000 + 5.19615i 0.161281 + 0.279347i
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) −13.5000 + 7.79423i −0.723676 + 0.417815i
\(349\) −5.50000 + 9.52628i −0.294408 + 0.509930i −0.974847 0.222875i \(-0.928456\pi\)
0.680439 + 0.732805i \(0.261789\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 18.0000 10.3923i 0.960769 0.554700i
\(352\) −1.00000 −0.0533002
\(353\) 3.00000 5.19615i 0.159674 0.276563i −0.775077 0.631867i \(-0.782289\pi\)
0.934751 + 0.355303i \(0.115622\pi\)
\(354\) 0 0
\(355\) 6.00000 + 10.3923i 0.318447 + 0.551566i
\(356\) 1.50000 + 2.59808i 0.0794998 + 0.137698i
\(357\) 0 0
\(358\) 3.00000 5.19615i 0.158555 0.274625i
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) −3.00000 −0.158114
\(361\) −15.0000 −0.789474
\(362\) 12.5000 21.6506i 0.656985 1.13793i
\(363\) −1.50000 0.866025i −0.0787296 0.0454545i
\(364\) −2.00000 3.46410i −0.104828 0.181568i
\(365\) −4.00000 6.92820i −0.209370 0.362639i
\(366\) 1.50000 + 0.866025i 0.0784063 + 0.0452679i
\(367\) 2.00000 3.46410i 0.104399 0.180825i −0.809093 0.587680i \(-0.800041\pi\)
0.913493 + 0.406855i \(0.133375\pi\)
\(368\) 3.00000 0.156386
\(369\) −9.00000 −0.468521
\(370\) −4.00000 −0.207950
\(371\) 0 0
\(372\) 3.46410i 0.179605i
\(373\) 2.00000 + 3.46410i 0.103556 + 0.179364i 0.913147 0.407630i \(-0.133645\pi\)
−0.809591 + 0.586994i \(0.800311\pi\)
\(374\) 0 0
\(375\) 1.50000 0.866025i 0.0774597 0.0447214i
\(376\) 4.50000 7.79423i 0.232070 0.401957i
\(377\) 36.0000 1.85409
\(378\) 4.50000 2.59808i 0.231455 0.133631i
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −1.00000 + 1.73205i −0.0512989 + 0.0888523i
\(381\) −10.5000 + 6.06218i −0.537931 + 0.310575i
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) −0.500000 + 0.866025i −0.0254824 + 0.0441367i
\(386\) −22.0000 −1.11977
\(387\) −6.00000 10.3923i −0.304997 0.528271i
\(388\) 8.00000 0.406138
\(389\) −7.50000 + 12.9904i −0.380265 + 0.658638i −0.991100 0.133120i \(-0.957501\pi\)
0.610835 + 0.791758i \(0.290834\pi\)
\(390\) 6.00000 + 3.46410i 0.303822 + 0.175412i
\(391\) 0 0
\(392\) 3.00000 + 5.19615i 0.151523 + 0.262445i
\(393\) 0 0
\(394\) 9.00000 15.5885i 0.453413 0.785335i
\(395\) 2.00000 0.100631
\(396\) −1.50000 + 2.59808i −0.0753778 + 0.130558i
\(397\) −16.0000 −0.803017 −0.401508 0.915855i \(-0.631514\pi\)
−0.401508 + 0.915855i \(0.631514\pi\)
\(398\) 2.00000 3.46410i 0.100251 0.173640i
\(399\) 3.46410i 0.173422i
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) −1.50000 + 0.866025i −0.0748132 + 0.0431934i
\(403\) 4.00000 6.92820i 0.199254 0.345118i
\(404\) −6.00000 −0.298511
\(405\) −4.50000 + 7.79423i −0.223607 + 0.387298i
\(406\) 9.00000 0.446663
\(407\) −2.00000 + 3.46410i −0.0991363 + 0.171709i
\(408\) 0 0
\(409\) −1.00000 1.73205i −0.0494468 0.0856444i 0.840243 0.542211i \(-0.182412\pi\)
−0.889689 + 0.456566i \(0.849079\pi\)
\(410\) −1.50000 2.59808i −0.0740797 0.128310i
\(411\) 20.7846i 1.02523i
\(412\) 8.00000 13.8564i 0.394132 0.682656i
\(413\) 0 0
\(414\) 4.50000 7.79423i 0.221163 0.383065i
\(415\) 9.00000 0.441793
\(416\) 2.00000 3.46410i 0.0980581 0.169842i
\(417\) 24.0000 + 13.8564i 1.17529 + 0.678551i
\(418\) 1.00000 + 1.73205i 0.0489116 + 0.0847174i
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) 1.50000 + 0.866025i 0.0731925 + 0.0422577i
\(421\) −7.00000 + 12.1244i −0.341159 + 0.590905i −0.984648 0.174550i \(-0.944153\pi\)
0.643489 + 0.765455i \(0.277486\pi\)
\(422\) 8.00000 0.389434
\(423\) −13.5000 23.3827i −0.656392 1.13691i
\(424\) 0 0
\(425\) 0 0
\(426\) 20.7846i 1.00702i
\(427\) −0.500000 0.866025i −0.0241967 0.0419099i
\(428\) −1.50000 2.59808i −0.0725052 0.125583i
\(429\) 6.00000 3.46410i 0.289683 0.167248i
\(430\) 2.00000 3.46410i 0.0964486 0.167054i
\(431\) 36.0000 1.73406 0.867029 0.498257i \(-0.166026\pi\)
0.867029 + 0.498257i \(0.166026\pi\)
\(432\) 4.50000 + 2.59808i 0.216506 + 0.125000i
