Properties

Label 297.2.t.a.62.1
Level $297$
Weight $2$
Character 297.62
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 62.1
Character \(\chi\) \(=\) 297.62
Dual form 297.2.t.a.206.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.14162 + 0.953512i) q^{2} +(2.33911 - 2.59784i) q^{4} +(1.18835 - 2.66909i) q^{5} +(0.273495 - 1.28669i) q^{7} +(-1.08356 + 3.33484i) q^{8} +6.84930i q^{10} +(-2.99913 - 1.41605i) q^{11} +(-5.87678 - 0.617674i) q^{13} +(0.641155 + 3.01640i) q^{14} +(-0.128435 - 1.22198i) q^{16} +(-3.07734 + 2.23582i) q^{17} +(-2.83716 - 0.921851i) q^{19} +(-4.15418 - 9.33044i) q^{20} +(7.77324 + 0.172942i) q^{22} +(-0.0733618 + 0.0423554i) q^{23} +(-2.36619 - 2.62792i) q^{25} +(13.1748 - 4.28075i) q^{26} +(-2.70289 - 3.72021i) q^{28} +(4.30718 + 0.915520i) q^{29} +(0.269516 - 2.56428i) q^{31} +(-2.06622 - 3.57881i) q^{32} +(4.45863 - 7.72257i) q^{34} +(-3.10929 - 2.25903i) q^{35} +(-2.11787 - 6.51815i) q^{37} +(6.95514 - 0.731014i) q^{38} +(7.61334 + 6.85508i) q^{40} +(4.42142 - 0.939802i) q^{41} +(-2.93163 - 1.69258i) q^{43} +(-10.6940 + 4.47897i) q^{44} +(0.116727 - 0.160661i) q^{46} +(-3.53111 + 3.17942i) q^{47} +(4.81404 + 2.14335i) q^{49} +(7.57326 + 3.37183i) q^{50} +(-15.3510 + 13.8221i) q^{52} +(2.46224 - 3.38898i) q^{53} +(-7.34360 + 6.32218i) q^{55} +(3.99457 + 2.30627i) q^{56} +(-10.0973 + 2.14625i) q^{58} +(-10.4314 - 9.39248i) q^{59} +(9.76570 - 1.02642i) q^{61} +(1.86787 + 5.74871i) q^{62} +(9.82561 + 7.13872i) q^{64} +(-8.63232 + 14.9516i) q^{65} +(1.89207 + 3.27716i) q^{67} +(-1.38993 + 13.2243i) q^{68} +(8.81295 + 1.87325i) q^{70} +(2.61027 + 3.59273i) q^{71} +(8.30569 - 2.69868i) q^{73} +(10.7508 + 11.9400i) q^{74} +(-9.03125 + 5.21419i) q^{76} +(-2.64228 + 3.47168i) q^{77} +(-2.26254 - 5.08174i) q^{79} +(-3.41421 - 1.10934i) q^{80} +(-8.57291 + 6.22858i) q^{82} +(-0.131905 - 1.25499i) q^{83} +(2.31063 + 10.8706i) q^{85} +(7.89234 + 0.829519i) q^{86} +(7.97204 - 8.46726i) q^{88} -13.6071i q^{89} +(-2.40203 + 7.39268i) q^{91} +(-0.0615683 + 0.289656i) q^{92} +(4.53068 - 10.1761i) q^{94} +(-5.83206 + 6.47716i) q^{95} +(-12.5821 + 5.60189i) q^{97} -12.3536 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.14162 + 0.953512i −1.51436 + 0.674235i −0.984745 0.174005i \(-0.944329\pi\)
−0.529612 + 0.848240i \(0.677662\pi\)
\(3\) 0 0
\(4\) 2.33911 2.59784i 1.16955 1.29892i
\(5\) 1.18835 2.66909i 0.531448 1.19365i −0.425914 0.904764i \(-0.640047\pi\)
0.957363 0.288889i \(-0.0932859\pi\)
\(6\) 0 0
\(7\) 0.273495 1.28669i 0.103372 0.486325i −0.895755 0.444547i \(-0.853365\pi\)
0.999127 0.0417775i \(-0.0133021\pi\)
\(8\) −1.08356 + 3.33484i −0.383095 + 1.17904i
\(9\) 0 0
\(10\) 6.84930i 2.16594i
\(11\) −2.99913 1.41605i −0.904272 0.426956i
\(12\) 0 0
\(13\) −5.87678 0.617674i −1.62992 0.171312i −0.755052 0.655665i \(-0.772388\pi\)
−0.874873 + 0.484353i \(0.839055\pi\)
\(14\) 0.641155 + 3.01640i 0.171356 + 0.806166i
\(15\) 0 0
\(16\) −0.128435 1.22198i −0.0321089 0.305495i
\(17\) −3.07734 + 2.23582i −0.746365 + 0.542266i −0.894698 0.446671i \(-0.852609\pi\)
0.148333 + 0.988938i \(0.452609\pi\)
\(18\) 0 0
\(19\) −2.83716 0.921851i −0.650890 0.211487i −0.0350836 0.999384i \(-0.511170\pi\)
−0.615807 + 0.787897i \(0.711170\pi\)
\(20\) −4.15418 9.33044i −0.928902 2.08635i
\(21\) 0 0
\(22\) 7.77324 + 0.172942i 1.65726 + 0.0368713i
\(23\) −0.0733618 + 0.0423554i −0.0152970 + 0.00883172i −0.507629 0.861576i \(-0.669478\pi\)
0.492332 + 0.870407i \(0.336145\pi\)
\(24\) 0 0
\(25\) −2.36619 2.62792i −0.473239 0.525585i
\(26\) 13.1748 4.28075i 2.58379 0.839525i
\(27\) 0 0
\(28\) −2.70289 3.72021i −0.510799 0.703054i
\(29\) 4.30718 + 0.915520i 0.799824 + 0.170008i 0.589653 0.807657i \(-0.299265\pi\)
0.210171 + 0.977665i \(0.432598\pi\)
\(30\) 0 0
\(31\) 0.269516 2.56428i 0.0484066 0.460558i −0.943291 0.331967i \(-0.892288\pi\)
0.991698 0.128591i \(-0.0410455\pi\)
\(32\) −2.06622 3.57881i −0.365260 0.632649i
\(33\) 0 0
\(34\) 4.45863 7.72257i 0.764649 1.32441i
\(35\) −3.10929 2.25903i −0.525566 0.381846i
\(36\) 0 0
\(37\) −2.11787 6.51815i −0.348176 1.07158i −0.959861 0.280475i \(-0.909508\pi\)
0.611685 0.791102i \(-0.290492\pi\)
\(38\) 6.95514 0.731014i 1.12827 0.118586i
\(39\) 0 0
\(40\) 7.61334 + 6.85508i 1.20377 + 1.08388i
\(41\) 4.42142 0.939802i 0.690510 0.146772i 0.150726 0.988576i \(-0.451839\pi\)
0.539785 + 0.841803i \(0.318506\pi\)
\(42\) 0 0
\(43\) −2.93163 1.69258i −0.447069 0.258116i 0.259522 0.965737i \(-0.416435\pi\)
−0.706592 + 0.707621i \(0.749768\pi\)
\(44\) −10.6940 + 4.47897i −1.61218 + 0.675230i
\(45\) 0 0
\(46\) 0.116727 0.160661i 0.0172104 0.0236881i
\(47\) −3.53111 + 3.17942i −0.515065 + 0.463766i −0.885199 0.465212i \(-0.845978\pi\)
0.370135 + 0.928978i \(0.379312\pi\)
\(48\) 0 0
\(49\) 4.81404 + 2.14335i 0.687719 + 0.306192i
\(50\) 7.57326 + 3.37183i 1.07102 + 0.476849i
\(51\) 0 0
\(52\) −15.3510 + 13.8221i −2.12880 + 1.91678i
\(53\) 2.46224 3.38898i 0.338215 0.465512i −0.605704 0.795690i \(-0.707109\pi\)
0.943919 + 0.330177i \(0.107109\pi\)
\(54\) 0 0
\(55\) −7.34360 + 6.32218i −0.990211 + 0.852482i
\(56\) 3.99457 + 2.30627i 0.533797 + 0.308188i
\(57\) 0 0
\(58\) −10.0973 + 2.14625i −1.32584 + 0.281817i
\(59\) −10.4314 9.39248i −1.35805 1.22280i −0.950923 0.309428i \(-0.899863\pi\)
−0.407131 0.913370i \(-0.633471\pi\)
\(60\) 0 0
\(61\) 9.76570 1.02642i 1.25037 0.131419i 0.543893 0.839155i \(-0.316950\pi\)
0.706478 + 0.707735i \(0.250283\pi\)
\(62\) 1.86787 + 5.74871i 0.237219 + 0.730086i
\(63\) 0 0
\(64\) 9.82561 + 7.13872i 1.22820 + 0.892340i
\(65\) −8.63232 + 14.9516i −1.07071 + 1.85452i
\(66\) 0 0
\(67\) 1.89207 + 3.27716i 0.231153 + 0.400369i 0.958148 0.286274i \(-0.0924168\pi\)
−0.726995 + 0.686643i \(0.759083\pi\)
\(68\) −1.38993 + 13.2243i −0.168553 + 1.60368i
\(69\) 0 0
\(70\) 8.81295 + 1.87325i 1.05335 + 0.223896i
\(71\) 2.61027 + 3.59273i 0.309782 + 0.426379i 0.935313 0.353821i \(-0.115118\pi\)
−0.625531 + 0.780199i \(0.715118\pi\)
\(72\) 0 0
\(73\) 8.30569 2.69868i 0.972108 0.315857i 0.220441 0.975400i \(-0.429250\pi\)
0.751667 + 0.659543i \(0.229250\pi\)
\(74\) 10.7508 + 11.9400i 1.24976 + 1.38800i
\(75\) 0 0
\(76\) −9.03125 + 5.21419i −1.03596 + 0.598109i
\(77\) −2.64228 + 3.47168i −0.301115 + 0.395635i
\(78\) 0 0
