Properties

Label 297.2.t.a.260.1
Level $297$
Weight $2$
Character 297.260
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 260.1
Character \(\chi\) \(=\) 297.260
Dual form 297.2.t.a.8.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.245046 + 2.33146i) q^{2} +(-3.41935 - 0.726805i) q^{4} +(2.90568 - 0.305399i) q^{5} +(0.977562 + 0.880201i) q^{7} +(1.08356 - 3.33484i) q^{8} +6.84930i q^{10} +(-2.72590 + 1.88930i) q^{11} +(2.40347 + 5.39828i) q^{13} +(-2.29170 + 2.06345i) q^{14} +(1.12249 + 0.499763i) q^{16} +(3.07734 - 2.23582i) q^{17} +(-2.83716 - 0.921851i) q^{19} +(-10.1575 - 1.06759i) q^{20} +(-3.73685 - 6.81829i) q^{22} +(-0.0733618 - 0.0423554i) q^{23} +(3.45895 - 0.735222i) q^{25} +(-13.1748 + 4.28075i) q^{26} +(-2.70289 - 3.72021i) q^{28} +(2.94645 - 3.27237i) q^{29} +(-2.35549 + 1.04873i) q^{31} +(2.06622 - 3.57881i) q^{32} +(4.45863 + 7.72257i) q^{34} +(3.10929 + 2.25903i) q^{35} +(-2.11787 - 6.51815i) q^{37} +(2.84449 - 6.38883i) q^{38} +(2.13000 - 10.0209i) q^{40} +(3.02460 + 3.35916i) q^{41} +(2.93163 - 1.69258i) q^{43} +(10.6940 - 4.47897i) q^{44} +(0.116727 - 0.160661i) q^{46} +(0.987907 + 4.64774i) q^{47} +(-0.550825 - 5.24075i) q^{49} +(0.866537 + 8.24455i) q^{50} +(-4.29480 - 20.2054i) q^{52} +(-2.46224 + 3.38898i) q^{53} +(-7.34360 + 6.32218i) q^{55} +(3.99457 - 2.30627i) q^{56} +(6.90737 + 7.67141i) q^{58} +(2.91842 - 13.7301i) q^{59} +(-3.99395 + 8.97056i) q^{61} +(-1.86787 - 5.74871i) q^{62} +(9.82561 + 7.13872i) q^{64} +(8.63232 + 14.9516i) q^{65} +(1.89207 - 3.27716i) q^{67} +(-12.1475 + 5.40842i) q^{68} +(-6.02876 + 6.69561i) q^{70} +(-2.61027 - 3.59273i) q^{71} +(8.30569 - 2.69868i) q^{73} +(15.7158 - 3.34049i) q^{74} +(9.03125 + 5.21419i) q^{76} +(-4.32770 - 0.552436i) q^{77} +(5.53218 + 0.581456i) q^{79} +(3.41421 + 1.10934i) q^{80} +(-8.57291 + 6.22858i) q^{82} +(-1.15281 - 0.513262i) q^{83} +(8.25894 - 7.43639i) q^{85} +(3.22779 + 7.24973i) q^{86} +(3.34684 + 11.1376i) q^{88} +13.6071i q^{89} +(-2.40203 + 7.39268i) q^{91} +(0.220065 + 0.198148i) q^{92} +(-11.0781 + 1.16435i) q^{94} +(-8.52541 - 1.81213i) q^{95} +(1.43965 - 13.6973i) q^{97} +12.3536 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.245046 + 2.33146i −0.173274 + 1.64859i 0.469791 + 0.882777i \(0.344329\pi\)
−0.643065 + 0.765812i \(0.722338\pi\)
\(3\) 0 0
\(4\) −3.41935 0.726805i −1.70967 0.363402i
\(5\) 2.90568 0.305399i 1.29946 0.136579i 0.570591 0.821234i \(-0.306714\pi\)
0.728867 + 0.684656i \(0.240047\pi\)
\(6\) 0 0
\(7\) 0.977562 + 0.880201i 0.369484 + 0.332685i 0.832867 0.553473i \(-0.186698\pi\)
−0.463383 + 0.886158i \(0.653365\pi\)
\(8\) 1.08356 3.33484i 0.383095 1.17904i
\(9\) 0 0
\(10\) 6.84930i 2.16594i
\(11\) −2.72590 + 1.88930i −0.821891 + 0.569645i
\(12\) 0 0
\(13\) 2.40347 + 5.39828i 0.666602 + 1.49721i 0.856898 + 0.515485i \(0.172388\pi\)
−0.190297 + 0.981727i \(0.560945\pi\)
\(14\) −2.29170 + 2.06345i −0.612482 + 0.551481i
\(15\) 0 0
\(16\) 1.12249 + 0.499763i 0.280621 + 0.124941i
\(17\) 3.07734 2.23582i 0.746365 0.542266i −0.148333 0.988938i \(-0.547391\pi\)
0.894698 + 0.446671i \(0.147391\pi\)
\(18\) 0 0
\(19\) −2.83716 0.921851i −0.650890 0.211487i −0.0350836 0.999384i \(-0.511170\pi\)
−0.615807 + 0.787897i \(0.711170\pi\)
\(20\) −10.1575 1.06759i −2.27128 0.238721i
\(21\) 0 0
\(22\) −3.73685 6.81829i −0.796698 1.45366i
\(23\) −0.0733618 0.0423554i −0.0152970 0.00883172i 0.492332 0.870407i \(-0.336145\pi\)
−0.507629 + 0.861576i \(0.669478\pi\)
\(24\) 0 0
\(25\) 3.45895 0.735222i 0.691789 0.147044i
\(26\) −13.1748 + 4.28075i −2.58379 + 0.839525i
\(27\) 0 0
\(28\) −2.70289 3.72021i −0.510799 0.703054i
\(29\) 2.94645 3.27237i 0.547143 0.607664i −0.404625 0.914483i \(-0.632598\pi\)
0.951768 + 0.306819i \(0.0992646\pi\)
\(30\) 0 0
\(31\) −2.35549 + 1.04873i −0.423058 + 0.188358i −0.607212 0.794540i \(-0.707712\pi\)
0.184154 + 0.982897i \(0.441045\pi\)
\(32\) 2.06622 3.57881i 0.365260 0.632649i
\(33\) 0 0
\(34\) 4.45863 + 7.72257i 0.764649 + 1.32441i
\(35\) 3.10929 + 2.25903i 0.525566 + 0.381846i
\(36\) 0 0
\(37\) −2.11787 6.51815i −0.348176 1.07158i −0.959861 0.280475i \(-0.909508\pi\)
0.611685 0.791102i \(-0.290492\pi\)
\(38\) 2.84449 6.38883i 0.461437 1.03641i