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 1.00000 1.73205i 0.0480015 0.0831411i
\(435\) −13.5000 + 7.79423i −0.647275 + 0.373705i
\(436\) −2.50000 4.33013i −0.119728 0.207375i
\(437\) −3.00000 5.19615i −0.143509 0.248566i
\(438\) 13.8564i 0.662085i
\(439\) 11.0000 19.0526i 0.525001 0.909329i −0.474575 0.880215i \(-0.657398\pi\)
0.999576 0.0291138i \(-0.00926853\pi\)
\(440\) −1.00000 −0.0476731
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) 13.5000 23.3827i 0.641404 1.11094i −0.343715 0.939074i \(-0.611685\pi\)
0.985119 0.171871i \(-0.0549812\pi\)
\(444\) 6.00000 + 3.46410i 0.284747 + 0.164399i
\(445\) 1.50000 + 2.59808i 0.0711068 + 0.123161i
\(446\) −2.50000 4.33013i −0.118378 0.205037i
\(447\) 22.5000 + 12.9904i 1.06421 + 0.614424i
\(448\) 0.500000 0.866025i 0.0236228 0.0409159i
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) −3.00000 −0.141421
\(451\) −3.00000 −0.141264
\(452\) 3.00000 5.19615i 0.141108 0.244406i
\(453\) 17.3205i 0.813788i
\(454\) −6.00000 10.3923i −0.281594 0.487735i
\(455\) −2.00000 3.46410i −0.0937614 0.162400i
\(456\) 3.00000 1.73205i 0.140488 0.0811107i
\(457\) −13.0000 + 22.5167i −0.608114 + 1.05328i 0.383437 + 0.923567i \(0.374740\pi\)
−0.991551 + 0.129718i \(0.958593\pi\)
\(458\) 17.0000 0.794358
\(459\) 0 0
\(460\) 3.00000 0.139876
\(461\) −16.5000 + 28.5788i −0.768482 + 1.33105i 0.169904 + 0.985461i \(0.445654\pi\)
−0.938386 + 0.345589i \(0.887679\pi\)
\(462\) 1.50000 0.866025i 0.0697863 0.0402911i
\(463\) −16.0000 27.7128i −0.743583 1.28792i −0.950854 0.309640i \(-0.899791\pi\)
0.207271 0.978284i \(-0.433542\pi\)
\(464\) 4.50000 + 7.79423i 0.208907 + 0.361838i
\(465\) 3.46410i 0.160644i
\(466\) −12.0000 + 20.7846i −0.555889 + 0.962828i
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) −6.00000 10.3923i −0.277350 0.480384i
\(469\) 1.00000 0.0461757
\(470\) 4.50000 7.79423i 0.207570 0.359521i
\(471\) 33.0000 + 19.0526i 1.52056 + 0.877896i
\(472\) 0 0
\(473\) −2.00000 3.46410i −0.0919601 0.159280i
\(474\) −3.00000 1.73205i −0.137795 0.0795557i
\(475\) −1.00000 + 1.73205i −0.0458831 + 0.0794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 30.0000 1.37217
\(479\) 15.0000 25.9808i 0.685367 1.18709i −0.287954 0.957644i \(-0.592975\pi\)
0.973321 0.229447i \(-0.0736918\pi\)
\(480\) 1.73205i 0.0790569i
\(481\) −8.00000 13.8564i −0.364769 0.631798i
\(482\) −5.50000 9.52628i −0.250518 0.433910i
\(483\) −4.50000 + 2.59808i −0.204757 + 0.118217i
\(484\) −0.500000 + 0.866025i −0.0227273 + 0.0393648i
\(485\) 8.00000 0.363261
\(486\) 13.5000 7.79423i 0.612372 0.353553i
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 0.500000 0.866025i 0.0226339 0.0392031i
\(489\) 30.0000 17.3205i 1.35665 0.783260i
\(490\) 3.00000 + 5.19615i 0.135526 + 0.234738i
\(491\) 9.00000 + 15.5885i 0.406164 + 0.703497i 0.994456 0.105151i \(-0.0335327\pi\)
−0.588292 + 0.808649i \(0.700199\pi\)
\(492\) 5.19615i 0.234261i
\(493\) 0 0
\(494\) −8.00000 −0.359937
\(495\) −1.50000 + 2.59808i −0.0674200 + 0.116775i
\(496\) 2.00000 0.0898027
\(497\) −6.00000 + 10.3923i −0.269137 + 0.466159i
\(498\) −13.5000 7.79423i −0.604949 0.349268i
\(499\) 8.00000 + 13.8564i 0.358129 + 0.620298i 0.987648 0.156687i \(-0.0500814\pi\)
−0.629519 + 0.776985i \(0.716748\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) 4.50000 + 2.59808i 0.201045 + 0.116073i
\(502\) 6.00000 10.3923i 0.267793 0.463831i
\(503\) 27.0000 1.20387 0.601935 0.798545i \(-0.294397\pi\)
0.601935 + 0.798545i \(0.294397\pi\)
\(504\) −1.50000 2.59808i −0.0668153 0.115728i
\(505\) −6.00000 −0.266996
\(506\) 1.50000 2.59808i 0.0666831 0.115499i
\(507\) 5.19615i 0.230769i
\(508\) 3.50000 + 6.06218i 0.155287 + 0.268966i
\(509\) 13.5000 + 23.3827i 0.598377 + 1.03642i 0.993061 + 0.117602i \(0.0375208\pi\)
−0.394684 + 0.918817i \(0.629146\pi\)
\(510\) 0 0
\(511\) 4.00000 6.92820i 0.176950 0.306486i
\(512\) 1.00000 0.0441942