\(79\) −2.26254 5.08174i −0.254555 0.571740i 0.740388 0.672180i \(-0.234642\pi\)
−0.994943 + 0.100439i \(0.967975\pi\)
\(80\) −3.41421 1.10934i −0.381720 0.124028i
\(81\) 0 0
\(82\) −8.57291 + 6.22858i −0.946719 + 0.687832i
\(83\) −0.131905 1.25499i −0.0144784 0.137753i 0.984895 0.173154i \(-0.0553958\pi\)
−0.999373 + 0.0354010i \(0.988729\pi\)
\(84\) 0 0
\(85\) 2.31063 + 10.8706i 0.250623 + 1.17909i
\(86\) 7.89234 + 0.829519i 0.851053 + 0.0894493i
\(87\) 0 0
\(88\) 7.97204 8.46726i 0.849822 0.902613i
\(89\) 13.6071i 1.44234i −0.692756 0.721172i \(-0.743604\pi\)
0.692756 0.721172i \(-0.256396\pi\)
\(90\) 0 0
\(91\) −2.40203 + 7.39268i −0.251801 + 0.774964i
\(92\) −0.0615683 + 0.289656i −0.00641894 + 0.0301987i
\(93\) 0 0
\(94\) 4.53068 10.1761i 0.467304 1.04958i
\(95\) −5.83206 + 6.47716i −0.598357 + 0.664542i
\(96\) 0 0
\(97\) −12.5821 + 5.60189i −1.27751 + 0.568786i −0.929541 0.368718i \(-0.879797\pi\)
−0.347973 + 0.937504i \(0.613130\pi\)
\(98\) −12.3536 −1.24790
\(99\) 0 0
\(100\) −12.3617 −1.23617
\(101\) 11.4215 5.08518i 1.13648 0.505994i 0.249765 0.968307i \(-0.419647\pi\)
0.886717 + 0.462312i \(0.152980\pi\)
\(102\) 0 0
\(103\) 4.00544 4.44849i 0.394668 0.438323i −0.512759 0.858532i \(-0.671377\pi\)
0.907427 + 0.420209i \(0.138043\pi\)
\(104\) 8.42766 18.9288i 0.826400 1.85612i
\(105\) 0 0
\(106\) −2.04175 + 9.60570i −0.198313 + 0.932988i
\(107\) −0.951472 + 2.92833i −0.0919823 + 0.283092i −0.986455 0.164029i \(-0.947551\pi\)
0.894473 + 0.447122i \(0.147551\pi\)
\(108\) 0 0
\(109\) 9.98777i 0.956655i −0.878181 0.478328i \(-0.841243\pi\)
0.878181 0.478328i \(-0.158757\pi\)
\(110\) 9.69896 20.5419i 0.924760 1.95860i
\(111\) 0 0
\(112\) −1.60744 0.168949i −0.151889 0.0159642i
\(113\) −0.980147 4.61123i −0.0922045 0.433788i −0.999900 0.0141581i \(-0.995493\pi\)
0.907695 0.419630i \(-0.137840\pi\)
\(114\) 0 0
\(115\) 0.0258706 + 0.246142i 0.00241245 + 0.0229529i
\(116\) 12.4533 9.04787i 1.15626 0.840074i
\(117\) 0 0
\(118\) 31.2960 + 10.1687i 2.88103 + 0.936104i
\(119\) 2.03518 + 4.57109i 0.186565 + 0.419031i
\(120\) 0 0
\(121\) 6.98959 + 8.49386i 0.635417 + 0.772169i
\(122\) −19.9358 + 11.5099i −1.80490 + 1.04206i
\(123\) 0 0
\(124\) −6.03116 6.69828i −0.541614 0.601523i
\(125\) 4.06738 1.32157i 0.363797 0.118205i
\(126\) 0 0
\(127\) −1.75209 2.41154i −0.155473 0.213990i 0.724174 0.689617i \(-0.242221\pi\)
−0.879647 + 0.475627i \(0.842221\pi\)
\(128\) −19.7653 4.20125i −1.74703 0.371342i
\(129\) 0 0
\(130\) 4.23063 40.2518i 0.371051 3.53031i
\(131\) −3.89251 6.74202i −0.340090 0.589053i 0.644359 0.764723i \(-0.277124\pi\)
−0.984449 + 0.175670i \(0.943791\pi\)
\(132\) 0 0
\(133\) −1.96209 + 3.39844i −0.170135 + 0.294682i
\(134\) −7.17692 5.21434i −0.619991 0.450450i
\(135\) 0 0
\(136\) −4.12163 12.6851i −0.353427 1.08774i
\(137\) 6.24749 0.656638i 0.533759 0.0561004i 0.166185 0.986095i \(-0.446855\pi\)
0.367574 + 0.929994i \(0.380188\pi\)
\(138\) 0 0
\(139\) −0.389804 0.350981i −0.0330628 0.0297699i 0.652434 0.757846i \(-0.273748\pi\)
−0.685496 + 0.728076i \(0.740415\pi\)
\(140\) −13.1416 + 2.79333i −1.11067 + 0.236079i
\(141\) 0 0
\(142\) −9.01593 5.20535i −0.756600 0.436823i
\(143\) 16.7506 + 10.1743i 1.40075 + 0.850819i
\(144\) 0 0
\(145\) 7.56206 10.4083i 0.627995 0.864361i
\(146\) −15.2144 + 13.6991i −1.25916 + 1.13375i
\(147\) 0 0
\(148\) −21.8870 9.74474i −1.79910 0.801013i
\(149\) 8.78506 + 3.91136i 0.719700 + 0.320431i 0.733703 0.679471i \(-0.237791\pi\)
−0.0140024 + 0.999902i \(0.504457\pi\)
\(150\) 0 0
\(151\) 7.43581 6.69523i 0.605118 0.544850i −0.308604 0.951191i \(-0.599862\pi\)
0.913722 + 0.406340i \(0.133195\pi\)
\(152\) 6.14845 8.46262i 0.498705 0.686409i
\(153\) 0 0
\(154\) 2.34847 9.95448i 0.189245 0.802155i
\(155\) −6.52400 3.76663i −0.524021 0.302543i
\(156\) 0 0
\(157\) −3.20990 + 0.682286i −0.256178 + 0.0544524i −0.334210 0.942498i \(-0.608470\pi\)
0.0780322 + 0.996951i \(0.475136\pi\)
\(158\) 9.69100 + 8.72582i 0.770975 + 0.694189i
\(159\) 0 0
\(160\) −12.0076 + 1.26205i −0.949281 + 0.0997734i
\(161\) 0.0344344 + 0.105978i 0.00271381 + 0.00835225i
\(162\) 0 0
\(163\) −7.00394 5.08866i −0.548591 0.398575i 0.278675 0.960386i \(-0.410105\pi\)
−0.827266 + 0.561811i \(0.810105\pi\)
\(164\) 7.90072 13.6844i 0.616942 1.06858i
\(165\) 0 0
\(166\) 1.47914 + 2.56194i 0.114803 + 0.198845i
\(167\) −2.07396 + 19.7324i −0.160488 + 1.52694i 0.557084 + 0.830456i \(0.311920\pi\)
−0.717572 + 0.696484i \(0.754747\pi\)
\(168\) 0 0
\(169\) 21.4391 + 4.55701i 1.64916 + 0.350540i
\(170\) −15.3138 21.0776i −1.17451 1.61658i
\(171\) 0 0
\(172\) −11.2544 + 3.65679i −0.858143 + 0.278828i
\(173\) −4.67277 5.18963i −0.355264 0.394561i 0.538849 0.842402i \(-0.318859\pi\)
−0.894113 + 0.447842i \(0.852193\pi\)
\(174\) 0 0
\(175\) −4.02848 + 2.32584i −0.304524 + 0.175817i
\(176\) −1.34520 + 3.84676i −0.101398 + 0.289960i
\(177\) 0 0
\(178\) 12.9745 + 29.1412i 0.972479 + 2.18422i
\(179\) 14.8154 + 4.81380i 1.10735 + 0.359800i 0.804928 0.593373i \(-0.202204\pi\)
0.302424 + 0.953173i \(0.402204\pi\)
\(180\) 0 0
\(181\) −13.0927 + 9.51241i −0.973173 + 0.707052i −0.956173 0.292804i \(-0.905412\pi\)
−0.0170005 + 0.999855i \(0.505412\pi\)
\(182\) −1.90477 18.1227i −0.141191 1.34334i
\(183\) 0 0
\(184\) −0.0617571 0.290544i −0.00455279 0.0214192i
\(185\) −19.9143 2.09308i −1.46413 0.153886i
\(186\) 0 0
\(187\) 12.3954 2.34784i 0.906441 0.171691i
\(188\) 16.6103i 1.21143i
\(189\) 0 0
\(190\) 6.31403 19.4326i 0.458068 1.40979i
\(191\) −3.06051 + 14.3986i −0.221451 + 1.04184i 0.717171 + 0.696897i \(0.245436\pi\)
−0.938622 + 0.344947i \(0.887897\pi\)
\(192\) 0 0
\(193\) 2.78690 6.25948i 0.200606 0.450567i −0.785029 0.619459i \(-0.787352\pi\)
0.985635 + 0.168891i \(0.0540187\pi\)
\(194\) 21.6046 23.9943i 1.55112 1.72269i
\(195\) 0 0
\(196\) 16.8286 7.49258i 1.20204 0.535184i
\(197\) −8.81639 −0.628141 −0.314071 0.949400i \(-0.601693\pi\)
−0.314071 + 0.949400i \(0.601693\pi\)
\(198\) 0 0
\(199\) 8.40540 0.595843 0.297921 0.954590i \(-0.403707\pi\)
0.297921 + 0.954590i \(0.403707\pi\)
\(200\) 11.3276 5.04338i 0.800983 0.356621i
\(201\) 0 0
\(202\) −19.6118 + 21.7811i −1.37988 + 1.53251i
\(203\) 2.35599 5.29164i 0.165358 0.371400i
\(204\) 0 0
\(205\) 2.74580 12.9180i 0.191775 0.902231i
\(206\) −4.33646 + 13.3462i −0.302135 + 0.929877i
\(207\) 0 0