\(39\) 0 0
\(40\) 2.13000 10.0209i 0.336783 1.58444i
\(41\) 3.02460 + 3.35916i 0.472364 + 0.524613i 0.931494 0.363756i \(-0.118506\pi\)
−0.459131 + 0.888369i \(0.651839\pi\)
\(42\) 0 0
\(43\) 2.93163 1.69258i 0.447069 0.258116i −0.259522 0.965737i \(-0.583565\pi\)
0.706592 + 0.707621i \(0.250232\pi\)
\(44\) 10.6940 4.47897i 1.61218 0.675230i
\(45\) 0 0
\(46\) 0.116727 0.160661i 0.0172104 0.0236881i
\(47\) 0.987907 + 4.64774i 0.144101 + 0.677942i 0.989586 + 0.143943i \(0.0459782\pi\)
−0.845485 + 0.533999i \(0.820688\pi\)
\(48\) 0 0
\(49\) −0.550825 5.24075i −0.0786893 0.748679i
\(50\) 0.866537 + 8.24455i 0.122547 + 1.16596i
\(51\) 0 0
\(52\) −4.29480 20.2054i −0.595581 2.80199i
\(53\) −2.46224 + 3.38898i −0.338215 + 0.465512i −0.943919 0.330177i \(-0.892891\pi\)
0.605704 + 0.795690i \(0.292891\pi\)
\(54\) 0 0
\(55\) −7.34360 + 6.32218i −0.990211 + 0.852482i
\(56\) 3.99457 2.30627i 0.533797 0.308188i
\(57\) 0 0
\(58\) 6.90737 + 7.67141i 0.906982 + 1.00731i
\(59\) 2.91842 13.7301i 0.379947 1.78751i −0.207489 0.978237i \(-0.566529\pi\)
0.587436 0.809271i \(-0.300137\pi\)
\(60\) 0 0
\(61\) −3.99395 + 8.97056i −0.511373 + 1.14856i 0.454783 + 0.890602i \(0.349717\pi\)
−0.966156 + 0.257960i \(0.916950\pi\)
\(62\) −1.86787 5.74871i −0.237219 0.730086i
\(63\) 0 0
\(64\) 9.82561 + 7.13872i 1.22820 + 0.892340i
\(65\) 8.63232 + 14.9516i 1.07071 + 1.85452i
\(66\) 0 0
\(67\) 1.89207 3.27716i 0.231153 0.400369i −0.726995 0.686643i \(-0.759083\pi\)
0.958148 + 0.286274i \(0.0924168\pi\)
\(68\) −12.1475 + 5.40842i −1.47310 + 0.655868i
\(69\) 0 0
\(70\) −6.02876 + 6.69561i −0.720574 + 0.800279i
\(71\) −2.61027 3.59273i −0.309782 0.426379i 0.625531 0.780199i \(-0.284882\pi\)
−0.935313 + 0.353821i \(0.884882\pi\)
\(72\) 0 0
\(73\) 8.30569 2.69868i 0.972108 0.315857i 0.220441 0.975400i \(-0.429250\pi\)
0.751667 + 0.659543i \(0.229250\pi\)
\(74\) 15.7158 3.34049i 1.82692 0.388324i
\(75\) 0 0
\(76\) 9.03125 + 5.21419i 1.03596 + 0.598109i
\(77\) −4.32770 0.552436i −0.493188 0.0629559i
\(78\) 0 0
\(79\) 5.53218 + 0.581456i 0.622419 + 0.0654189i 0.410488 0.911866i \(-0.365358\pi\)
0.211931 + 0.977285i \(0.432025\pi\)
\(80\) 3.41421 + 1.10934i 0.381720 + 0.124028i
\(81\) 0 0
\(82\) −8.57291 + 6.22858i −0.946719 + 0.687832i
\(83\) −1.15281 0.513262i −0.126537 0.0563378i 0.342492 0.939521i \(-0.388729\pi\)
−0.469028 + 0.883183i \(0.655396\pi\)
\(84\) 0 0
\(85\) 8.25894 7.43639i 0.895808 0.806589i
\(86\) 3.22779 + 7.24973i 0.348061 + 0.781758i
\(87\) 0 0
\(88\) 3.34684 + 11.1376i 0.356775 + 1.18727i
\(89\) 13.6071i 1.44234i 0.692756 + 0.721172i \(0.256396\pi\)
−0.692756 + 0.721172i \(0.743604\pi\)
\(90\) 0 0
\(91\) −2.40203 + 7.39268i −0.251801 + 0.774964i
\(92\) 0.220065 + 0.198148i 0.0229434 + 0.0206583i
\(93\) 0 0
\(94\) −11.0781 + 1.16435i −1.14262 + 0.120094i
\(95\) −8.52541 1.81213i −0.874689 0.185921i
\(96\) 0 0
\(97\) 1.43965 13.6973i 0.146174 1.39075i −0.637916 0.770106i \(-0.720203\pi\)
0.784090 0.620647i \(-0.213130\pi\)
\(98\) 12.3536 1.24790
\(99\) 0 0
\(100\) −12.3617 −1.23617
\(101\) 1.30686 12.4339i 0.130037 1.23722i −0.713696 0.700456i \(-0.752980\pi\)
0.843733 0.536763i \(-0.180353\pi\)
\(102\) 0 0
\(103\) −5.85523 1.24457i −0.576933 0.122631i −0.0898018 0.995960i \(-0.528623\pi\)
−0.487131 + 0.873329i \(0.661957\pi\)
\(104\) 20.6067 2.16585i 2.02065 0.212379i
\(105\) 0 0
\(106\) −7.29790 6.57106i −0.708835 0.638238i
\(107\) 0.951472 2.92833i 0.0919823 0.283092i −0.894473 0.447122i \(-0.852449\pi\)
0.986455 + 0.164029i \(0.0524491\pi\)
\(108\) 0 0
\(109\) 9.98777i 0.956655i −0.878181 0.478328i \(-0.841243\pi\)
0.878181 0.478328i \(-0.158757\pi\)
\(110\) −12.9404 18.6705i −1.23382 1.78016i
\(111\) 0 0
\(112\) 0.657408 + 1.47656i 0.0621192 + 0.139522i
\(113\) 3.50337 3.15445i 0.329569 0.296745i −0.487689 0.873018i \(-0.662160\pi\)
0.817258 + 0.576272i \(0.195493\pi\)
\(114\) 0 0
\(115\) −0.226101 0.100667i −0.0210840 0.00938721i
\(116\) −12.4533 + 9.04787i −1.15626 + 0.840074i
\(117\) 0 0
\(118\) 31.2960 + 10.1687i 2.88103 + 0.936104i
\(119\) 4.97627 + 0.523027i 0.456174 + 0.0479458i
\(120\) 0 0
\(121\) 3.86110 10.3001i 0.351009 0.936372i
\(122\) −19.9358 11.5099i −1.80490 1.04206i