\(513\) 10.3923i 0.458831i
\(514\) −24.0000 −1.05859
\(515\) 8.00000 13.8564i 0.352522 0.610586i
\(516\) −6.00000 + 3.46410i −0.264135 + 0.152499i
\(517\) −4.50000 7.79423i −0.197910 0.342790i
\(518\) −2.00000 3.46410i −0.0878750 0.152204i
\(519\) 10.3923i 0.456172i
\(520\) 2.00000 3.46410i 0.0877058 0.151911i
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 27.0000 1.18176
\(523\) 11.0000 0.480996 0.240498 0.970650i \(-0.422689\pi\)
0.240498 + 0.970650i \(0.422689\pi\)
\(524\) 0 0
\(525\) 1.50000 + 0.866025i 0.0654654 + 0.0377964i
\(526\) 0 0
\(527\) 0 0
\(528\) 1.50000 + 0.866025i 0.0652791 + 0.0376889i
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) 6.00000 10.3923i 0.259889 0.450141i
\(534\) 5.19615i 0.224860i
\(535\) −1.50000 2.59808i −0.0648507 0.112325i
\(536\) 0.500000 + 0.866025i 0.0215967 + 0.0374066i
\(537\) −9.00000 + 5.19615i −0.388379 + 0.224231i
\(538\) 4.50000 7.79423i 0.194009 0.336033i
\(539\) 6.00000 0.258438
\(540\) 4.50000 + 2.59808i 0.193649 + 0.111803i
\(541\) −43.0000 −1.84871 −0.924357 0.381528i \(-0.875398\pi\)
−0.924357 + 0.381528i \(0.875398\pi\)
\(542\) 11.0000 19.0526i 0.472490 0.818377i
\(543\) −37.5000 + 21.6506i −1.60928 + 0.929118i
\(544\) 0 0
\(545\) −2.50000 4.33013i −0.107088 0.185482i
\(546\) 6.92820i 0.296500i
\(547\) 12.5000 21.6506i 0.534461 0.925714i −0.464728 0.885454i \(-0.653848\pi\)
0.999189 0.0402607i \(-0.0128188\pi\)
\(548\) 12.0000 0.512615
\(549\) −1.50000 2.59808i −0.0640184 0.110883i
\(550\) −1.00000 −0.0426401
\(551\) 9.00000 15.5885i 0.383413 0.664091i
\(552\) −4.50000 2.59808i −0.191533 0.110581i
\(553\) 1.00000 + 1.73205i 0.0425243 + 0.0736543i
\(554\) 2.00000 + 3.46410i 0.0849719 + 0.147176i
\(555\) 6.00000 + 3.46410i 0.254686 + 0.147043i
\(556\) 8.00000 13.8564i 0.339276 0.587643i
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 3.00000 5.19615i 0.127000 0.219971i
\(559\) 16.0000 0.676728
\(560\) 0.500000 0.866025i 0.0211289 0.0365963i
\(561\) 0 0
\(562\) −13.5000 23.3827i −0.569463 0.986339i
\(563\) −19.5000 33.7750i −0.821827 1.42345i −0.904320 0.426855i \(-0.859622\pi\)
0.0824933 0.996592i \(-0.473712\pi\)
\(564\) −13.5000 + 7.79423i −0.568453 + 0.328196i
\(565\) 3.00000 5.19615i 0.126211 0.218604i
\(566\) −7.00000 −0.294232
\(567\) −9.00000 −0.377964
\(568\) −12.0000 −0.503509
\(569\) 15.0000 25.9808i 0.628833 1.08917i −0.358954 0.933355i \(-0.616866\pi\)
0.987786 0.155815i \(-0.0498003\pi\)
\(570\) 3.00000 1.73205i 0.125656 0.0725476i
\(571\) 11.0000 + 19.0526i 0.460336 + 0.797325i 0.998978 0.0452101i \(-0.0143957\pi\)
−0.538642 + 0.842535i \(0.681062\pi\)
\(572\) −2.00000 3.46410i −0.0836242 0.144841i
\(573\) 0 0
\(574\) 1.50000 2.59808i 0.0626088 0.108442i
\(575\) 3.00000 0.125109
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) 20.0000 0.832611 0.416305 0.909225i \(-0.363325\pi\)
0.416305 + 0.909225i \(0.363325\pi\)
\(578\) 8.50000 14.7224i 0.353553 0.612372i
\(579\) 33.0000 + 19.0526i 1.37143 + 0.791797i
\(580\) 4.50000 + 7.79423i 0.186852 + 0.323638i
\(581\) 4.50000 + 7.79423i 0.186691 + 0.323359i
\(582\) −12.0000 6.92820i −0.497416 0.287183i
\(583\) 0 0
\(584\) 8.00000 0.331042
\(585\) −6.00000 10.3923i −0.248069 0.429669i
\(586\) 12.0000 0.495715
\(587\) −10.5000 + 18.1865i −0.433381 + 0.750639i −0.997162 0.0752860i \(-0.976013\pi\)
0.563781 + 0.825925i \(0.309346\pi\)
\(588\) 10.3923i 0.428571i
\(589\) −2.00000 3.46410i −0.0824086 0.142736i
\(590\) 0 0
\(591\) −27.0000 + 15.5885i −1.11063 + 0.641223i
\(592\) 2.00000 3.46410i 0.0821995 0.142374i
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 4.50000 2.59808i 0.184637 0.106600i
\(595\) 0 0
\(596\) 7.50000 12.9904i 0.307212 0.532107i
\(597\) −6.00000 + 3.46410i −0.245564 + 0.141776i
\(598\) 6.00000 + 10.3923i 0.245358 + 0.424973i
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 1.73205i 0.0707107i
