L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−0.5 − 0.866i)11-s + (2 − 3.46i)13-s + (−0.499 + 0.866i)14-s + (−0.5 − 0.866i)16-s + 2·19-s + (0.499 + 0.866i)20-s + (0.499 − 0.866i)22-s + (1.5 − 2.59i)23-s + (−0.499 − 0.866i)25-s + 3.99·26-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + (0.188 + 0.327i)7-s − 0.353·8-s + 0.316·10-s + (−0.150 − 0.261i)11-s + (0.554 − 0.960i)13-s + (−0.133 + 0.231i)14-s + (−0.125 − 0.216i)16-s + 0.458·19-s + (0.111 + 0.193i)20-s + (0.106 − 0.184i)22-s + (0.312 − 0.541i)23-s + (−0.0999 − 0.173i)25-s + 0.784·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.068102026\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.068102026\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (-2 + 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 + 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.5 + 7.79i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 - 8T + 73T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 - 7.79i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + (4 + 6.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.465876148507113971076851805881, −8.059162125610391295452188385592, −7.17964264317765695732297779561, −6.29160513198901125673414852987, −5.55745447033473197856676234209, −5.10458670779575195848069646675, −4.03335984711846781712001303800, −3.20627792663543249622237182019, −2.10276490852306445467047059351, −0.61648331548095152351104704150,
1.24683394166355372618329634764, 2.10527371663743790765946140555, 3.23091869555761032669870408399, 3.91097489900020388208664097765, 4.84741423610054210432916960034, 5.58414514137129143915930860149, 6.51228474815562703284985188201, 7.18506569991856063170080127367, 8.001237766350799376894650545120, 9.149905122007209956844544209935