\(123\) 0 0
\(124\) 8.81646 1.87400i 0.791741 0.168290i
\(125\) −4.06738 + 1.32157i −0.363797 + 0.118205i
\(126\) 0 0
\(127\) −1.75209 2.41154i −0.155473 0.213990i 0.724174 0.689617i \(-0.242221\pi\)
−0.879647 + 0.475627i \(0.842221\pi\)
\(128\) −13.5211 + 15.0167i −1.19510 + 1.32730i
\(129\) 0 0
\(130\) −36.9744 + 16.4621i −3.24287 + 1.44382i
\(131\) 3.89251 6.74202i 0.340090 0.589053i −0.644359 0.764723i \(-0.722876\pi\)
0.984449 + 0.175670i \(0.0562092\pi\)
\(132\) 0 0
\(133\) −1.96209 3.39844i −0.170135 0.294682i
\(134\) 7.17692 + 5.21434i 0.619991 + 0.450450i
\(135\) 0 0
\(136\) −4.12163 12.6851i −0.353427 1.08774i
\(137\) 2.55508 5.73881i 0.218295 0.490299i −0.770890 0.636968i \(-0.780188\pi\)
0.989186 + 0.146669i \(0.0468551\pi\)
\(138\) 0 0
\(139\) −0.109057 + 0.513071i −0.00925006 + 0.0435181i −0.982531 0.186101i \(-0.940415\pi\)
0.973281 + 0.229619i \(0.0737481\pi\)
\(140\) −8.98988 9.98427i −0.759783 0.843825i
\(141\) 0 0
\(142\) 9.01593 5.20535i 0.756600 0.436823i
\(143\) −16.7506 10.1743i −1.40075 0.850819i
\(144\) 0 0
\(145\) 7.56206 10.4083i 0.627995 0.864361i
\(146\) 4.25659 + 20.0257i 0.352278 + 1.65734i
\(147\) 0 0
\(148\) 2.50433 + 23.8271i 0.205855 + 1.95858i
\(149\) 1.00519 + 9.56377i 0.0823486 + 0.783494i 0.955290 + 0.295670i \(0.0955428\pi\)
−0.872942 + 0.487825i \(0.837791\pi\)
\(150\) 0 0
\(151\) 2.08034 + 9.78722i 0.169295 + 0.796472i 0.978057 + 0.208336i \(0.0668048\pi\)
−0.808762 + 0.588136i \(0.799862\pi\)
\(152\) −6.14845 + 8.46262i −0.498705 + 0.686409i
\(153\) 0 0
\(154\) 2.34847 9.95448i 0.189245 0.802155i
\(155\) −6.52400 + 3.76663i −0.524021 + 0.302543i
\(156\) 0 0
\(157\) 2.19583 + 2.43872i 0.175246 + 0.194631i 0.824369 0.566053i \(-0.191530\pi\)
−0.649122 + 0.760684i \(0.724864\pi\)
\(158\) −2.71128 + 12.7556i −0.215698 + 1.01478i
\(159\) 0 0
\(160\) 4.91082 11.0299i 0.388234 0.871988i
\(161\) −0.0344344 0.105978i −0.00271381 0.00835225i
\(162\) 0 0
\(163\) −7.00394 5.08866i −0.548591 0.398575i 0.278675 0.960386i \(-0.410105\pi\)
−0.827266 + 0.561811i \(0.810105\pi\)
\(164\) −7.90072 13.6844i −0.616942 1.06858i
\(165\) 0 0
\(166\) 1.47914 2.56194i 0.114803 0.198845i
\(167\) −18.1258 + 8.07010i −1.40261 + 0.624483i −0.961959 0.273194i \(-0.911920\pi\)
−0.440654 + 0.897677i \(0.645253\pi\)
\(168\) 0 0
\(169\) −14.6660 + 16.2883i −1.12816 + 1.25294i
\(170\) 15.3138 + 21.0776i 1.17451 + 1.61658i
\(171\) 0 0
\(172\) −11.2544 + 3.65679i −0.858143 + 0.278828i
\(173\) −6.83074 + 1.45192i −0.519331 + 0.110387i −0.460118 0.887858i \(-0.652193\pi\)
−0.0592139 + 0.998245i \(0.518859\pi\)
\(174\) 0 0
\(175\) 4.02848 + 2.32584i 0.304524 + 0.175817i
\(176\) −4.00399 + 0.758405i −0.301812 + 0.0571669i
\(177\) 0 0
\(178\) −31.7243 3.33435i −2.37783 0.249920i
\(179\) −14.8154 4.81380i −1.10735 0.359800i −0.302424 0.953173i \(-0.597796\pi\)
−0.804928 + 0.593373i \(0.797796\pi\)
\(180\) 0 0
\(181\) −13.0927 + 9.51241i −0.973173 + 0.707052i −0.956173 0.292804i \(-0.905412\pi\)
−0.0170005 + 0.999855i \(0.505412\pi\)
\(182\) −16.6471 7.41177i −1.23397 0.549397i
\(183\) 0 0
\(184\) −0.220740 + 0.198755i −0.0162732 + 0.0146524i
\(185\) −8.14449 18.2928i −0.598795 1.34492i
\(186\) 0 0
\(187\) −4.16441 + 11.9087i −0.304532 + 0.870847i
\(188\) 16.6103i 1.21143i
\(189\) 0 0
\(190\) 6.31403 19.4326i 0.458068 1.40979i
\(191\) 10.9393 + 9.84977i 0.791538 + 0.712704i 0.962116 0.272640i \(-0.0878968\pi\)
−0.170578 + 0.985344i \(0.554564\pi\)
\(192\) 0 0
\(193\) −6.81432 + 0.716214i −0.490506 + 0.0515542i −0.346553 0.938030i \(-0.612648\pi\)
−0.143953 + 0.989585i \(0.545981\pi\)
\(194\) 31.5820 + 6.71295i 2.26745 + 0.481962i
\(195\) 0 0
\(196\) −1.92554 + 18.3203i −0.137539 + 1.30859i
\(197\) 8.81639 0.628141 0.314071 0.949400i \(-0.398307\pi\)
0.314071 + 0.949400i \(0.398307\pi\)
\(198\) 0 0
\(199\) 8.40540 0.595843 0.297921 0.954590i \(-0.403707\pi\)
0.297921 + 0.954590i \(0.403707\pi\)
\(200\) 1.29611 12.3317i 0.0916490 0.871982i
\(201\) 0 0
\(202\) 28.6689 + 6.09375i 2.01713 + 0.428755i
\(203\) 5.76068 0.605472i 0.404321 0.0424958i
\(204\) 0 0
\(205\) 9.81440 + 8.83693i 0.685468 + 0.617198i
\(206\) 4.33646 13.3462i 0.302135 0.929877i
\(207\) 0 0