\(601\) 5.00000 8.66025i 0.203954 0.353259i −0.745845 0.666120i \(-0.767954\pi\)
0.949799 + 0.312861i \(0.101287\pi\)
\(602\) 4.00000 0.163028
\(603\) 3.00000 0.122169
\(604\) −10.0000 −0.406894
\(605\) −0.500000 + 0.866025i −0.0203279 + 0.0352089i
\(606\) 9.00000 + 5.19615i 0.365600 + 0.211079i
\(607\) 21.5000 + 37.2391i 0.872658 + 1.51149i 0.859237 + 0.511578i \(0.170939\pi\)
0.0134214 + 0.999910i \(0.495728\pi\)
\(608\) −1.00000 1.73205i −0.0405554 0.0702439i
\(609\) −13.5000 7.79423i −0.547048 0.315838i
\(610\) 0.500000 0.866025i 0.0202444 0.0350643i
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) 8.00000 0.323117 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(614\) −11.5000 + 19.9186i −0.464102 + 0.803849i
\(615\) 5.19615i 0.209529i
\(616\) −0.500000 0.866025i −0.0201456 0.0348932i
\(617\) 3.00000 + 5.19615i 0.120775 + 0.209189i 0.920074 0.391745i \(-0.128129\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(618\) −24.0000 + 13.8564i −0.965422 + 0.557386i
\(619\) −13.0000 + 22.5167i −0.522514 + 0.905021i 0.477143 + 0.878826i \(0.341672\pi\)
−0.999657 + 0.0261952i \(0.991661\pi\)
\(620\) 2.00000 0.0803219
\(621\) −13.5000 + 7.79423i −0.541736 + 0.312772i
\(622\) −30.0000 −1.20289
\(623\) −1.50000 + 2.59808i −0.0600962 + 0.104090i
\(624\) −6.00000 + 3.46410i −0.240192 + 0.138675i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −1.00000 1.73205i −0.0399680 0.0692267i
\(627\) 3.46410i 0.138343i
\(628\) 11.0000 19.0526i 0.438948 0.760280i
\(629\) 0 0
\(630\) −1.50000 2.59808i −0.0597614 0.103510i
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) −1.00000 + 1.73205i −0.0397779 + 0.0688973i
\(633\) −12.0000 6.92820i −0.476957 0.275371i
\(634\) −15.0000 25.9808i −0.595726 1.03183i
\(635\) 3.50000 + 6.06218i 0.138893 + 0.240570i
\(636\) 0 0
\(637\) −12.0000 + 20.7846i −0.475457 + 0.823516i
\(638\) 9.00000 0.356313
\(639\) −18.0000 + 31.1769i −0.712069 + 1.23334i
\(640\) 1.00000 0.0395285
\(641\) 1.50000 2.59808i 0.0592464 0.102618i −0.834881 0.550431i \(-0.814464\pi\)
0.894127 + 0.447813i \(0.147797\pi\)
\(642\) 5.19615i 0.205076i
\(643\) 15.5000 + 26.8468i 0.611260 + 1.05873i 0.991028 + 0.133652i \(0.0426705\pi\)
−0.379768 + 0.925082i \(0.623996\pi\)
\(644\) 1.50000 + 2.59808i 0.0591083 + 0.102379i
\(645\) −6.00000 + 3.46410i −0.236250 + 0.136399i
\(646\) 0 0
\(647\) −33.0000 −1.29736 −0.648682 0.761060i \(-0.724679\pi\)
−0.648682 + 0.761060i \(0.724679\pi\)
\(648\) −4.50000 7.79423i −0.176777 0.306186i
\(649\) 0 0
\(650\) 2.00000 3.46410i 0.0784465 0.135873i
\(651\) −3.00000 + 1.73205i −0.117579 + 0.0678844i
\(652\) −10.0000 17.3205i −0.391630 0.678323i
\(653\) 15.0000 + 25.9808i 0.586995 + 1.01671i 0.994623 + 0.103558i \(0.0330227\pi\)
−0.407628 + 0.913148i \(0.633644\pi\)
\(654\) 8.66025i 0.338643i
\(655\) 0 0
\(656\) 3.00000 0.117130
\(657\) 12.0000 20.7846i 0.468165 0.810885i
\(658\) 9.00000 0.350857
\(659\) 6.00000 10.3923i 0.233727 0.404827i −0.725175 0.688565i \(-0.758241\pi\)
0.958902 + 0.283738i \(0.0915745\pi\)
\(660\) 1.50000 + 0.866025i 0.0583874 + 0.0337100i
\(661\) −19.0000 32.9090i −0.739014 1.28001i −0.952940 0.303160i \(-0.901958\pi\)
0.213925 0.976850i \(-0.431375\pi\)
\(662\) 17.0000 + 29.4449i 0.660724 + 1.14441i
\(663\) 0 0
\(664\) −4.50000 + 7.79423i −0.174634 + 0.302475i
\(665\) −2.00000 −0.0775567
\(666\) −6.00000 10.3923i −0.232495 0.402694i
\(667\) −27.0000 −1.04544
\(668\) 1.50000 2.59808i 0.0580367 0.100523i
\(669\) 8.66025i 0.334825i
\(670\) 0.500000 + 0.866025i 0.0193167 + 0.0334575i
\(671\) −0.500000 0.866025i −0.0193023 0.0334325i
\(672\) −1.50000 + 0.866025i −0.0578638 + 0.0334077i
\(673\) −19.0000 + 32.9090i −0.732396 + 1.26855i 0.223460 + 0.974713i \(0.428265\pi\)
−0.955856 + 0.293834i \(0.905069\pi\)
\(674\) 2.00000 0.0770371
\(675\) 4.50000 + 2.59808i 0.173205 + 0.100000i
\(676\) 3.00000 0.115385
\(677\) −6.00000 + 10.3923i −0.230599 + 0.399409i −0.957984 0.286820i \(-0.907402\pi\)