\(208\) 7.26065i 0.503435i
\(209\) 7.20364 + 6.78233i 0.498286 + 0.469143i
\(210\) 0 0
\(211\) −17.3243 1.82086i −1.19265 0.125353i −0.512674 0.858583i \(-0.671345\pi\)
−0.679980 + 0.733230i \(0.738012\pi\)
\(212\) −3.04459 14.3237i −0.209104 0.983755i
\(213\) 0 0
\(214\) −0.754504 7.17862i −0.0515768 0.490721i
\(215\) −8.00146 + 5.81340i −0.545695 + 0.396471i
\(216\) 0 0
\(217\) −3.22573 1.04810i −0.218977 0.0711499i
\(218\) 9.52347 + 21.3901i 0.645011 + 1.44872i
\(219\) 0 0
\(220\) −0.753457 + 33.8658i −0.0507981 + 2.28323i
\(221\) 19.4659 11.2386i 1.30942 0.755992i
\(222\) 0 0
\(223\) 11.4680 + 12.7365i 0.767953 + 0.852899i 0.992586 0.121545i \(-0.0387848\pi\)
−0.224633 + 0.974444i \(0.572118\pi\)
\(224\) −5.16993 + 1.67981i −0.345431 + 0.112237i
\(225\) 0 0
\(226\) 6.49597 + 8.94094i 0.432106 + 0.594742i
\(227\) −16.9143 3.59525i −1.12264 0.238625i −0.391051 0.920369i \(-0.627888\pi\)
−0.731591 + 0.681744i \(0.761222\pi\)
\(228\) 0 0
\(229\) −1.65196 + 15.7173i −0.109164 + 1.03863i 0.793584 + 0.608461i \(0.208213\pi\)
−0.902748 + 0.430169i \(0.858454\pi\)
\(230\) −0.290105 0.502476i −0.0191290 0.0331323i
\(231\) 0 0
\(232\) −7.72018 + 13.3718i −0.506855 + 0.877898i
\(233\) 2.75423 + 2.00107i 0.180436 + 0.131094i 0.674337 0.738424i \(-0.264430\pi\)
−0.493901 + 0.869518i \(0.664430\pi\)
\(234\) 0 0
\(235\) 4.28995 + 13.2031i 0.279846 + 0.861276i
\(236\) −48.8004 + 5.12912i −3.17663 + 0.333878i
\(237\) 0 0
\(238\) −8.71717 7.84898i −0.565051 0.508774i
\(239\) 5.67923 1.20716i 0.367359 0.0780845i −0.0205337 0.999789i \(-0.506537\pi\)
0.387892 + 0.921705i \(0.373203\pi\)
\(240\) 0 0
\(241\) −2.60691 1.50510i −0.167926 0.0969521i 0.413681 0.910422i \(-0.364243\pi\)
−0.581608 + 0.813470i \(0.697576\pi\)
\(242\) −23.0681 11.5260i −1.48287 0.740918i
\(243\) 0 0
\(244\) 20.1765 27.7706i 1.29167 1.77783i
\(245\) 11.4416 10.3020i 0.730975 0.658173i
\(246\) 0 0
\(247\) 16.1040 + 7.16995i 1.02467 + 0.456213i
\(248\) 8.25942 + 3.67733i 0.524474 + 0.233511i
\(249\) 0 0
\(250\) −7.45066 + 6.70860i −0.471221 + 0.424289i
\(251\) −9.41803 + 12.9628i −0.594461 + 0.818205i −0.995187 0.0979925i \(-0.968758\pi\)
0.400726 + 0.916198i \(0.368758\pi\)
\(252\) 0 0
\(253\) 0.279999 0.0231455i 0.0176034 0.00145514i
\(254\) 6.05175 + 3.49398i 0.379721 + 0.219232i
\(255\) 0 0
\(256\) 22.5764 4.79876i 1.41103 0.299923i
\(257\) 9.24660 + 8.32568i 0.576787 + 0.519341i 0.905084 0.425233i \(-0.139808\pi\)
−0.328297 + 0.944575i \(0.606475\pi\)
\(258\) 0 0
\(259\) −8.96609 + 0.942374i −0.557126 + 0.0585563i
\(260\) 18.6500 + 57.3988i 1.15662 + 3.55972i
\(261\) 0 0
\(262\) 14.7649 + 10.7273i 0.912178 + 0.662736i
\(263\) 7.64365 13.2392i 0.471328 0.816363i −0.528134 0.849161i \(-0.677108\pi\)
0.999462 + 0.0327974i \(0.0104416\pi\)
\(264\) 0 0
\(265\) −6.11948 10.5992i −0.375917 0.651107i
\(266\) 0.961605 9.14906i 0.0589598 0.560965i
\(267\) 0 0
\(268\) 12.9393 + 2.75033i 0.790393 + 0.168003i
\(269\) −1.18129 1.62591i −0.0720247 0.0991335i 0.771485 0.636248i \(-0.219514\pi\)
−0.843509 + 0.537114i \(0.819514\pi\)
\(270\) 0 0
\(271\) −20.2438 + 6.57759i −1.22972 + 0.399560i −0.850613 0.525792i \(-0.823769\pi\)
−0.379107 + 0.925353i \(0.623769\pi\)
\(272\) 3.12737 + 3.47330i 0.189625 + 0.210600i
\(273\) 0 0
\(274\) −12.7537 + 7.36333i −0.770477 + 0.444835i
\(275\) 3.37525 + 11.2321i 0.203535 + 0.677324i
\(276\) 0 0
\(277\) 10.0411 + 22.5527i 0.603311 + 1.35506i 0.914451 + 0.404696i \(0.132623\pi\)
−0.311140 + 0.950364i \(0.600711\pi\)
\(278\) 1.16948 + 0.379987i 0.0701407 + 0.0227901i
\(279\) 0 0
\(280\) 10.9026 7.92121i 0.651555 0.473383i
\(281\) −1.36140 12.9528i −0.0812140 0.772700i −0.957017 0.290031i \(-0.906334\pi\)
0.875803 0.482669i \(-0.160332\pi\)
\(282\) 0 0
\(283\) −4.11013 19.3366i −0.244322 1.14944i −0.913658 0.406484i \(-0.866755\pi\)
0.669336 0.742960i \(-0.266579\pi\)
\(284\) 15.4390 + 1.62271i 0.916138 + 0.0962900i
\(285\) 0 0
\(286\) −45.5748 5.81767i −2.69489 0.344006i
\(287\) 5.94605i 0.350984i
\(288\) 0 0
\(289\) −0.782142 + 2.40719i −0.0460084 + 0.141599i
\(290\) −6.27066 + 29.5012i −0.368226 + 1.73237i
\(291\) 0 0
\(292\) 12.4171 27.8894i 0.726659 1.63210i
\(293\) 2.96594 3.29401i 0.173272 0.192438i −0.650254 0.759717i \(-0.725337\pi\)
0.823525 + 0.567279i \(0.192004\pi\)
\(294\) 0 0
\(295\) −37.4656 + 16.6808i −2.18133 + 0.971191i
\(296\) 24.0318 1.39682
\(297\) 0 0
\(298\) −22.5438 −1.30593
\(299\) 0.457293 0.203600i 0.0264459 0.0117745i
\(300\) 0 0
\(301\) −2.97962 + 3.30920i −0.171742 + 0.190739i
\(302\) −9.54072 + 21.4288i −0.549007 + 1.23309i
\(303\) 0 0
\(304\) −0.762092 + 3.58536i −0.0437090 + 0.205635i
\(305\) 8.86552 27.2853i 0.507638 1.56235i
\(306\) 0 0
\(307\) 11.0942i 0.633182i 0.948562 + 0.316591i \(0.102538\pi\)
−0.948562 + 0.316591i \(0.897462\pi\)
\(308\) 2.83832 + 14.9848i 0.161728 + 0.853841i
\(309\) 0 0
\(310\) 17.5635 + 1.84600i 0.997539 + 0.104846i
\(311\) −1.63132 7.67477i −0.0925038 0.435196i −0.999889 0.0148963i \(-0.995258\pi\)
0.907385 0.420300i \(-0.138075\pi\)
\(312\) 0 0
\(313\) −3.38103 32.1683i −0.191107 1.81826i −0.498734 0.866755i \(-0.666202\pi\)
0.307627 0.951507i \(-0.400465\pi\)
\(314\) 6.22384 4.52188i 0.351232 0.255185i
\(315\) 0 0
\(316\) −18.4939 6.00902i −1.04036 0.338034i
\(317\) −4.89317 10.9902i −0.274828 0.617273i 0.722417 0.691458i \(-0.243031\pi\)
−0.997245 + 0.0741845i \(0.976365\pi\)
\(318\) 0 0
\(319\) −11.6214 8.84496i −0.650673 0.495223i
\(320\) 30.7302 17.7421i 1.71787 0.991813i
\(321\) 0 0
\(322\) −0.174797 0.194132i −0.00974106 0.0108185i
\(323\) 10.7920 3.50654i 0.600484 0.195109i
\(324\) 0 0
\(325\) 12.2824 + 16.9053i 0.681305 + 0.937735i
\(326\) 19.8519 + 4.21966i 1.09950 + 0.233705i
\(327\) 0 0
\(328\) −1.65677 + 15.7631i −0.0914796 + 0.870370i
\(329\) 3.12520 + 5.41301i 0.172298 + 0.298429i
\(330\) 0 0
\(331\) 15.0373 26.0453i 0.826524 1.43158i −0.0742249 0.997242i \(-0.523648\pi\)
0.900749 0.434340i \(-0.143018\pi\)
\(332\) −3.56880 2.59289i −0.195863 0.142303i
\(333\) 0 0
\(334\) −14.3735 44.2370i −0.786481 2.42054i
\(335\) 10.9955 1.15567i 0.600748 0.0631411i
\(336\) 0 0
\(337\) 16.3466 + 14.7186i 0.890459 + 0.801772i 0.980977 0.194122i \(-0.0621859\pi\)
−0.0905188 + 0.995895i \(0.528853\pi\)
\(338\) −50.2596 + 10.6830i −2.73376 + 0.581079i
\(339\) 0 0