\(208\) 7.26065i 0.503435i
\(209\) 9.47549 2.84738i 0.655433 0.196957i
\(210\) 0 0
\(211\) 7.08524 + 15.9137i 0.487768 + 1.09555i 0.974986 + 0.222265i \(0.0713450\pi\)
−0.487218 + 0.873280i \(0.661988\pi\)
\(212\) 10.8824 9.79854i 0.747405 0.672967i
\(213\) 0 0
\(214\) 6.59412 + 2.93589i 0.450765 + 0.200693i
\(215\) 8.00146 5.81340i 0.545695 0.396471i
\(216\) 0 0
\(217\) −3.22573 1.04810i −0.218977 0.0711499i
\(218\) 23.2861 + 2.44746i 1.57713 + 0.165763i
\(219\) 0 0
\(220\) 29.7053 16.2804i 2.00273 1.09762i
\(221\) 19.4659 + 11.2386i 1.30942 + 0.755992i
\(222\) 0 0
\(223\) −16.7641 + 3.56332i −1.12261 + 0.238618i −0.731577 0.681759i \(-0.761215\pi\)
−0.391032 + 0.920377i \(0.627882\pi\)
\(224\) 5.16993 1.67981i 0.345431 0.112237i
\(225\) 0 0
\(226\) 6.49597 + 8.94094i 0.432106 + 0.594742i
\(227\) −11.5707 + 12.8506i −0.767976 + 0.852924i −0.992588 0.121524i \(-0.961222\pi\)
0.224612 + 0.974448i \(0.427888\pi\)
\(228\) 0 0
\(229\) 14.4376 6.42803i 0.954063 0.424776i 0.130151 0.991494i \(-0.458454\pi\)
0.823912 + 0.566718i \(0.191787\pi\)
\(230\) 0.290105 0.502476i 0.0191290 0.0331323i
\(231\) 0 0
\(232\) −7.72018 13.3718i −0.506855 0.877898i
\(233\) −2.75423 2.00107i −0.180436 0.131094i 0.493901 0.869518i \(-0.335570\pi\)
−0.674337 + 0.738424i \(0.735570\pi\)
\(234\) 0 0
\(235\) 4.28995 + 13.2031i 0.279846 + 0.861276i
\(236\) −19.9582 + 44.8269i −1.29917 + 2.91798i
\(237\) 0 0
\(238\) −2.43883 + 11.4738i −0.158086 + 0.743735i
\(239\) 3.88504 + 4.31478i 0.251302 + 0.279100i 0.855576 0.517677i \(-0.173203\pi\)
−0.604273 + 0.796777i \(0.706537\pi\)
\(240\) 0 0
\(241\) 2.60691 1.50510i 0.167926 0.0969521i −0.413681 0.910422i \(-0.635757\pi\)
0.581608 + 0.813470i \(0.302424\pi\)
\(242\) 23.0681 + 11.5260i 1.48287 + 0.740918i
\(243\) 0 0
\(244\) 20.1765 27.7706i 1.29167 1.77783i
\(245\) −3.20104 15.0597i −0.204507 0.962129i
\(246\) 0 0
\(247\) −1.84263 17.5314i −0.117244 1.11550i
\(248\) 0.945049 + 8.99154i 0.0600106 + 0.570963i
\(249\) 0 0
\(250\) −2.08449 9.80676i −0.131835 0.620234i
\(251\) 9.41803 12.9628i 0.594461 0.818205i −0.400726 0.916198i \(-0.631242\pi\)
0.995187 + 0.0979925i \(0.0312421\pi\)
\(252\) 0 0
\(253\) 0.279999 0.0231455i 0.0176034 0.00145514i
\(254\) 6.05175 3.49398i 0.379721 0.219232i
\(255\) 0 0
\(256\) −15.4441 17.1524i −0.965254 1.07202i
\(257\) −2.58695 + 12.1706i −0.161369 + 0.759183i 0.820805 + 0.571209i \(0.193525\pi\)
−0.982174 + 0.187974i \(0.939808\pi\)
\(258\) 0 0
\(259\) 3.66693 8.23605i 0.227852 0.511763i
\(260\) −18.6500 57.3988i −1.15662 3.55972i
\(261\) 0 0
\(262\) 14.7649 + 10.7273i 0.912178 + 0.662736i
\(263\) −7.64365 13.2392i −0.471328 0.816363i 0.528134 0.849161i \(-0.322892\pi\)
−0.999462 + 0.0327974i \(0.989558\pi\)
\(264\) 0 0
\(265\) −6.11948 + 10.5992i −0.375917 + 0.651107i
\(266\) 8.40412 3.74176i 0.515290 0.229422i
\(267\) 0 0
\(268\) −8.85150 + 9.83059i −0.540692 + 0.600499i
\(269\) 1.18129 + 1.62591i 0.0720247 + 0.0991335i 0.843509 0.537114i \(-0.180486\pi\)
−0.771485 + 0.636248i \(0.780486\pi\)
\(270\) 0 0
\(271\) −20.2438 + 6.57759i −1.22972 + 0.399560i −0.850613 0.525792i \(-0.823769\pi\)
−0.379107 + 0.925353i \(0.623769\pi\)
\(272\) 4.57165 0.971735i 0.277197 0.0589201i
\(273\) 0 0
\(274\) 12.7537 + 7.36333i 0.770477 + 0.444835i
\(275\) −8.03970 + 8.53913i −0.484812 + 0.514929i
\(276\) 0 0
\(277\) −24.5518 2.58049i −1.47517 0.155047i −0.667469 0.744637i \(-0.732623\pi\)
−0.807702 + 0.589590i \(0.799289\pi\)
\(278\) −1.16948 0.379987i −0.0701407 0.0227901i
\(279\) 0 0
\(280\) 10.9026 7.92121i 0.651555 0.473383i
\(281\) −11.8982 5.29740i −0.709785 0.316017i 0.0198983 0.999802i \(-0.493666\pi\)
−0.729683 + 0.683785i \(0.760332\pi\)
\(282\) 0 0
\(283\) −14.6910 + 13.2278i −0.873287 + 0.786311i −0.978090 0.208182i \(-0.933245\pi\)
0.104803 + 0.994493i \(0.466579\pi\)
\(284\) 6.31421 + 14.1820i 0.374680 + 0.841544i
\(285\) 0 0
\(286\) 27.8256 36.5601i 1.64536 2.16184i
\(287\) 5.94605i 0.350984i
\(288\) 0 0
\(289\) −0.782142 + 2.40719i −0.0460084 + 0.141599i
\(290\) 22.4134 + 20.1811i 1.31616 + 1.18508i
\(291\) 0 0
\(292\) −30.3615 + 3.19112i −1.77677 + 0.186746i
\(293\) 4.33566 + 0.921573i 0.253292 + 0.0538389i 0.332808 0.942995i \(-0.392004\pi\)