0.727386 + 0.686229i \(0.240735\pi\)
\(678\) −9.00000 + 5.19615i −0.345643 + 0.199557i
\(679\) 4.00000 + 6.92820i 0.153506 + 0.265880i
\(680\) 0 0
\(681\) 20.7846i 0.796468i
\(682\) 1.00000 1.73205i 0.0382920 0.0663237i
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) −6.00000 −0.229416
\(685\) 12.0000 0.458496
\(686\) −6.50000 + 11.2583i −0.248171 + 0.429845i
\(687\) −25.5000 14.7224i −0.972886 0.561696i
\(688\) 2.00000 + 3.46410i 0.0762493 + 0.132068i
\(689\) 0 0
\(690\) −4.50000 2.59808i −0.171312 0.0989071i
\(691\) 14.0000 24.2487i 0.532585 0.922464i −0.466691 0.884420i \(-0.654554\pi\)
0.999276 0.0380440i \(-0.0121127\pi\)
\(692\) −6.00000 −0.228086
\(693\) −3.00000 −0.113961
\(694\) 0 0
\(695\) 8.00000 13.8564i 0.303457 0.525603i
\(696\) 15.5885i 0.590879i
\(697\) 0 0
\(698\) −5.50000 9.52628i −0.208178 0.360575i
\(699\) 36.0000 20.7846i 1.36165 0.786146i
\(700\) 0.500000 0.866025i 0.0188982 0.0327327i
\(701\) −33.0000 −1.24639 −0.623196 0.782065i \(-0.714166\pi\)
−0.623196 + 0.782065i \(0.714166\pi\)
\(702\) 20.7846i 0.784465i
\(703\) −8.00000 −0.301726
\(704\) 0.500000 0.866025i 0.0188445 0.0326396i
\(705\) −13.5000 + 7.79423i −0.508439 + 0.293548i
\(706\) 3.00000 + 5.19615i 0.112906 + 0.195560i
\(707\) −3.00000 5.19615i −0.112827 0.195421i
\(708\) 0 0
\(709\) 9.50000 16.4545i 0.356780 0.617961i −0.630641 0.776075i \(-0.717208\pi\)
0.987421 + 0.158114i \(0.0505412\pi\)
\(710\) −12.0000 −0.450352
\(711\) 3.00000 + 5.19615i 0.112509 + 0.194871i
\(712\) −3.00000 −0.112430
\(713\) −3.00000 + 5.19615i −0.112351 + 0.194597i
\(714\) 0 0
\(715\) −2.00000 3.46410i −0.0747958 0.129550i
\(716\) 3.00000 + 5.19615i 0.112115 + 0.194189i
\(717\) −45.0000 25.9808i −1.68056 0.970269i
\(718\) −15.0000 + 25.9808i −0.559795 + 0.969593i
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 1.50000 2.59808i 0.0559017 0.0968246i
\(721\) 16.0000 0.595871
\(722\) 7.50000 12.9904i 0.279121 0.483452i
\(723\) 19.0526i 0.708572i
\(724\) 12.5000 + 21.6506i 0.464559 + 0.804640i
\(725\) 4.50000 + 7.79423i 0.167126 + 0.289470i
\(726\) 1.50000 0.866025i 0.0556702 0.0321412i
\(727\) 18.5000 32.0429i 0.686127 1.18841i −0.286954 0.957944i \(-0.592643\pi\)
0.973081 0.230463i \(-0.0740239\pi\)
\(728\) 4.00000 0.148250
\(729\) −27.0000 −1.00000
\(730\) 8.00000 0.296093
\(731\) 0 0
\(732\) −1.50000 + 0.866025i −0.0554416 + 0.0320092i
\(733\) 2.00000 + 3.46410i 0.0738717 + 0.127950i 0.900595 0.434659i \(-0.143131\pi\)
−0.826723 + 0.562609i \(0.809798\pi\)
\(734\) 2.00000 + 3.46410i 0.0738213 + 0.127862i
\(735\) 10.3923i 0.383326i
\(736\) −1.50000 + 2.59808i −0.0552907 + 0.0957664i
\(737\) 1.00000 0.0368355
\(738\) 4.50000 7.79423i 0.165647 0.286910i
\(739\) −34.0000 −1.25071 −0.625355 0.780340i \(-0.715046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) 2.00000 3.46410i 0.0735215 0.127343i
\(741\) 12.0000 + 6.92820i 0.440831 + 0.254514i
\(742\) 0 0
\(743\) −10.5000 18.1865i −0.385208 0.667199i 0.606590 0.795015i \(-0.292537\pi\)
−0.991798 + 0.127815i \(0.959204\pi\)
\(744\) −3.00000 1.73205i −0.109985 0.0635001i
\(745\) 7.50000 12.9904i 0.274779 0.475931i
\(746\) −4.00000 −0.146450
\(747\) 13.5000 + 23.3827i 0.493939 + 0.855528i
\(748\) 0 0
\(749\) 1.50000 2.59808i 0.0548088 0.0949316i
\(750\) 1.73205i 0.0632456i
\(751\) −7.00000 12.1244i −0.255434 0.442424i 0.709580 0.704625i \(-0.248885\pi\)
−0.965013 + 0.262201i \(0.915552\pi\)
\(752\) 4.50000 + 7.79423i 0.164098 + 0.284226i
\(753\) −18.0000 + 10.3923i −0.655956 + 0.378717i
\(754\) −18.0000 + 31.1769i −0.655521 + 1.13540i
\(755\) −10.0000 −0.363937
\(756\) 5.19615i 0.188982i
\(757\) −52.0000 −1.88997 −0.944986 0.327111i \(-0.893925\pi\)
−0.944986 + 0.327111i \(0.893925\pi\)
\(758\) 2.00000 3.46410i 0.0726433 0.125822i
\(759\) −4.50000 + 2.59808i −0.163340 + 0.0943042i
\(760\) −1.00000 1.73205i −0.0362738 0.0628281i