\(340\) 33.6450 + 19.4250i 1.82466 + 1.05347i
\(341\) −4.43947 + 7.30896i −0.240411 + 0.395802i
\(342\) 0 0
\(343\) 9.48682 13.0575i 0.512240 0.705038i
\(344\) 8.82106 7.94252i 0.475600 0.428232i
\(345\) 0 0
\(346\) 14.9557 + 6.65870i 0.804023 + 0.357974i
\(347\) 13.8520 + 6.16730i 0.743613 + 0.331078i 0.743333 0.668922i \(-0.233244\pi\)
0.000280702 1.00000i \(0.499911\pi\)
\(348\) 0 0
\(349\) 13.9680 12.5769i 0.747692 0.673225i −0.204451 0.978877i \(-0.565541\pi\)
0.952143 + 0.305652i \(0.0988743\pi\)
\(350\) 6.40977 8.82229i 0.342616 0.471571i
\(351\) 0 0
\(352\) 1.12910 + 13.6592i 0.0601815 + 0.728037i
\(353\) −7.65781 4.42124i −0.407584 0.235319i 0.282167 0.959365i \(-0.408947\pi\)
−0.689751 + 0.724046i \(0.742280\pi\)
\(354\) 0 0
\(355\) 12.6912 2.69761i 0.673581 0.143174i
\(356\) −35.3490 31.8283i −1.87349 1.68690i
\(357\) 0 0
\(358\) −36.3189 + 3.81727i −1.91952 + 0.201749i
\(359\) −5.57195 17.1487i −0.294076 0.905074i −0.983530 0.180744i \(-0.942149\pi\)
0.689454 0.724330i \(-0.257851\pi\)
\(360\) 0 0
\(361\) −8.17163 5.93703i −0.430086 0.312476i
\(362\) 18.9695 32.8561i 0.997012 1.72688i
\(363\) 0 0
\(364\) 13.5864 + 23.5324i 0.712122 + 1.23343i
\(365\) 2.66709 25.3756i 0.139602 1.32822i
\(366\) 0 0
\(367\) −30.6339 6.51144i −1.59908 0.339894i −0.679767 0.733428i \(-0.737919\pi\)
−0.919310 + 0.393534i \(0.871253\pi\)
\(368\) 0.0611798 + 0.0842068i 0.00318922 + 0.00438958i
\(369\) 0 0
\(370\) 44.6447 14.5059i 2.32097 0.754128i
\(371\) −3.68717 4.09502i −0.191428 0.212603i
\(372\) 0 0
\(373\) −2.91679 + 1.68401i −0.151026 + 0.0871948i −0.573609 0.819130i \(-0.694457\pi\)
0.422583 + 0.906324i \(0.361124\pi\)
\(374\) −24.3076 + 16.8474i −1.25692 + 0.871156i
\(375\) 0 0
\(376\) −6.77672 15.2208i −0.349483 0.784951i
\(377\) −24.7469 8.04074i −1.27453 0.414119i
\(378\) 0 0
\(379\) −19.5313 + 14.1903i −1.00326 + 0.728908i −0.962784 0.270273i \(-0.912886\pi\)
−0.0404716 + 0.999181i \(0.512886\pi\)
\(380\) 3.18482 + 30.3015i 0.163378 + 1.55444i
\(381\) 0 0
\(382\) −7.17475 33.7546i −0.367092 1.72703i
\(383\) 8.99961 + 0.945897i 0.459859 + 0.0483331i 0.331626 0.943411i \(-0.392403\pi\)
0.128233 + 0.991744i \(0.459070\pi\)
\(384\) 0 0
\(385\) 6.12627 + 11.1781i 0.312224 + 0.569687i
\(386\) 16.0628i 0.817575i
\(387\) 0 0
\(388\) −14.8779 + 45.7896i −0.755313 + 2.32461i
\(389\) 5.42389 25.5174i 0.275002 1.29378i −0.596191 0.802842i \(-0.703320\pi\)
0.871193 0.490940i \(-0.163347\pi\)
\(390\) 0 0
\(391\) 0.131060 0.294366i 0.00662800 0.0148867i
\(392\) −12.3640 + 13.7316i −0.624476 + 0.693551i
\(393\) 0 0
\(394\) 18.8814 8.40653i 0.951230 0.423515i
\(395\) −16.2523 −0.817742
\(396\) 0 0
\(397\) 19.8829 0.997896 0.498948 0.866632i \(-0.333720\pi\)
0.498948 + 0.866632i \(0.333720\pi\)
\(398\) −18.0012 + 8.01465i −0.902319 + 0.401738i
\(399\) 0 0
\(400\) −2.90737 + 3.22896i −0.145369 + 0.161448i
\(401\) −4.04140 + 9.07713i −0.201818 + 0.453290i −0.985893 0.167375i \(-0.946471\pi\)
0.784075 + 0.620666i \(0.213137\pi\)
\(402\) 0 0
\(403\) −3.16778 + 14.9032i −0.157798 + 0.742382i
\(404\) 13.5056 41.5660i 0.671929 2.06799i
\(405\) 0 0
\(406\) 13.5792i 0.673922i
\(407\) −2.87825 + 22.5478i −0.142670 + 1.11765i
\(408\) 0 0
\(409\) −0.00153409 0.000161240i −7.58560e−5 7.97279e-6i 0.104491 0.994526i \(-0.466679\pi\)
−0.104566 + 0.994518i \(0.533345\pi\)
\(410\) 6.43698 + 30.2836i 0.317900 + 1.49560i
\(411\) 0 0
\(412\) −2.18732 20.8110i −0.107762 1.02528i
\(413\) −14.9382 + 10.8532i −0.735061 + 0.534053i
\(414\) 0 0
\(415\) −3.50643 1.13931i −0.172124 0.0559264i
\(416\) 9.93220 + 22.3081i 0.486966 + 1.09374i
\(417\) 0 0
\(418\) −21.8945 7.65643i −1.07090 0.374488i
\(419\) −13.3723 + 7.72050i −0.653279 + 0.377171i −0.789711 0.613478i \(-0.789770\pi\)
0.136432 + 0.990649i \(0.456436\pi\)
\(420\) 0 0
\(421\) 16.4032 + 18.2176i 0.799444 + 0.887872i 0.995696 0.0926811i \(-0.0295437\pi\)
−0.196252 + 0.980553i \(0.562877\pi\)
\(422\) 38.8383 12.6193i 1.89062 0.614300i
\(423\) 0 0
\(424\) 8.63374 + 11.8833i 0.419292 + 0.577105i
\(425\) 13.1572 + 2.79664i 0.638216 + 0.135657i
\(426\) 0 0
\(427\) 1.35019 12.8462i 0.0653403 0.621671i
\(428\) 5.38174 + 9.32145i 0.260136 + 0.450569i
\(429\) 0 0
\(430\) 11.5930 20.0796i 0.559062 0.968324i
\(431\) −9.71012 7.05482i −0.467720 0.339818i 0.328832 0.944388i \(-0.393345\pi\)
−0.796552 + 0.604570i \(0.793345\pi\)
\(432\) 0 0
\(433\) 0.277208 + 0.853159i 0.0133218 + 0.0410002i 0.957496 0.288445i \(-0.0931383\pi\)
−0.944175 + 0.329445i \(0.893138\pi\)
\(434\) 7.90768 0.831131i 0.379581 0.0398955i
\(435\) 0 0
\(436\) −25.9466 23.3625i −1.24262 1.11886i
\(437\) 0.247185 0.0525408i 0.0118245 0.00251337i
\(438\) 0 0
\(439\) −3.76825 2.17560i −0.179849 0.103836i 0.407373 0.913262i \(-0.366445\pi\)
−0.587222 + 0.809426i \(0.699778\pi\)
\(440\) −13.1263 31.3402i −0.625770 1.49408i
\(441\) 0 0
\(442\) −30.9724 + 42.6299i −1.47321 + 2.02770i
\(443\) 28.5708 25.7253i 1.35744 1.22225i 0.406205 0.913782i \(-0.366852\pi\)
0.951236 0.308464i \(-0.0998149\pi\)
\(444\) 0 0
\(445\) −36.3184 16.1700i −1.72166 0.766532i
\(446\) −36.7045 16.3419i −1.73801 0.773812i
\(447\) 0 0
\(448\) 11.8726 10.6901i 0.560928 0.505062i
\(449\) −10.6492 + 14.6573i −0.502566 + 0.691723i −0.982644 0.185503i \(-0.940608\pi\)
0.480078 + 0.877226i \(0.340608\pi\)
\(450\) 0 0
\(451\) −14.5912 3.44237i −0.687075 0.162095i
\(452\) −14.2719 8.23989i −0.671294 0.387572i
\(453\) 0 0
\(454\) 39.6522 8.42834i 1.86097 0.395561i
\(455\) 16.8773 + 15.1964i 0.791218 + 0.712416i
\(456\) 0 0
\(457\) 32.0269 3.36616i 1.49816 0.157462i 0.680320 0.732915i \(-0.261841\pi\)
0.817835 + 0.575453i \(0.195174\pi\)
\(458\) −11.4488 35.2358i −0.534967 1.64646i
\(459\) 0 0
\(460\) 0.699953 + 0.508545i 0.0326355 + 0.0237111i
\(461\) −19.5476 + 33.8574i −0.910420 + 1.57689i −0.0969489 + 0.995289i \(0.530908\pi\)
−0.813471 + 0.581605i \(0.802425\pi\)
\(462\) 0 0
\(463\) 8.51825 + 14.7540i 0.395877 + 0.685679i 0.993213 0.116313i \(-0.0371074\pi\)
−0.597336 + 0.801991i \(0.703774\pi\)
\(464\) 0.565554 5.38088i 0.0262552 0.249801i
\(465\) 0 0
\(466\) −7.80657 1.65934i −0.361633 0.0768674i
\(467\) 13.3070 + 18.3156i 0.615776 + 0.847543i 0.997037 0.0769242i \(-0.0245100\pi\)
−0.381261 + 0.924468i \(0.624510\pi\)
\(468\) 0 0
\(469\) 4.73418 1.53823i 0.218604 0.0710287i