−0.0795156 + 0.996834i \(0.525337\pi\)
\(294\) 0 0
\(295\) 4.28684 40.7865i 0.249589 2.37468i
\(296\) −24.0318 −1.39682
\(297\) 0 0
\(298\) −22.5438 −1.30593
\(299\) 0.0523237 0.497827i 0.00302596 0.0287901i
\(300\) 0 0
\(301\) 4.35566 + 0.925824i 0.251056 + 0.0533636i
\(302\) −23.3283 + 2.45190i −1.34239 + 0.141091i
\(303\) 0 0
\(304\) −2.72397 2.45267i −0.156230 0.140670i
\(305\) −8.86552 + 27.2853i −0.507638 + 1.56235i
\(306\) 0 0
\(307\) 11.0942i 0.633182i 0.948562 + 0.316591i \(0.102538\pi\)
−0.948562 + 0.316591i \(0.897462\pi\)
\(308\) 14.3964 + 5.03437i 0.820312 + 0.286860i
\(309\) 0 0
\(310\) −7.18307 16.1334i −0.407971 0.916317i
\(311\) 5.83088 5.25015i 0.330639 0.297709i −0.487044 0.873377i \(-0.661925\pi\)
0.817683 + 0.575669i \(0.195258\pi\)
\(312\) 0 0
\(313\) 29.5491 + 13.1561i 1.67021 + 0.743627i 0.999999 + 0.00146091i \(0.000465022\pi\)
0.670216 + 0.742166i \(0.266202\pi\)
\(314\) −6.22384 + 4.52188i −0.351232 + 0.255185i
\(315\) 0 0
\(316\) −18.4939 6.00902i −1.04036 0.338034i
\(317\) −11.9644 1.25751i −0.671988 0.0706288i −0.237612 0.971360i \(-0.576365\pi\)
−0.434377 + 0.900731i \(0.643031\pi\)
\(318\) 0 0
\(319\) −1.84927 + 14.4869i −0.103539 + 0.811110i
\(320\) 30.7302 + 17.7421i 1.71787 + 0.991813i
\(321\) 0 0
\(322\) 0.255522 0.0543128i 0.0142397 0.00302673i
\(323\) −10.7920 + 3.50654i −0.600484 + 0.195109i
\(324\) 0 0
\(325\) 12.2824 + 16.9053i 0.681305 + 0.937735i
\(326\) 13.5803 15.0824i 0.752143 0.835339i
\(327\) 0 0
\(328\) 14.4796 6.44673i 0.799502 0.355961i
\(329\) −3.12520 + 5.41301i −0.172298 + 0.298429i
\(330\) 0 0
\(331\) 15.0373 + 26.0453i 0.826524 + 1.43158i 0.900749 + 0.434340i \(0.143018\pi\)
−0.0742249 + 0.997242i \(0.523648\pi\)
\(332\) 3.56880 + 2.59289i 0.195863 + 0.142303i
\(333\) 0 0
\(334\) −14.3735 44.2370i −0.786481 2.42054i
\(335\) 4.49690 10.1002i 0.245692 0.551833i
\(336\) 0 0
\(337\) 4.57335 21.5159i 0.249126 1.17205i −0.658603 0.752490i \(-0.728853\pi\)
0.907730 0.419556i \(-0.137814\pi\)
\(338\) −34.3815 38.1846i −1.87011 2.07697i
\(339\) 0 0
\(340\) −33.6450 + 19.4250i −1.82466 + 1.05347i
\(341\) 4.43947 7.30896i 0.240411 0.395802i
\(342\) 0 0
\(343\) 9.48682 13.0575i 0.512240 0.705038i
\(344\) −2.46789 11.6105i −0.133060 0.625998i
\(345\) 0 0
\(346\) −1.71124 16.2814i −0.0919968 0.875291i
\(347\) 1.58495 + 15.0798i 0.0850847 + 0.809527i 0.950970 + 0.309284i \(0.100089\pi\)
−0.865885 + 0.500243i \(0.833244\pi\)
\(348\) 0 0
\(349\) 3.90788 + 18.3851i 0.209184 + 0.984133i 0.949958 + 0.312379i \(0.101126\pi\)
−0.740774 + 0.671755i \(0.765541\pi\)
\(350\) −6.40977 + 8.82229i −0.342616 + 0.471571i
\(351\) 0 0
\(352\) 1.12910 + 13.6592i 0.0601815 + 0.728037i
\(353\) −7.65781 + 4.42124i −0.407584 + 0.235319i −0.689751 0.724046i \(-0.742280\pi\)
0.282167 + 0.959365i \(0.408947\pi\)
\(354\) 0 0
\(355\) −8.68182 9.64213i −0.460783 0.511751i
\(356\) 9.88967 46.5273i 0.524152 2.46594i
\(357\) 0 0
\(358\) 14.8536 33.3618i 0.785038 1.76322i
\(359\) 5.57195 + 17.1487i 0.294076 + 0.905074i 0.983530 + 0.180744i \(0.0578507\pi\)
−0.689454 + 0.724330i \(0.742149\pi\)
\(360\) 0 0
\(361\) −8.17163 5.93703i −0.430086 0.312476i
\(362\) −18.9695 32.8561i −0.997012 1.72688i
\(363\) 0 0
\(364\) 13.5864 23.5324i 0.712122 1.23343i
\(365\) 23.3095 10.3780i 1.22007 0.543212i
\(366\) 0 0
\(367\) 20.9560 23.2740i 1.09390 1.21489i 0.118845 0.992913i \(-0.462081\pi\)
0.975051 0.221982i \(-0.0712525\pi\)
\(368\) −0.0611798 0.0842068i −0.00318922 0.00438958i
\(369\) 0 0
\(370\) 44.6447 14.5059i 2.32097 0.754128i
\(371\) −5.38998 + 1.14567i −0.279834 + 0.0594805i
\(372\) 0 0
\(373\) 2.91679 + 1.68401i 0.151026 + 0.0871948i 0.573609 0.819130i \(-0.305543\pi\)
−0.422583 + 0.906324i \(0.638876\pi\)
\(374\) −26.7440 12.6273i −1.38290 0.652942i
\(375\) 0 0
\(376\) 16.5699 + 1.74157i 0.854529 + 0.0898146i
\(377\) 24.7469 + 8.04074i 1.27453 + 0.414119i
\(378\) 0 0
\(379\) −19.5313 + 14.1903i −1.00326 + 0.728908i −0.962784 0.270273i \(-0.912886\pi\)
−0.0404716 + 0.999181i \(0.512886\pi\)
\(380\) 27.8343 + 12.3926i 1.42787 + 0.635728i
\(381\) 0 0
\(382\) −25.6449 + 23.0908i −1.31211 + 1.18143i
\(383\) 3.68064 + 8.26684i 0.188072 + 0.422416i 0.982831 0.184509i \(-0.0590695\pi\)