\(761\) −10.5000 18.1865i −0.380625 0.659261i 0.610527 0.791995i \(-0.290958\pi\)
−0.991152 + 0.132734i \(0.957624\pi\)
\(762\) 12.1244i 0.439219i
\(763\) 2.50000 4.33013i 0.0905061 0.156761i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −1.50000 0.866025i −0.0541266 0.0312500i
\(769\) −5.50000 9.52628i −0.198335 0.343526i 0.749654 0.661830i \(-0.230220\pi\)
−0.947989 + 0.318304i \(0.896887\pi\)
\(770\) −0.500000 0.866025i −0.0180187 0.0312094i
\(771\) 36.0000 + 20.7846i 1.29651 + 0.748539i
\(772\) 11.0000 19.0526i 0.395899 0.685717i
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 12.0000 0.431331
\(775\) 2.00000 0.0718421
\(776\) −4.00000 + 6.92820i −0.143592 + 0.248708i
\(777\) 6.92820i 0.248548i
\(778\) −7.50000 12.9904i −0.268888 0.465728i
\(779\) −3.00000 5.19615i −0.107486 0.186171i
\(780\) −6.00000 + 3.46410i −0.214834 + 0.124035i
\(781\) −6.00000 + 10.3923i −0.214697 + 0.371866i
\(782\) 0 0
\(783\) −40.5000 23.3827i −1.44735 0.835629i
\(784\) −6.00000 −0.214286
\(785\) 11.0000 19.0526i 0.392607 0.680015i
\(786\) 0 0
\(787\) 2.00000 + 3.46410i 0.0712923 + 0.123482i 0.899468 0.436987i \(-0.143954\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(788\) 9.00000 + 15.5885i 0.320612 + 0.555316i
\(789\) 0 0
\(790\) −1.00000 + 1.73205i −0.0355784 + 0.0616236i
\(791\) 6.00000 0.213335
\(792\) −1.50000 2.59808i −0.0533002 0.0923186i
\(793\) 4.00000 0.142044
\(794\) 8.00000 13.8564i 0.283909 0.491745i
\(795\) 0 0
\(796\) 2.00000 + 3.46410i 0.0708881 + 0.122782i
\(797\) −24.0000 41.5692i −0.850124 1.47246i −0.881096 0.472937i \(-0.843194\pi\)
0.0309726 0.999520i \(-0.490140\pi\)
\(798\) 3.00000 + 1.73205i 0.106199 + 0.0613139i
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) −4.50000 + 7.79423i −0.159000 + 0.275396i
\(802\) 18.0000 0.635602
\(803\) 4.00000 6.92820i 0.141157 0.244491i
\(804\) 1.73205i 0.0610847i
\(805\) 1.50000 + 2.59808i 0.0528681 + 0.0915702i
\(806\) 4.00000 + 6.92820i 0.140894 + 0.244036i
\(807\) −13.5000 + 7.79423i −0.475223 + 0.274370i
\(808\) 3.00000 5.19615i 0.105540 0.182800i
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) −4.50000 7.79423i −0.158114 0.273861i
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) −4.50000 + 7.79423i −0.157919 + 0.273524i
\(813\) −33.0000 + 19.0526i −1.15736 + 0.668202i
\(814\) −2.00000 3.46410i −0.0701000 0.121417i
\(815\) −10.0000 17.3205i −0.350285 0.606711i
\(816\) 0 0
\(817\) 4.00000 6.92820i 0.139942 0.242387i
\(818\) 2.00000 0.0699284
\(819\) 6.00000 10.3923i 0.209657 0.363137i
\(820\) 3.00000 0.104765
\(821\) −25.5000 + 44.1673i −0.889956 + 1.54145i −0.0500305 + 0.998748i \(0.515932\pi\)
−0.839926 + 0.542702i \(0.817401\pi\)
\(822\) −18.0000 10.3923i −0.627822 0.362473i
\(823\) 9.50000 + 16.4545i 0.331149 + 0.573567i 0.982737 0.185006i \(-0.0592303\pi\)
−0.651588 + 0.758573i \(0.725897\pi\)
\(824\) 8.00000 + 13.8564i 0.278693 + 0.482711i
\(825\) 1.50000 + 0.866025i 0.0522233 + 0.0301511i
\(826\) 0 0
\(827\) −39.0000 −1.35616 −0.678081 0.734987i \(-0.737188\pi\)
−0.678081 + 0.734987i \(0.737188\pi\)
\(828\) 4.50000 + 7.79423i 0.156386 + 0.270868i
\(829\) −1.00000 −0.0347314 −0.0173657 0.999849i \(-0.505528\pi\)
−0.0173657 + 0.999849i \(0.505528\pi\)
\(830\) −4.50000 + 7.79423i −0.156197 + 0.270542i
\(831\) 6.92820i 0.240337i
\(832\) 2.00000 + 3.46410i 0.0693375 + 0.120096i
\(833\) 0 0
\(834\) −24.0000 + 13.8564i −0.831052 + 0.479808i
\(835\) 1.50000 2.59808i 0.0519096 0.0899101i
\(836\) −2.00000 −0.0691714
\(837\) −9.00000 + 5.19615i −0.311086 + 0.179605i
\(838\) −12.0000 −0.414533
\(839\) 15.0000 25.9808i 0.517858 0.896956i −0.481927 0.876211i \(-0.660063\pi\)
0.999785 0.0207443i \(-0.00660359\pi\)
\(840\) −1.50000 + 0.866025i −0.0517549 + 0.0298807i
\(841\) −26.0000 45.0333i −0.896552 1.55287i
\(842\) −7.00000 12.1244i −0.241236 0.417833i
\(843\) 46.7654i 1.61068i