\(470\) −21.7768 24.1856i −1.00449 1.11560i
\(471\) 0 0
\(472\) 42.6255 24.6098i 1.96200 1.13276i
\(473\) 6.39557 + 9.22761i 0.294069 + 0.424286i
\(474\) 0 0
\(475\) 4.29073 + 9.63713i 0.196872 + 0.442182i
\(476\) 16.6355 + 5.40519i 0.762485 + 0.247746i
\(477\) 0 0
\(478\) −11.0117 + 8.00049i −0.503665 + 0.365934i
\(479\) 1.42153 + 13.5250i 0.0649513 + 0.617971i 0.977781 + 0.209630i \(0.0672259\pi\)
−0.912829 + 0.408341i \(0.866107\pi\)
\(480\) 0 0
\(481\) 8.42019 + 39.6139i 0.383927 + 1.80624i
\(482\) 7.01816 + 0.737638i 0.319668 + 0.0335985i
\(483\) 0 0
\(484\) 38.4151 + 1.71019i 1.74614 + 0.0777359i
\(485\) 40.2397i 1.82719i
\(486\) 0 0
\(487\) 2.70549 8.32664i 0.122597 0.377316i −0.870858 0.491534i \(-0.836436\pi\)
0.993456 + 0.114218i \(0.0364362\pi\)
\(488\) −7.15875 + 33.6793i −0.324061 + 1.52459i
\(489\) 0 0
\(490\) −14.6804 + 32.9728i −0.663194 + 1.48956i
\(491\) −22.4667 + 24.9518i −1.01391 + 1.12606i −0.0219175 + 0.999760i \(0.506977\pi\)
−0.991992 + 0.126301i \(0.959690\pi\)
\(492\) 0 0
\(493\) −15.3016 + 6.81272i −0.689150 + 0.306829i
\(494\) −41.3253 −1.85931
\(495\) 0 0
\(496\) −3.16812 −0.142253
\(497\) 5.33664 2.37603i 0.239381 0.106579i
\(498\) 0 0
\(499\) 1.50346 1.66976i 0.0673042 0.0747489i −0.708552 0.705658i \(-0.750651\pi\)
0.775857 + 0.630909i \(0.217318\pi\)
\(500\) 6.08080 13.6577i 0.271942 0.610791i
\(501\) 0 0
\(502\) 7.80969 36.7417i 0.348563 1.63986i
\(503\) 5.15181 15.8556i 0.229708 0.706968i −0.768072 0.640364i \(-0.778784\pi\)
0.997779 0.0666040i \(-0.0212164\pi\)
\(504\) 0 0
\(505\) 36.5280i 1.62547i
\(506\) −0.577584 + 0.316552i −0.0256767 + 0.0140724i
\(507\) 0 0
\(508\) −10.3631 1.08921i −0.459789 0.0483258i
\(509\) 2.17684 + 10.2412i 0.0964869 + 0.453935i 0.999694 + 0.0247305i \(0.00787277\pi\)
−0.903207 + 0.429205i \(0.858794\pi\)
\(510\) 0 0
\(511\) −1.20081 11.4250i −0.0531208 0.505411i
\(512\) −11.0790 + 8.04940i −0.489629 + 0.355737i
\(513\) 0 0
\(514\) −27.7414 9.01372i −1.22362 0.397578i
\(515\) −7.11354 15.9773i −0.313460 0.704043i
\(516\) 0 0
\(517\) 15.0925 4.53528i 0.663767 0.199461i
\(518\) 18.3034 10.5675i 0.804207 0.464309i
\(519\) 0 0
\(520\) −40.5077 44.9883i −1.77638 1.97287i
\(521\) 5.99155 1.94677i 0.262494 0.0852896i −0.174813 0.984602i \(-0.555932\pi\)
0.437308 + 0.899312i \(0.355932\pi\)
\(522\) 0 0
\(523\) −12.7364 17.5301i −0.556923 0.766538i 0.434008 0.900909i \(-0.357099\pi\)
−0.990931 + 0.134370i \(0.957099\pi\)
\(524\) −26.6197 5.65819i −1.16289 0.247179i
\(525\) 0 0
\(526\) −3.74609 + 35.6417i −0.163337 + 1.55405i
\(527\) 4.90387 + 8.49375i 0.213616 + 0.369994i
\(528\) 0 0
\(529\) −11.4964 + 19.9124i −0.499844 + 0.865755i
\(530\) 23.2121 + 16.8646i 1.00827 + 0.732551i
\(531\) 0 0
\(532\) 4.23907 + 13.0465i 0.183787 + 0.565638i
\(533\) −26.5642 + 2.79201i −1.15062 + 0.120935i
\(534\) 0 0
\(535\) 6.68529 + 6.01946i 0.289030 + 0.260244i
\(536\) −12.9790 + 2.75877i −0.560606 + 0.119161i
\(537\) 0 0
\(538\) 4.08021 + 2.35571i 0.175910 + 0.101562i
\(539\) −11.4028 13.2451i −0.491155 0.570507i
\(540\) 0 0
\(541\) 13.1964 18.1633i 0.567357 0.780899i −0.424882 0.905249i \(-0.639684\pi\)
0.992238 + 0.124349i \(0.0396844\pi\)
\(542\) 37.0827 33.3894i 1.59284 1.43420i
\(543\) 0 0
\(544\) 14.3600 + 6.39351i 0.615682 + 0.274119i
\(545\) −26.6583 11.8690i −1.14191 0.508413i
\(546\) 0 0
\(547\) 17.4107 15.6767i 0.744430 0.670287i −0.206935 0.978355i \(-0.566349\pi\)
0.951365 + 0.308067i \(0.0996822\pi\)
\(548\) 12.9077 17.7659i 0.551390 0.758923i
\(549\) 0 0
\(550\) −17.9385 20.8367i −0.764901 0.888480i
\(551\) −11.3762 6.56806i −0.484643 0.279809i
\(552\) 0 0
\(553\) −7.15744 + 1.52136i −0.304365 + 0.0646948i
\(554\) −43.0085 38.7251i −1.82726 1.64527i
\(555\) 0 0
\(556\) −1.82359 + 0.191667i −0.0773373 + 0.00812848i
\(557\) −1.09525 3.37084i −0.0464074 0.142827i 0.925168 0.379558i \(-0.123924\pi\)
−0.971575 + 0.236731i \(0.923924\pi\)
\(558\) 0 0
\(559\) 16.1831 + 11.7577i 0.684471 + 0.497297i
\(560\) −2.36115 + 4.08964i −0.0997770 + 0.172819i
\(561\) 0 0
\(562\) 15.2663 + 26.4419i 0.643968 + 1.11539i
\(563\) 1.92867 18.3501i 0.0812837 0.773363i −0.875628 0.482985i \(-0.839552\pi\)
0.956912 0.290378i \(-0.0937809\pi\)
\(564\) 0 0
\(565\) −13.4725 2.86368i −0.566794 0.120476i
\(566\) 27.2401 + 37.4927i 1.14499 + 1.57594i
\(567\) 0 0
\(568\) −14.8096 + 4.81192i −0.621395 + 0.201904i
\(569\) 9.58925 + 10.6499i 0.402002 + 0.446469i 0.909824 0.414993i \(-0.136216\pi\)
−0.507822 + 0.861462i \(0.669549\pi\)
\(570\) 0 0
\(571\) 34.7935 20.0880i 1.45606 0.840658i 0.457247 0.889340i \(-0.348835\pi\)
0.998814 + 0.0486820i \(0.0155021\pi\)
\(572\) 65.6126 19.7165i 2.74340 0.824389i
\(573\) 0 0
\(574\) 5.66963 + 12.7342i 0.236646 + 0.531515i
\(575\) 0.284895 + 0.0925680i 0.0118809 + 0.00386035i
\(576\) 0 0
\(577\) 24.3026 17.6568i 1.01173 0.735064i 0.0471580 0.998887i \(-0.484984\pi\)
0.964571 + 0.263823i \(0.0849836\pi\)
\(578\) −0.620228 5.90107i −0.0257981 0.245452i
\(579\) 0 0
\(580\) −9.35060 43.9911i −0.388263 1.82663i
\(581\) −1.65086 0.173513i −0.0684893 0.00719852i
\(582\) 0 0
\(583\) −12.1836 + 6.67734i −0.504591 + 0.276547i
\(584\) 30.6223i 1.26716i
\(585\) 0 0
\(586\) −3.21104 + 9.88258i −0.132647 + 0.408246i
\(587\) 2.54166 11.9576i 0.104906 0.493542i −0.894055 0.447957i \(-0.852152\pi\)
0.998960 0.0455844i \(-0.0145150\pi\)
\(588\) 0 0
\(589\) −3.12854 + 7.02682i −0.128909 + 0.289535i
\(590\) 64.3319 71.4478i 2.64850 2.94146i
\(591\) 0 0
\(592\) −7.69305 + 3.42517i −0.316182 + 0.140773i
\(593\) 26.0062 1.06795 0.533973 0.845502i \(-0.320699\pi\)
0.533973 + 0.845502i \(0.320699\pi\)
\(594\) 0 0
\(595\) 14.6191 0.599327
\(596\) 30.7103 13.6731i 1.25794 0.560072i
\(597\) 0 0
\(598\) −0.785214 + 0.872068i −0.0321098 + 0.0356615i
\(599\) 6.73721 15.1320i 0.275275 0.618277i −0.722013 0.691880i \(-0.756783\pi\)
0.997288 + 0.0736024i \(0.0234496\pi\)
\(600\) 0 0
\(601\) −6.92358 + 32.5729i −0.282419 + 1.32868i 0.576723 + 0.816940i \(0.304331\pi\)
−0.859142 + 0.511737i \(0.829002\pi\)
\(602\) 3.22586 9.92816i 0.131476 0.404642i
\(603\) 0 0
\(604\) 34.9779i 1.42323i
\(605\) 30.9770 8.56212i 1.25939 0.348100i
\(606\) 0 0
\(607\) −44.3554 4.66194i −1.80033 0.189222i −0.855724 0.517433i \(-0.826888\pi\)
−0.944605 + 0.328211i \(0.893554\pi\)