−0.794759 + 0.606925i \(0.792403\pi\)
\(384\) 0 0
\(385\) −12.7436 0.283524i −0.649475 0.0144497i
\(386\) 16.0628i 0.817575i
\(387\) 0 0
\(388\) −14.8779 + 45.7896i −0.755313 + 2.32461i
\(389\) −19.3868 17.4559i −0.982948 0.885050i 0.0104299 0.999946i \(-0.496680\pi\)
−0.993378 + 0.114896i \(0.963347\pi\)
\(390\) 0 0
\(391\) −0.320459 + 0.0336815i −0.0162063 + 0.00170335i
\(392\) −18.0739 3.84173i −0.912871 0.194037i
\(393\) 0 0
\(394\) −2.16042 + 20.5550i −0.108840 + 1.03555i
\(395\) 16.2523 0.817742
\(396\) 0 0
\(397\) 19.8829 0.997896 0.498948 0.866632i \(-0.333720\pi\)
0.498948 + 0.866632i \(0.333720\pi\)
\(398\) −2.05971 + 19.5968i −0.103244 + 0.982300i
\(399\) 0 0
\(400\) 4.25005 + 0.903376i 0.212503 + 0.0451688i
\(401\) −9.88172 + 1.03861i −0.493470 + 0.0518658i −0.347995 0.937496i \(-0.613137\pi\)
−0.145474 + 0.989362i \(0.546471\pi\)
\(402\) 0 0
\(403\) −11.3227 10.1950i −0.564023 0.507848i
\(404\) −13.5056 + 41.5660i −0.671929 + 2.06799i
\(405\) 0 0
\(406\) 13.5792i 0.673922i
\(407\) 18.0879 + 13.7665i 0.896582 + 0.682382i
\(408\) 0 0
\(409\) 0.000627409 0.00140918i 3.10234e−5 6.96796e-5i 0.913561 0.406702i \(-0.133321\pi\)
−0.913530 + 0.406771i \(0.866655\pi\)
\(410\) −23.0079 + 20.7164i −1.13628 + 1.02311i
\(411\) 0 0
\(412\) 19.1165 + 8.51122i 0.941803 + 0.419318i
\(413\) 14.9382 10.8532i 0.735061 0.534053i
\(414\) 0 0
\(415\) −3.50643 1.13931i −0.172124 0.0559264i
\(416\) 24.2855 + 2.55251i 1.19069 + 0.125147i
\(417\) 0 0
\(418\) 4.31660 + 22.7894i 0.211132 + 1.11467i
\(419\) −13.3723 7.72050i −0.653279 0.377171i 0.136432 0.990649i \(-0.456436\pi\)
−0.789711 + 0.613478i \(0.789770\pi\)
\(420\) 0 0
\(421\) −23.9785 + 5.09679i −1.16864 + 0.248403i −0.751058 0.660236i \(-0.770456\pi\)
−0.417584 + 0.908638i \(0.637123\pi\)
\(422\) −38.8383 + 12.6193i −1.89062 + 0.614300i
\(423\) 0 0
\(424\) 8.63374 + 11.8833i 0.419292 + 0.577105i
\(425\) 9.00054 9.99611i 0.436590 0.484883i
\(426\) 0 0
\(427\) −11.8002 + 5.25380i −0.571053 + 0.254249i
\(428\) −5.38174 + 9.32145i −0.260136 + 0.450569i
\(429\) 0 0
\(430\) 11.5930 + 20.0796i 0.559062 + 0.968324i
\(431\) 9.71012 + 7.05482i 0.467720 + 0.339818i 0.796552 0.604570i \(-0.206655\pi\)
−0.328832 + 0.944388i \(0.606655\pi\)
\(432\) 0 0
\(433\) 0.277208 + 0.853159i 0.0133218 + 0.0410002i 0.957496 0.288445i \(-0.0931383\pi\)
−0.944175 + 0.329445i \(0.893138\pi\)
\(434\) 3.23406 7.26382i 0.155240 0.348674i
\(435\) 0 0
\(436\) −7.25916 + 34.1517i −0.347651 + 1.63557i
\(437\) 0.169094 + 0.187798i 0.00808887 + 0.00898360i
\(438\) 0 0
\(439\) 3.76825 2.17560i 0.179849 0.103836i −0.407373 0.913262i \(-0.633555\pi\)
0.587222 + 0.809426i \(0.300222\pi\)
\(440\) 13.1263 + 31.3402i 0.625770 + 1.49408i
\(441\) 0 0
\(442\) −30.9724 + 42.6299i −1.47321 + 2.02770i
\(443\) −7.99334 37.6057i −0.379775 1.78670i −0.588256 0.808675i \(-0.700185\pi\)
0.208480 0.978027i \(-0.433148\pi\)
\(444\) 0 0
\(445\) 4.15558 + 39.5377i 0.196993 + 1.87427i
\(446\) −4.19976 39.9580i −0.198864 1.89207i
\(447\) 0 0
\(448\) 3.32163 + 15.6271i 0.156932 + 0.738309i
\(449\) 10.6492 14.6573i 0.502566 0.691723i −0.480078 0.877226i \(-0.659392\pi\)
0.982644 + 0.185503i \(0.0593916\pi\)
\(450\) 0 0
\(451\) −14.5912 3.44237i −0.687075 0.162095i
\(452\) −14.2719 + 8.23989i −0.671294 + 0.387572i
\(453\) 0 0
\(454\) −27.1253 30.1256i −1.27305 1.41387i
\(455\) −4.72180 + 22.2143i −0.221361 + 1.04142i
\(456\) 0 0
\(457\) −13.0983 + 29.4192i −0.612711 + 1.37617i 0.294563 + 0.955632i \(0.404826\pi\)
−0.907274 + 0.420540i \(0.861841\pi\)
\(458\) 11.4488 + 35.2358i 0.534967 + 1.64646i
\(459\) 0 0
\(460\) 0.699953 + 0.508545i 0.0326355 + 0.0237111i
\(461\) 19.5476 + 33.8574i 0.910420 + 1.57689i 0.813471 + 0.581605i \(0.197575\pi\)
0.0969489 + 0.995289i \(0.469092\pi\)
\(462\) 0 0
\(463\) 8.51825 14.7540i 0.395877 0.685679i −0.597336 0.801991i \(-0.703774\pi\)
0.993213 + 0.116313i \(0.0371074\pi\)
\(464\) 4.94276 2.20066i 0.229462 0.102163i
\(465\) 0 0
\(466\) 5.34032 5.93102i 0.247385 0.274749i
\(467\) −13.3070 18.3156i −0.615776 0.847543i 0.381261 0.924468i \(-0.375490\pi\)
−0.997037 + 0.0769242i \(0.975490\pi\)
\(468\) 0 0