\(844\) −4.00000 + 6.92820i −0.137686 + 0.238479i
\(845\) 3.00000 0.103203
\(846\) 27.0000 0.928279
\(847\) −1.00000 −0.0343604
\(848\) 0 0
\(849\) 10.5000 + 6.06218i 0.360359 + 0.208053i
\(850\) 0 0
\(851\) 6.00000 + 10.3923i 0.205677 + 0.356244i
\(852\) 18.0000 + 10.3923i 0.616670 + 0.356034i
\(853\) −1.00000 + 1.73205i −0.0342393 + 0.0593043i −0.882637 0.470055i \(-0.844234\pi\)
0.848398 + 0.529359i \(0.177568\pi\)
\(854\) 1.00000 0.0342193
\(855\) −6.00000 −0.205196
\(856\) 3.00000 0.102538
\(857\) −24.0000 + 41.5692i −0.819824 + 1.41998i 0.0859870 + 0.996296i \(0.472596\pi\)
−0.905811 + 0.423681i \(0.860738\pi\)
\(858\) 6.92820i 0.236525i
\(859\) −22.0000 38.1051i −0.750630 1.30013i −0.947518 0.319704i \(-0.896417\pi\)
0.196887 0.980426i \(-0.436917\pi\)
\(860\) 2.00000 + 3.46410i 0.0681994 + 0.118125i
\(861\) −4.50000 + 2.59808i −0.153360 + 0.0885422i
\(862\) −18.0000 + 31.1769i −0.613082 + 1.06189i
\(863\) −39.0000 −1.32758 −0.663788 0.747921i \(-0.731052\pi\)
−0.663788 + 0.747921i \(0.731052\pi\)
\(864\) −4.50000 + 2.59808i −0.153093 + 0.0883883i
\(865\) −6.00000 −0.204006
\(866\) −1.00000 + 1.73205i −0.0339814 + 0.0588575i
\(867\) −25.5000 + 14.7224i −0.866025 + 0.500000i
\(868\) 1.00000 + 1.73205i 0.0339422 + 0.0587896i
\(869\) 1.00000 + 1.73205i 0.0339227 + 0.0587558i
\(870\) 15.5885i 0.528498i
\(871\) −2.00000 + 3.46410i −0.0677674 + 0.117377i
\(872\) 5.00000 0.169321
\(873\) 12.0000 + 20.7846i 0.406138 + 0.703452i
\(874\) 6.00000 0.202953
\(875\) 0.500000 0.866025i 0.0169031 0.0292770i
\(876\) −12.0000 6.92820i −0.405442 0.234082i
\(877\) 11.0000 + 19.0526i 0.371444 + 0.643359i 0.989788 0.142548i \(-0.0455296\pi\)
−0.618344 + 0.785907i \(0.712196\pi\)
\(878\) 11.0000 + 19.0526i 0.371232 + 0.642993i
\(879\) −18.0000 10.3923i −0.607125 0.350524i
\(880\) 0.500000 0.866025i 0.0168550 0.0291937i
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) −9.00000 + 15.5885i −0.303046 + 0.524891i
\(883\) −7.00000 −0.235569 −0.117784 0.993039i \(-0.537579\pi\)
−0.117784 + 0.993039i \(0.537579\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 13.5000 + 23.3827i 0.453541 + 0.785557i
\(887\) −24.0000 41.5692i −0.805841 1.39576i −0.915722 0.401813i \(-0.868380\pi\)
0.109881 0.993945i \(-0.464953\pi\)
\(888\) −6.00000 + 3.46410i −0.201347 + 0.116248i
\(889\) −3.50000 + 6.06218i −0.117386 + 0.203319i
\(890\) −3.00000 −0.100560
\(891\) −9.00000 −0.301511
\(892\) 5.00000 0.167412
\(893\) 9.00000 15.5885i 0.301174 0.521648i
\(894\) −22.5000 + 12.9904i −0.752513 + 0.434463i
\(895\) 3.00000 + 5.19615i 0.100279 + 0.173688i
\(896\) 0.500000 + 0.866025i 0.0167038 + 0.0289319i
\(897\) 20.7846i 0.693978i
\(898\) −3.00000 + 5.19615i −0.100111 + 0.173398i
\(899\) −18.0000 −0.600334
\(900\) 1.50000 2.59808i 0.0500000 0.0866025i
\(901\) 0 0
\(902\) 1.50000 2.59808i 0.0499445 0.0865065i
\(903\) −6.00000 3.46410i −0.199667 0.115278i
\(904\) 3.00000 + 5.19615i 0.0997785 + 0.172821i
\(905\) 12.5000 + 21.6506i 0.415514 + 0.719691i
\(906\) 15.0000 + 8.66025i 0.498342 + 0.287718i
\(907\) 24.5000 42.4352i 0.813509 1.40904i −0.0968843 0.995296i \(-0.530888\pi\)
0.910393 0.413744i \(-0.135779\pi\)
\(908\) 12.0000 0.398234
\(909\) −9.00000 15.5885i −0.298511 0.517036i
\(910\) 4.00000 0.132599
\(911\) −3.00000 + 5.19615i −0.0993944 + 0.172156i −0.911434 0.411446i \(-0.865024\pi\)
0.812040 + 0.583602i \(0.198357\pi\)
\(912\) 3.46410i 0.114708i
\(913\) 4.50000 + 7.79423i 0.148928 + 0.257951i
\(914\) −13.0000 22.5167i −0.430002 0.744785i
\(915\) −1.50000 + 0.866025i −0.0495885 + 0.0286299i
\(916\) −8.50000 + 14.7224i −0.280848 + 0.486443i
\(917\) 0 0
\(918\) 0 0
\(919\) 44.0000 1.45143 0.725713 0.687998i \(-0.241510\pi\)
0.725713 + 0.687998i \(0.241510\pi\)
\(920\) −1.50000 + 2.59808i −0.0494535 + 0.0856560i
\(921\) 34.5000 19.9186i 1.13681 0.656340i
\(922\) −16.5000 28.5788i −0.543399 0.941194i
\(923\) −24.0000 41.5692i −0.789970 1.36827i