\(608\) 2.56309 + 12.0584i 0.103947 + 0.489033i
\(609\) 0 0
\(610\) 7.03023 + 66.8882i 0.284646 + 2.70822i
\(611\) 22.7154 16.5037i 0.918966 0.667668i
\(612\) 0 0
\(613\) −11.7116 3.80532i −0.473026 0.153695i 0.0627963 0.998026i \(-0.479998\pi\)
−0.535822 + 0.844331i \(0.679998\pi\)
\(614\) −10.5785 23.7597i −0.426913 0.958863i
\(615\) 0 0
\(616\) −8.71446 12.5733i −0.351116 0.506594i
\(617\) 13.5088 7.79934i 0.543846 0.313989i −0.202790 0.979222i \(-0.565001\pi\)
0.746636 + 0.665233i \(0.231668\pi\)
\(618\) 0 0
\(619\) −24.7627 27.5018i −0.995297 1.10539i −0.994431 0.105390i \(-0.966391\pi\)
−0.000866293 1.00000i \(-0.500276\pi\)
\(620\) −25.0455 + 8.13776i −1.00585 + 0.326820i
\(621\) 0 0
\(622\) 10.8117 + 14.8810i 0.433508 + 0.596673i
\(623\) −17.5081 3.72147i −0.701448 0.149097i
\(624\) 0 0
\(625\) 3.15428 30.0109i 0.126171 1.20044i
\(626\) 37.9138 + 65.6686i 1.51534 + 2.62465i
\(627\) 0 0
\(628\) −5.73584 + 9.93476i −0.228885 + 0.396440i
\(629\) 21.0908 + 15.3234i 0.840947 + 0.610984i
\(630\) 0 0
\(631\) 13.3328 + 41.0343i 0.530772 + 1.63355i 0.752611 + 0.658465i \(0.228794\pi\)
−0.221840 + 0.975083i \(0.571206\pi\)
\(632\) 19.3984 2.03885i 0.771626 0.0811012i
\(633\) 0 0
\(634\) 20.9587 + 18.8713i 0.832375 + 0.749474i
\(635\) −8.51872 + 1.81071i −0.338055 + 0.0718559i
\(636\) 0 0
\(637\) −26.9671 15.5695i −1.06848 0.616885i
\(638\) 33.3224 + 7.86144i 1.31925 + 0.311238i
\(639\) 0 0
\(640\) −34.7017 + 47.7629i −1.37171 + 1.88799i
\(641\) −36.9064 + 33.2307i −1.45771 + 1.31253i −0.598279 + 0.801288i \(0.704148\pi\)
−0.859436 + 0.511244i \(0.829185\pi\)
\(642\) 0 0
\(643\) 30.3009 + 13.4908i 1.19495 + 0.532027i 0.905164 0.425063i \(-0.139748\pi\)
0.289789 + 0.957091i \(0.406415\pi\)
\(644\) 0.355860 + 0.158439i 0.0140229 + 0.00624338i
\(645\) 0 0
\(646\) −19.7689 + 17.8000i −0.777798 + 0.700332i
\(647\) −25.8770 + 35.6166i −1.01733 + 1.40023i −0.103268 + 0.994654i \(0.532930\pi\)
−0.914060 + 0.405578i \(0.867070\pi\)
\(648\) 0 0
\(649\) 17.9849 + 42.9407i 0.705970 + 1.68557i
\(650\) −42.4236 24.4933i −1.66399 0.960706i
\(651\) 0 0
\(652\) −29.6025 + 6.29221i −1.15932 + 0.246422i
\(653\) 5.08933 + 4.58246i 0.199161 + 0.179325i 0.762677 0.646780i \(-0.223885\pi\)
−0.563516 + 0.826105i \(0.690552\pi\)
\(654\) 0 0
\(655\) −22.6207 + 2.37753i −0.883865 + 0.0928980i
\(656\) −1.71629 5.28219i −0.0670098 0.206235i
\(657\) 0 0
\(658\) −11.8544 8.61271i −0.462132 0.335759i
\(659\) 5.89894 10.2173i 0.229790 0.398008i −0.727956 0.685624i \(-0.759529\pi\)
0.957746 + 0.287616i \(0.0928627\pi\)
\(660\) 0 0
\(661\) −22.4153 38.8245i −0.871855 1.51010i −0.860076 0.510167i \(-0.829584\pi\)
−0.0117796 0.999931i \(-0.503750\pi\)
\(662\) −7.36965 + 70.1176i −0.286430 + 2.72520i
\(663\) 0 0
\(664\) 4.32812 + 0.919970i 0.167963 + 0.0357017i
\(665\) 6.73908 + 9.27555i 0.261330 + 0.359690i
\(666\) 0 0
\(667\) −0.354760 + 0.115268i −0.0137364 + 0.00446321i
\(668\) 46.4104 + 51.5440i 1.79567 + 1.99430i
\(669\) 0 0
\(670\) −22.4462 + 12.9593i −0.867174 + 0.500663i
\(671\) −30.7421 10.7504i −1.18679 0.415014i
\(672\) 0 0
\(673\) −15.4591 34.7218i −0.595906 1.33843i −0.919820 0.392340i \(-0.871666\pi\)
0.323914 0.946086i \(-0.395001\pi\)
\(674\) −49.0427 15.9349i −1.88906 0.613791i
\(675\) 0 0
\(676\) 61.9866 45.0359i 2.38410 1.73215i
\(677\) 2.80398 + 26.6781i 0.107766 + 1.02532i 0.906088 + 0.423090i \(0.139055\pi\)
−0.798322 + 0.602231i \(0.794279\pi\)
\(678\) 0 0
\(679\) 3.76679 + 17.7214i 0.144556 + 0.680083i
\(680\) −38.7556 4.07338i −1.48621 0.156207i
\(681\) 0 0
\(682\) 2.53849 19.8861i 0.0972036 0.761479i
\(683\) 4.41371i 0.168886i −0.996428 0.0844429i \(-0.973089\pi\)
0.996428 0.0844429i \(-0.0269111\pi\)
\(684\) 0 0
\(685\) 5.67161 17.4554i 0.216701 0.666938i
\(686\) −7.86673 + 37.0100i −0.300353 + 1.41305i
\(687\) 0 0
\(688\) −1.69177 + 3.79979i −0.0644983 + 0.144866i
\(689\) −16.5633 + 18.3954i −0.631012 + 0.700810i
\(690\) 0 0
\(691\) 15.1260 6.73452i 0.575420 0.256193i −0.0983290 0.995154i \(-0.531350\pi\)
0.673749 + 0.738961i \(0.264683\pi\)
\(692\) −24.4119 −0.928003
\(693\) 0 0
\(694\) −35.5463 −1.34932
\(695\) −1.40003 + 0.623332i −0.0531060 + 0.0236443i
\(696\) 0 0
\(697\) −11.5050 + 12.7776i −0.435783 + 0.483986i
\(698\) −17.9221 + 40.2537i −0.678361 + 1.52362i
\(699\) 0 0
\(700\) −3.38087 + 15.9057i −0.127785 + 0.601180i
\(701\) −3.17601 + 9.77475i −0.119956 + 0.369187i −0.992948 0.118547i \(-0.962176\pi\)
0.872992 + 0.487734i \(0.162176\pi\)
\(702\) 0 0
\(703\) 20.4454i 0.771114i
\(704\) −19.3595 35.3236i −0.729639 1.33131i
\(705\) 0 0
\(706\) 20.6159 + 2.16681i 0.775888 + 0.0815491i
\(707\) −3.41934 16.0867i −0.128598 0.605004i
\(708\) 0 0
\(709\) 5.03050 + 47.8620i 0.188924 + 1.79749i 0.520288 + 0.853991i \(0.325825\pi\)
−0.331363 + 0.943503i \(0.607509\pi\)
\(710\) −24.6077 + 17.8785i −0.923509 + 0.670969i
\(711\) 0 0
\(712\) 45.3774 + 14.7440i 1.70059 + 0.552555i
\(713\) 0.0888389 + 0.199535i 0.00332704 + 0.00747266i
\(714\) 0 0
\(715\) 47.0618 32.6181i 1.76001 1.21985i
\(716\) 47.1602 27.2279i 1.76246 1.01756i
\(717\) 0 0
\(718\) 28.2845 + 31.4132i 1.05557 + 1.17233i
\(719\) −46.0534 + 14.9636i −1.71750 + 0.558050i −0.991553 0.129700i \(-0.958598\pi\)
−0.725947 + 0.687750i \(0.758598\pi\)
\(720\) 0 0
\(721\) −4.62838 6.37042i −0.172370 0.237247i
\(722\) 23.1616 + 4.92315i 0.861985 + 0.183221i
\(723\) 0 0
\(724\) −5.91351 + 56.2633i −0.219774 + 2.09101i
\(725\) −7.78571 13.4852i −0.289154 0.500829i
\(726\) 0 0
\(727\) −14.4674 + 25.0583i −0.536568 + 0.929363i 0.462518 + 0.886610i \(0.346946\pi\)
−0.999086 + 0.0427527i \(0.986387\pi\)
\(728\) −22.0507 16.0208i −0.817253 0.593769i
\(729\) 0 0
\(730\) 18.4841 + 56.8881i 0.684126 + 2.10552i
\(731\) 12.8059 1.34596i 0.473645 0.0497820i
\(732\) 0 0
\(733\) −12.4546 11.2142i −0.460021 0.414205i 0.406263 0.913756i \(-0.366832\pi\)
−0.866284 + 0.499551i \(0.833498\pi\)
\(734\) 71.8151 15.2648i 2.65074 0.563433i
\(735\) 0 0
\(736\) 0.303164 + 0.175032i 0.0111748 + 0.00645175i
\(737\) −1.03394 12.5079i −0.0380855 0.460735i
\(738\) 0 0
\(739\) 16.0114 22.0378i 0.588990 0.810675i −0.405655 0.914026i \(-0.632957\pi\)
0.994645 + 0.103351i \(0.0329566\pi\)
\(740\) −52.0191 + 46.8382i −1.91226 + 1.72181i
\(741\) 0 0
\(742\) 11.8012 + 5.25423i 0.433235 + 0.192889i