\(469\) 4.73418 1.53823i 0.218604 0.0710287i
\(470\) −31.8337 + 6.76647i −1.46838 + 0.312114i
\(471\) 0 0
\(472\) −42.6255 24.6098i −1.96200 1.13276i
\(473\) −4.79356 + 10.1525i −0.220408 + 0.466814i
\(474\) 0 0
\(475\) −10.4914 1.10269i −0.481377 0.0505947i
\(476\) −16.6355 5.40519i −0.762485 0.247746i
\(477\) 0 0
\(478\) −11.0117 + 8.00049i −0.503665 + 0.365934i
\(479\) 12.4237 + 5.53139i 0.567654 + 0.252736i 0.670435 0.741968i \(-0.266107\pi\)
−0.102781 + 0.994704i \(0.532774\pi\)
\(480\) 0 0
\(481\) 30.0965 27.0990i 1.37228 1.23561i
\(482\) 2.87027 + 6.44673i 0.130737 + 0.293640i
\(483\) 0 0
\(484\) −20.6886 + 32.4133i −0.940391 + 1.47333i
\(485\) 40.2397i 1.82719i
\(486\) 0 0
\(487\) 2.70549 8.32664i 0.122597 0.377316i −0.870858 0.491534i \(-0.836436\pi\)
0.993456 + 0.114218i \(0.0364362\pi\)
\(488\) 25.5877 + 23.0393i 1.15830 + 1.04294i
\(489\) 0 0
\(490\) 35.8954 3.77276i 1.62159 0.170436i
\(491\) −32.8423 6.98084i −1.48215 0.315041i −0.605376 0.795940i \(-0.706977\pi\)
−0.876776 + 0.480899i \(0.840310\pi\)
\(492\) 0 0
\(493\) 1.75082 16.6579i 0.0788530 0.750236i
\(494\) 41.3253 1.85931
\(495\) 0 0
\(496\) −3.16812 −0.142253
\(497\) 0.610622 5.80968i 0.0273901 0.260600i
\(498\) 0 0
\(499\) −2.19779 0.467155i −0.0983866 0.0209127i 0.158455 0.987366i \(-0.449349\pi\)
−0.256842 + 0.966453i \(0.582682\pi\)
\(500\) 14.8683 1.56272i 0.664931 0.0698871i
\(501\) 0 0
\(502\) 27.9144 + 25.1342i 1.24588 + 1.12180i
\(503\) −5.15181 + 15.8556i −0.229708 + 0.706968i 0.768072 + 0.640364i \(0.221216\pi\)
−0.997779 + 0.0666040i \(0.978784\pi\)
\(504\) 0 0
\(505\) 36.5280i 1.62547i
\(506\) −0.0146500 + 0.658478i −0.000651274 + 0.0292729i
\(507\) 0 0
\(508\) 4.23828 + 9.51933i 0.188043 + 0.422352i
\(509\) −7.78076 + 7.00582i −0.344876 + 0.310528i −0.823306 0.567598i \(-0.807873\pi\)
0.478430 + 0.878126i \(0.341206\pi\)
\(510\) 0 0
\(511\) 10.4947 + 4.67255i 0.464259 + 0.206701i
\(512\) 11.0790 8.04940i 0.489629 0.355737i
\(513\) 0 0
\(514\) −27.7414 9.01372i −1.22362 0.397578i
\(515\) −17.3935 1.82813i −0.766449 0.0805570i
\(516\) 0 0
\(517\) −11.4739 10.8028i −0.504622 0.475108i
\(518\) 18.3034 + 10.5675i 0.804207 + 0.464309i
\(519\) 0 0
\(520\) 59.2149 12.5865i 2.59674 0.551955i
\(521\) −5.99155 + 1.94677i −0.262494 + 0.0852896i −0.437308 0.899312i \(-0.644068\pi\)
0.174813 + 0.984602i \(0.444068\pi\)
\(522\) 0 0
\(523\) −12.7364 17.5301i −0.556923 0.766538i 0.434008 0.900909i \(-0.357099\pi\)
−0.990931 + 0.134370i \(0.957099\pi\)
\(524\) −18.2100 + 20.2242i −0.795506 + 0.883499i
\(525\) 0 0
\(526\) 32.7396 14.5766i 1.42752 0.635571i
\(527\) −4.90387 + 8.49375i −0.213616 + 0.369994i
\(528\) 0 0
\(529\) −11.4964 19.9124i −0.499844 0.865755i
\(530\) −23.2121 16.8646i −1.00827 0.732551i
\(531\) 0 0
\(532\) 4.23907 + 13.0465i 0.183787 + 0.565638i
\(533\) −10.8641 + 24.4013i −0.470579 + 1.05694i
\(534\) 0 0
\(535\) 1.87036 8.79936i 0.0808628 0.380429i
\(536\) −8.87865 9.86074i −0.383499 0.425919i
\(537\) 0 0
\(538\) −4.08021 + 2.35571i −0.175910 + 0.101562i
\(539\) 11.4028 + 13.2451i 0.491155 + 0.570507i
\(540\) 0 0
\(541\) 13.1964 18.1633i 0.567357 0.780899i −0.424882 0.905249i \(-0.639684\pi\)
0.992238 + 0.124349i \(0.0396844\pi\)
\(542\) −10.3747 48.8093i −0.445633 2.09654i
\(543\) 0 0
\(544\) −1.64309 15.6329i −0.0704467 0.670256i
\(545\) −3.05025 29.0212i −0.130659 1.24313i
\(546\) 0 0
\(547\) 4.87105 + 22.9165i 0.208271 + 0.979839i 0.950748 + 0.309966i \(0.100318\pi\)
−0.742476 + 0.669872i \(0.766349\pi\)
\(548\) −12.9077 + 17.7659i −0.551390 + 0.758923i
\(549\) 0 0
\(550\) −17.9385 20.8367i −0.764901 0.888480i
\(551\) −11.3762 + 6.56806i −0.484643 + 0.279809i
\(552\) 0 0
\(553\) 4.89626 + 5.43784i 0.208210 + 0.231241i
\(554\) 12.0326 56.6090i 0.511217 2.40509i
\(555\) 0 0
\(556\) 0.745805 1.67511i 0.0316292 0.0710403i
\(557\) 1.09525 + 3.37084i 0.0464074 + 0.142827i 0.971575 0.236731i \(-0.0760760\pi\)
−0.925168 + 0.379558i \(0.876076\pi\)
\(558\) 0 0
\(559\) 16.1831 + 11.7577i 0.684471 + 0.497297i
\(560\) 2.36115 + 4.08964i 0.0997770 + 0.172819i
\(561\) 0 0
\(562\) 15.2663 26.4419i 0.643968 1.11539i
\(563\) 16.8560 7.50476i 0.710394 0.316288i −0.0195365 0.999809i \(-0.506219\pi\)