\(924\) 1.73205i 0.0569803i
\(925\) 2.00000 3.46410i 0.0657596 0.113899i
\(926\) 32.0000 1.05159
\(927\) 48.0000 1.57653
\(928\) −9.00000 −0.295439
\(929\) −27.0000 + 46.7654i −0.885841 + 1.53432i −0.0410949 + 0.999155i \(0.513085\pi\)
−0.844746 + 0.535167i \(0.820249\pi\)
\(930\) −3.00000 1.73205i −0.0983739 0.0567962i
\(931\) 6.00000 + 10.3923i 0.196642 + 0.340594i
\(932\) −12.0000 20.7846i −0.393073 0.680823i
\(933\) 45.0000 + 25.9808i 1.47323 + 0.850572i
\(934\) −6.00000 + 10.3923i −0.196326 + 0.340047i
\(935\) 0 0
\(936\) 12.0000 0.392232
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) −0.500000 + 0.866025i −0.0163256 + 0.0282767i
\(939\) 3.46410i 0.113047i
\(940\) 4.50000 + 7.79423i 0.146774 + 0.254220i
\(941\) 7.50000 + 12.9904i 0.244493 + 0.423474i 0.961989 0.273088i \(-0.0880451\pi\)
−0.717496 + 0.696563i \(0.754712\pi\)
\(942\) −33.0000 + 19.0526i −1.07520 + 0.620766i
\(943\) −4.50000 + 7.79423i −0.146540 + 0.253815i
\(944\) 0 0
\(945\) 5.19615i 0.169031i
\(946\) 4.00000 0.130051
\(947\) −7.50000 + 12.9904i −0.243717 + 0.422131i −0.961770 0.273858i \(-0.911700\pi\)
0.718053 + 0.695988i \(0.245034\pi\)
\(948\) 3.00000 1.73205i 0.0974355 0.0562544i
\(949\) 16.0000 + 27.7128i 0.519382 + 0.899596i
\(950\) −1.00000 1.73205i −0.0324443 0.0561951i
\(951\) 51.9615i 1.68497i
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −15.0000 + 25.9808i −0.485135 + 0.840278i
\(957\) −13.5000 7.79423i −0.436393 0.251952i
\(958\) 15.0000 + 25.9808i 0.484628 + 0.839400i
\(959\) 6.00000 + 10.3923i 0.193750 + 0.335585i
\(960\) −1.50000 0.866025i −0.0484123 0.0279508i
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 16.0000 0.515861
\(963\) 4.50000 7.79423i 0.145010 0.251166i
\(964\) 11.0000 0.354286
\(965\) 11.0000 19.0526i 0.354103 0.613324i
\(966\) 5.19615i 0.167183i
\(967\) −11.5000 19.9186i −0.369815 0.640538i 0.619721 0.784822i \(-0.287246\pi\)
−0.989536 + 0.144283i \(0.953912\pi\)
\(968\) −0.500000 0.866025i −0.0160706 0.0278351i
\(969\) 0 0
\(970\) −4.00000 + 6.92820i −0.128432 + 0.222451i
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 15.5885i 0.500000i
\(973\) 16.0000 0.512936
\(974\) 8.00000 13.8564i 0.256337 0.443988i
\(975\) −6.00000 + 3.46410i −0.192154 + 0.110940i
\(976\) 0.500000 + 0.866025i 0.0160046 + 0.0277208i
\(977\) −24.0000 41.5692i −0.767828 1.32992i −0.938738 0.344631i \(-0.888004\pi\)
0.170910 0.985287i \(-0.445329\pi\)
\(978\) 34.6410i 1.10770i
\(979\) −1.50000 + 2.59808i −0.0479402 + 0.0830349i
\(980\) −6.00000 −0.191663
\(981\) 7.50000 12.9904i 0.239457 0.414751i
\(982\) −18.0000 −0.574403
\(983\) 4.50000 7.79423i 0.143528 0.248597i −0.785295 0.619122i \(-0.787489\pi\)
0.928823 + 0.370525i \(0.120822\pi\)
\(984\) −4.50000 2.59808i −0.143455 0.0828236i
\(985\) 9.00000 + 15.5885i 0.286764 + 0.496690i
\(986\) 0 0
\(987\) −13.5000 7.79423i −0.429710 0.248093i
\(988\) 4.00000 6.92820i 0.127257 0.220416i
\(989\) −12.0000 −0.381578
\(990\) −1.50000 2.59808i −0.0476731 0.0825723i
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) −1.00000 + 1.73205i −0.0317500 + 0.0549927i
\(993\) 58.8897i 1.86881i
\(994\) −6.00000 10.3923i −0.190308 0.329624i
\(995\) 2.00000 + 3.46410i 0.0634043 + 0.109819i
\(996\) 13.5000 7.79423i 0.427764 0.246970i
\(997\) 23.0000 39.8372i 0.728417 1.26166i −0.229135 0.973395i \(-0.573590\pi\)
0.957552 0.288261i \(-0.0930771\pi\)
\(998\) −16.0000 −0.506471
\(999\) 20.7846i 0.657596i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.i.a.331.1 2
3.2 odd 2 2970.2.i.b.991.1 2
9.2 odd 6 8910.2.a.c.1.1 1
9.4 even 3 inner 990.2.i.a.661.1 yes 2
9.5 odd 6 2970.2.i.b.1981.1 2
9.7 even 3 8910.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.i.a.331.1 2 1.1 even 1 trivial
990.2.i.a.661.1 yes 2 9.4 even 3 inner
2970.2.i.b.991.1 2 3.2 odd 2
2970.2.i.b.1981.1 2 9.5 odd 6
8910.2.a.c.1.1 1 9.2 odd 6
8910.2.a.m.1.1 1 9.7 even 3