\(743\) 40.4729 + 18.0197i 1.48481 + 0.661078i 0.979423 0.201818i \(-0.0646848\pi\)
0.505382 + 0.862896i \(0.331351\pi\)
\(744\) 0 0
\(745\) 20.8795 18.8000i 0.764967 0.688779i
\(746\) 4.64095 6.38772i 0.169917 0.233871i
\(747\) 0 0
\(748\) 22.8948 37.6931i 0.837118 1.37820i
\(749\) 3.50764 + 2.02514i 0.128166 + 0.0739970i
\(750\) 0 0
\(751\) −27.6504 + 5.87728i −1.00898 + 0.214465i −0.682614 0.730779i \(-0.739157\pi\)
−0.326364 + 0.945244i \(0.605824\pi\)
\(752\) 4.33872 + 3.90660i 0.158217 + 0.142459i
\(753\) 0 0
\(754\) 60.6654 6.37619i 2.20930 0.232207i
\(755\) −9.03379 27.8031i −0.328773 1.01186i
\(756\) 0 0
\(757\) −13.9254 10.1174i −0.506129 0.367724i 0.305224 0.952280i \(-0.401269\pi\)
−0.811353 + 0.584556i \(0.801269\pi\)
\(758\) 28.2980 49.0137i 1.02783 1.78026i
\(759\) 0 0
\(760\) −15.2809 26.4674i −0.554298 0.960072i
\(761\) 5.06226 48.1642i 0.183507 1.74595i −0.384678 0.923051i \(-0.625688\pi\)
0.568185 0.822901i \(-0.307646\pi\)
\(762\) 0 0
\(763\) −12.8512 2.73161i −0.465245 0.0988909i
\(764\) 30.2463 + 41.6305i 1.09427 + 1.50614i
\(765\) 0 0
\(766\) −20.1757 + 6.55549i −0.728978 + 0.236859i
\(767\) 55.5016 + 61.6407i 2.00405 + 2.22572i
\(768\) 0 0
\(769\) −8.98495 + 5.18746i −0.324006 + 0.187065i −0.653177 0.757206i \(-0.726564\pi\)
0.329171 + 0.944270i \(0.393231\pi\)
\(770\) −23.7786 18.0977i −0.856921 0.652197i
\(771\) 0 0
\(772\) −9.74228 21.8815i −0.350632 0.787533i
\(773\) 7.58873 + 2.46573i 0.272947 + 0.0886860i 0.442293 0.896871i \(-0.354165\pi\)
−0.169345 + 0.985557i \(0.554165\pi\)
\(774\) 0 0
\(775\) −7.37646 + 5.35931i −0.264970 + 0.192512i
\(776\) −5.04806 48.0291i −0.181215 1.72415i
\(777\) 0 0
\(778\) 12.7152 + 59.8204i 0.455863 + 2.14466i
\(779\) −13.4107 1.40952i −0.480487 0.0505012i
\(780\) 0 0
\(781\) −2.74105 14.4714i −0.0980826 0.517826i
\(782\) 0.755389i 0.0270126i
\(783\) 0 0
\(784\) 2.00084 6.15795i 0.0714585 0.219927i
\(785\) −1.99342 + 9.37832i −0.0711483 + 0.334727i
\(786\) 0 0
\(787\) 7.20028 16.1721i 0.256662 0.576473i −0.738551 0.674197i \(-0.764490\pi\)
0.995214 + 0.0977243i \(0.0311563\pi\)
\(788\) −20.6225 + 22.9036i −0.734645 + 0.815906i
\(789\) 0 0
\(790\) 34.8063 15.4968i 1.23835 0.551351i
\(791\) −6.20131 −0.220493
\(792\) 0 0
\(793\) −58.0249 −2.06052
\(794\) −42.5818 + 18.9586i −1.51117 + 0.672816i
\(795\) 0 0
\(796\) 19.6611 21.8359i 0.696870 0.773952i
\(797\) 12.7980 28.7448i 0.453329 1.01819i −0.531878 0.846821i \(-0.678513\pi\)
0.985206 0.171372i \(-0.0548199\pi\)
\(798\) 0 0
\(799\) 3.75781 17.6791i 0.132942 0.625441i
\(800\) −4.51574 + 13.8980i −0.159656 + 0.491370i
\(801\) 0 0
\(802\) 23.2933i 0.822516i
\(803\) −28.7314 3.66759i −1.01391 0.129426i
\(804\) 0 0
\(805\) 0.323785 + 0.0340312i 0.0114119 + 0.00119944i
\(806\) −7.42621 34.9376i −0.261577 1.23062i
\(807\) 0 0
\(808\) 4.58244 + 43.5990i 0.161210 + 1.53381i
\(809\) 17.3896 12.6343i 0.611384 0.444197i −0.238517 0.971138i \(-0.576661\pi\)
0.849902 + 0.526942i \(0.176661\pi\)
\(810\) 0 0
\(811\) 31.2311 + 10.1476i 1.09667 + 0.356331i 0.800822 0.598903i \(-0.204396\pi\)
0.295852 + 0.955234i \(0.404396\pi\)
\(812\) −8.23592 18.4982i −0.289024 0.649159i
\(813\) 0 0
\(814\) −15.3355 51.0334i −0.537508 1.78872i
\(815\) −21.9053 + 12.6470i −0.767308 + 0.443005i
\(816\) 0 0
\(817\) 6.75722 + 7.50465i 0.236405 + 0.262554i
\(818\) 0.00343919 0.00111746i 0.000120249 3.90711e-5i
\(819\) 0 0
\(820\) −27.1361 37.3497i −0.947635 1.30431i
\(821\) −54.8274 11.6539i −1.91349 0.406725i −0.913491 0.406859i \(-0.866624\pi\)
−1.00000 0.000133485i \(0.999958\pi\)
\(822\) 0 0
\(823\) −5.58299 + 53.1186i −0.194611 + 1.85160i 0.265971 + 0.963981i \(0.414308\pi\)
−0.460581 + 0.887617i \(0.652359\pi\)
\(824\) 10.4949 + 18.1777i 0.365607 + 0.633250i
\(825\) 0 0
\(826\) 21.6433 37.4873i 0.753067 1.30435i
\(827\) −15.2821 11.1031i −0.531410 0.386092i 0.289475 0.957186i \(-0.406519\pi\)
−0.820885 + 0.571094i \(0.806519\pi\)
\(828\) 0 0
\(829\) −8.51237 26.1984i −0.295647 0.909907i −0.983003 0.183587i \(-0.941229\pi\)
0.687357 0.726320i \(-0.258771\pi\)
\(830\) 8.59579 0.903454i 0.298364 0.0313594i
\(831\) 0 0
\(832\) −53.3335 48.0217i −1.84901 1.66485i
\(833\) −19.6066 + 4.16751i −0.679328 + 0.144396i
\(834\) 0 0
\(835\) 50.2030 + 28.9847i 1.73735 + 1.00306i
\(836\) 34.4695 2.84934i 1.19215 0.0985464i
\(837\) 0 0
\(838\) 21.2768 29.2850i 0.734996 1.01164i
\(839\) 2.67098 2.40496i 0.0922124 0.0830284i −0.621735 0.783227i \(-0.713572\pi\)
0.713948 + 0.700199i \(0.246905\pi\)
\(840\) 0 0
\(841\) −8.77918 3.90874i −0.302730 0.134784i
\(842\) −52.5002 23.3746i −1.80928 0.805542i
\(843\) 0 0
\(844\) −45.2537 + 40.7466i −1.55770 + 1.40256i
\(845\) 37.6403 51.8074i 1.29487 1.78223i
\(846\) 0 0
\(847\) 12.8406 6.67044i 0.441209 0.229199i
\(848\) −4.45751 2.57355i −0.153072 0.0883759i
\(849\) 0 0
\(850\) −30.8443 + 6.55616i −1.05795 + 0.224874i
\(851\) 0.431450 + 0.388479i 0.0147899 + 0.0133169i
\(852\) 0 0
\(853\) −13.6404 + 1.43367i −0.467039 + 0.0490878i −0.335126 0.942173i \(-0.608779\pi\)
−0.131914 + 0.991261i \(0.542112\pi\)
\(854\) 9.35741 + 28.7991i 0.320204 + 0.985486i
\(855\) 0 0
\(856\) −8.73455 6.34602i −0.298541 0.216902i
\(857\) 1.82655 3.16368i 0.0623939 0.108069i −0.833141 0.553060i \(-0.813460\pi\)
0.895535 + 0.444991i \(0.146793\pi\)
\(858\) 0 0
\(859\) −12.4493 21.5628i −0.424764 0.735713i 0.571634 0.820509i \(-0.306310\pi\)
−0.996398 + 0.0847953i \(0.972976\pi\)
\(860\) −3.61397 + 34.3847i −0.123235 + 1.17251i
\(861\) 0 0
\(862\) 27.5223 + 5.85004i 0.937413 + 0.199253i
\(863\) 4.84824 + 6.67303i 0.165036 + 0.227152i 0.883523 0.468388i \(-0.155165\pi\)
−0.718487 + 0.695540i \(0.755165\pi\)
\(864\) 0 0
\(865\) −19.4045 + 6.30490i −0.659773 + 0.214373i
\(866\) −1.40717 1.56282i −0.0478177 0.0531069i
\(867\) 0 0
\(868\) −10.2681 + 5.92831i −0.348523 + 0.201220i
\(869\) −0.410364 + 18.4447i −0.0139206 + 0.625693i
\(870\) 0 0
\(871\) −9.09506 20.4278i −0.308174 0.692171i
\(872\) 33.3076 + 10.8223i 1.12794 + 0.366490i
\(873\) 0 0
\(874\) −0.479279 + 0.348216i −0.0162118 + 0.0117786i
\(875\) −0.588049 5.59492i −0.0198797 0.189143i
\(876\) 0 0
\(877\) −2.06685 9.72376i −0.0697925 0.328348i 0.929375 0.369136i \(-0.120346\pi\)
−0.999168 + 0.0407882i \(0.987013\pi\)
\(878\) 10.1446 + 1.06624i 0.342365 + 0.0359840i
\(879\) 0 0
\(880\) 8.66877 + 8.16176i 0.292224 + 0.275133i
\(881\) 46.2212i 1.55723i −0.627501 0.778616i \(-0.715922\pi\)
0.627501 0.778616i \(-0.284078\pi\)
\(882\) 0 0
\(883\) 9.04674 27.8430i 0.304447 0.936991i −0.675436 0.737419i \(-0.736045\pi\)
0.979883 0.199573i \(-0.0639554\pi\)
\(884\) 16.3366 76.8575i 0.549458 2.58500i
\(885\) 0 0
\(886\) −36.6586 + 82.3366i −1.23157 + 2.76615i
\(887\) 33.5199 37.2277i 1.12549 1.24998i 0.160687 0.987005i \(-0.448629\pi\)
0.964802 0.262977i \(-0.0847044\pi\)
\(888\) 0 0
\(889\) −3.58211 + 1.59486i −0.120140 + 0.0534898i
\(890\) 93.1987 3.12403
\(891\) 0 0
\(892\) 59.9122 2.00601
\(893\) 12.9493 5.76539i 0.433331 0.192932i
\(894\) 0 0
\(895\) 30.4544 33.8230i 1.01798 1.13058i
\(896\) −10.8115 + 24.2829i −0.361185 + 0.811235i
\(897\) 0 0
\(898\) 8.83058 41.5446i 0.294680 1.38636i
\(899\) 3.50850 10.7981i 0.117015 0.360136i
\(900\) 0 0
\(901\) 15.9342i 0.530845i
\(902\) 34.5313 6.54066i 1.14977 0.217780i
\(903\) 0 0
\(904\) 16.4398 + 1.72789i 0.546778 + 0.0574687i
\(905\) 9.83068 + 46.2497i 0.326783 + 1.53739i
\(906\) 0 0
\(907\) −1.45510 13.8443i −0.0483158 0.459694i −0.991755 0.128148i \(-0.959097\pi\)
0.943439 0.331546i \(-0.107570\pi\)
\(908\) −48.9042 + 35.5310i −1.62294 + 1.17914i
\(909\) 0 0
\(910\) −50.6347 16.4522i −1.67852 0.545385i
\(911\) −5.64577 12.6806i −0.187053 0.420127i 0.795540 0.605901i \(-0.207187\pi\)
−0.982592 + 0.185774i \(0.940521\pi\)
\(912\) 0 0
\(913\) −1.38153 + 3.95066i −0.0457220 + 0.130748i
\(914\) −65.3799 + 37.7471i −2.16257 + 1.24856i
\(915\) 0 0
\(916\) 36.9670 + 41.0560i 1.22142 + 1.35653i
\(917\) −9.73950 + 3.16456i −0.321627 + 0.104503i
\(918\) 0 0
\(919\) 11.1835 + 15.3927i 0.368908 + 0.507759i 0.952604 0.304214i \(-0.0983938\pi\)
−0.583695 + 0.811973i \(0.698394\pi\)
\(920\) −0.848878 0.180435i −0.0279867 0.00594875i
\(921\) 0 0
\(922\) 9.58010 91.1486i 0.315504 3.00182i
\(923\) −13.1208 22.7260i −0.431878 0.748034i
\(924\) 0 0
\(925\) −12.1179 + 20.9888i −0.398434 + 0.690108i
\(926\) −32.3111 23.4754i −1.06181 0.771448i
\(927\) 0 0
\(928\) −5.62314 17.3062i −0.184588 0.568105i
\(929\) −16.1053 + 1.69274i −0.528398 + 0.0555369i −0.364972 0.931019i \(-0.618921\pi\)
−0.163427 + 0.986555i \(0.552255\pi\)
\(930\) 0 0
\(931\) −11.6824 10.5189i −0.382874 0.344741i
\(932\) 11.6409 2.47435i 0.381310 0.0810500i
\(933\) 0 0
\(934\) −45.9628 26.5366i −1.50395 0.868305i
\(935\) 8.46353 35.8745i 0.276787 1.17322i
\(936\) 0 0
\(937\) −24.7387 + 34.0498i −0.808177 + 1.11236i 0.183425 + 0.983034i \(0.441281\pi\)
−0.991602 + 0.129326i \(0.958719\pi\)
\(938\) −8.67211 + 7.80840i −0.283154 + 0.254953i
\(939\) 0 0
\(940\) 44.3342 + 19.7389i 1.44602 + 0.643811i
\(941\) −0.386550 0.172103i −0.0126012 0.00561040i 0.400426 0.916329i \(-0.368862\pi\)
−0.413028 + 0.910719i \(0.635529\pi\)
\(942\) 0 0
\(943\) −0.284558 + 0.256217i −0.00926647 + 0.00834357i
\(944\) −10.1377 + 13.9533i −0.329954 + 0.454142i
\(945\) 0 0
\(946\) −22.4955 13.6638i −0.731393 0.444249i
\(947\) 10.8999 + 6.29305i 0.354199 + 0.204497i 0.666533 0.745475i \(-0.267778\pi\)
−0.312334 + 0.949972i \(0.601111\pi\)
\(948\) 0 0
\(949\) −50.4776 + 10.7293i −1.63857 + 0.348289i
\(950\) −18.3783 16.5479i −0.596269 0.536883i
\(951\) 0 0
\(952\) −17.4491 + 1.83397i −0.565528 + 0.0594394i
\(953\) 16.7845 + 51.6574i 0.543703 + 1.67335i 0.724053 + 0.689745i \(0.242277\pi\)
−0.180349 + 0.983603i \(0.557723\pi\)
\(954\) 0 0
\(955\) 34.7941 + 25.2794i 1.12591 + 0.818022i
\(956\) 10.1483 17.5774i 0.328220 0.568494i
\(957\) 0 0
\(958\) −15.9406 27.6099i −0.515017 0.892036i
\(959\) 0.863768 8.21820i 0.0278925 0.265379i
\(960\) 0 0
\(961\) 23.8197 + 5.06303i 0.768377 + 0.163324i
\(962\) −55.8052 76.8092i −1.79923 2.47643i
\(963\) 0 0
\(964\) −10.0079 + 3.25175i −0.322332 + 0.104732i
\(965\) −13.3953 14.8770i −0.431210 0.478907i
\(966\) 0 0
\(967\) −23.2525 + 13.4249i −0.747751 + 0.431714i −0.824881 0.565307i \(-0.808758\pi\)
0.0771296 + 0.997021i \(0.475424\pi\)
\(968\) −35.8993 + 14.1056i −1.15385 + 0.453372i
\(969\) 0 0
\(970\) −38.3690 86.1782i −1.23195 2.76702i
\(971\) 25.9476 + 8.43088i 0.832697 + 0.270560i 0.694181 0.719801i \(-0.255767\pi\)
0.138516 + 0.990360i \(0.455767\pi\)
\(972\) 0 0
\(973\) −0.558215 + 0.405567i −0.0178956 + 0.0130019i
\(974\) 2.14541 + 20.4123i 0.0687435 + 0.654051i
\(975\) 0 0
\(976\) −2.50853 11.8017i −0.0802960 0.377763i
\(977\) −34.2567 3.60052i −1.09597 0.115191i −0.460754 0.887528i \(-0.652421\pi\)
−0.635213 + 0.772337i \(0.719088\pi\)
\(978\) 0 0
\(979\) −19.2683 + 40.8094i −0.615818 + 1.30427i
\(980\) 53.8209i 1.71925i
\(981\) 0 0
\(982\) 24.3234 74.8598i 0.776191 2.38887i
\(983\) 3.41126 16.0487i 0.108802 0.511875i −0.889669 0.456606i \(-0.849065\pi\)
0.998471 0.0552693i \(-0.0176017\pi\)
\(984\) 0 0
\(985\) −10.4770 + 23.5317i −0.333825 + 0.749783i
\(986\) 26.2743 29.1806i 0.836744 0.929298i
\(987\) 0 0
\(988\) 56.2953 25.0643i 1.79099 0.797401i
\(989\) 0.286760 0.00911842
\(990\) 0 0
\(991\) 59.6539 1.89497 0.947484 0.319804i \(-0.103617\pi\)
0.947484 + 0.319804i \(0.103617\pi\)
\(992\) −9.73393 + 4.33383i −0.309053 + 0.137599i
\(993\) 0 0
\(994\) −9.16351 + 10.1771i −0.290649 + 0.322798i
\(995\) 9.98859 22.4347i 0.316660 0.711229i
\(996\) 0 0
\(997\) −8.46698 + 39.8340i −0.268152 + 1.26156i 0.613515 + 0.789683i \(0.289755\pi\)
−0.881667 + 0.471873i \(0.843578\pi\)
\(998\) −1.62771 + 5.00958i −0.0515243 + 0.158575i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.62.1 80
3.2 odd 2 99.2.p.a.29.10 80
9.2 odd 6 891.2.k.a.161.2 80
9.4 even 3 99.2.p.a.95.10 yes 80
9.5 odd 6 inner 297.2.t.a.260.1 80
9.7 even 3 891.2.k.a.161.19 80
11.8 odd 10 inner 297.2.t.a.8.1 80
33.8 even 10 99.2.p.a.74.10 yes 80
99.41 even 30 inner 297.2.t.a.206.1 80
99.52 odd 30 891.2.k.a.404.2 80
99.74 even 30 891.2.k.a.404.19 80
99.85 odd 30 99.2.p.a.41.10 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.10 80 3.2 odd 2
99.2.p.a.41.10 yes 80 99.85 odd 30
99.2.p.a.74.10 yes 80 33.8 even 10
99.2.p.a.95.10 yes 80 9.4 even 3
297.2.t.a.8.1 80 11.8 odd 10 inner
297.2.t.a.62.1 80 1.1 even 1 trivial
297.2.t.a.206.1 80 99.41 even 30 inner
297.2.t.a.260.1 80 9.5 odd 6 inner
891.2.k.a.161.2 80 9.2 odd 6
891.2.k.a.161.19 80 9.7 even 3
891.2.k.a.404.2 80 99.52 odd 30
891.2.k.a.404.19 80 99.74 even 30