0.729931 + 0.683521i \(0.239552\pi\)
\(564\) 0 0
\(565\) 9.21629 10.2357i 0.387732 0.430620i
\(566\) −27.2401 37.4927i −1.14499 1.57594i
\(567\) 0 0
\(568\) −14.8096 + 4.81192i −0.621395 + 0.201904i
\(569\) 14.0177 2.97956i 0.587654 0.124910i 0.0955176 0.995428i \(-0.469549\pi\)
0.492137 + 0.870518i \(0.336216\pi\)
\(570\) 0 0
\(571\) −34.7935 20.0880i −1.45606 0.840658i −0.457247 0.889340i \(-0.651165\pi\)
−0.998814 + 0.0486820i \(0.984498\pi\)
\(572\) 49.8813 + 46.9639i 2.08564 + 1.96366i
\(573\) 0 0
\(574\) −13.8630 1.45706i −0.578629 0.0608163i
\(575\) −0.284895 0.0925680i −0.0118809 0.00386035i
\(576\) 0 0
\(577\) 24.3026 17.6568i 1.01173 0.735064i 0.0471580 0.998887i \(-0.484984\pi\)
0.964571 + 0.263823i \(0.0849836\pi\)
\(578\) −5.42059 2.41340i −0.225467 0.100384i
\(579\) 0 0
\(580\) −33.4221 + 30.0934i −1.38778 + 1.24956i
\(581\) −0.675165 1.51645i −0.0280106 0.0629128i
\(582\) 0 0
\(583\) 0.309028 13.8899i 0.0127986 0.575263i
\(584\) 30.6223i 1.26716i
\(585\) 0 0
\(586\) −3.21104 + 9.88258i −0.132647 + 0.408246i
\(587\) −9.08473 8.17993i −0.374967 0.337622i 0.460003 0.887917i \(-0.347848\pi\)
−0.834970 + 0.550296i \(0.814515\pi\)
\(588\) 0 0
\(589\) 7.64968 0.804014i 0.315200 0.0331288i
\(590\) 94.0416 + 19.9892i 3.87163 + 0.822940i
\(591\) 0 0
\(592\) 0.880244 8.37496i 0.0361778 0.344209i
\(593\) −26.0062 −1.06795 −0.533973 0.845502i \(-0.679301\pi\)
−0.533973 + 0.845502i \(0.679301\pi\)
\(594\) 0 0
\(595\) 14.6191 0.599327
\(596\) 3.51389 33.4324i 0.143935 1.36945i
\(597\) 0 0
\(598\) 1.14784 + 0.243981i 0.0469387 + 0.00997713i
\(599\) 16.4733 1.73141i 0.673081 0.0707437i 0.238179 0.971221i \(-0.423450\pi\)
0.434902 + 0.900478i \(0.356783\pi\)
\(600\) 0 0
\(601\) −24.7472 22.2825i −1.00946 0.908920i −0.0136061 0.999907i \(-0.504331\pi\)
−0.995852 + 0.0909872i \(0.970998\pi\)
\(602\) −3.22586 + 9.92816i −0.131476 + 0.404642i
\(603\) 0 0
\(604\) 34.9779i 1.42323i
\(605\) 8.07347 31.1079i 0.328233 1.26472i
\(606\) 0 0
\(607\) 18.1403 + 40.7438i 0.736293 + 1.65374i 0.756541 + 0.653946i \(0.226888\pi\)
−0.0202479 + 0.999795i \(0.506446\pi\)
\(608\) −9.16134 + 8.24891i −0.371542 + 0.334537i
\(609\) 0 0
\(610\) −61.4420 27.3557i −2.48771 1.10760i
\(611\) −22.7154 + 16.5037i −0.918966 + 0.667668i
\(612\) 0 0
\(613\) −11.7116 3.80532i −0.473026 0.153695i 0.0627963 0.998026i \(-0.479998\pi\)
−0.535822 + 0.844331i \(0.679998\pi\)
\(614\) −25.8657 2.71860i −1.04386 0.109714i
\(615\) 0 0
\(616\) −6.53159 + 13.8336i −0.263165 + 0.557372i
\(617\) 13.5088 + 7.79934i 0.543846 + 0.313989i 0.746636 0.665233i \(-0.231668\pi\)
−0.202790 + 0.979222i \(0.565001\pi\)
\(618\) 0 0
\(619\) 36.1986 7.69425i 1.45494 0.309258i 0.588486 0.808507i \(-0.299724\pi\)
0.866458 + 0.499250i \(0.166391\pi\)
\(620\) 25.0455 8.13776i 1.00585 0.326820i
\(621\) 0 0
\(622\) 10.8117 + 14.8810i 0.433508 + 0.596673i
\(623\) −11.9769 + 13.3017i −0.479846 + 0.532923i
\(624\) 0 0
\(625\) −27.5674 + 12.2738i −1.10269 + 0.490951i
\(626\) −37.9138 + 65.6686i −1.51534 + 2.62465i
\(627\) 0 0
\(628\) −5.73584 9.93476i −0.228885 0.396440i
\(629\) −21.0908 15.3234i −0.840947 0.610984i
\(630\) 0 0
\(631\) 13.3328 + 41.0343i 0.530772 + 1.63355i 0.752611 + 0.658465i \(0.228794\pi\)
−0.221840 + 0.975083i \(0.571206\pi\)
\(632\) 7.93349 17.8189i 0.315577 0.708798i
\(633\) 0 0
\(634\) 5.86366 27.5864i 0.232876 1.09559i
\(635\) −5.82748 6.47208i −0.231257 0.256836i
\(636\) 0 0
\(637\) 26.9671 15.5695i 1.06848 0.616885i
\(638\) −33.3224 7.86144i −1.31925 0.311238i
\(639\) 0 0
\(640\) −34.7017 + 47.7629i −1.37171 + 1.88799i
\(641\) 10.3254 + 48.5772i 0.407829 + 1.91868i 0.394796 + 0.918769i \(0.370815\pi\)
0.0130324 + 0.999915i \(0.495852\pi\)
\(642\) 0 0
\(643\) −3.46705 32.9868i −0.136727 1.30087i −0.820698 0.571363i \(-0.806415\pi\)
0.683970 0.729510i \(-0.260252\pi\)
\(644\) 0.0407177 + 0.387404i 0.00160450 + 0.0152658i
\(645\) 0 0
\(646\) −5.53081 26.0204i −0.217607 1.02376i
\(647\) 25.8770 35.6166i 1.01733 1.40023i 0.103268 0.994654i \(-0.467070\pi\)
0.914060 0.405578i \(-0.132930\pi\)
\(648\) 0 0
\(649\) 17.9849 + 42.9407i 0.705970 + 1.68557i
\(650\) −42.4236 + 24.4933i −1.66399 + 0.960706i
\(651\) 0 0
\(652\) 20.2505 + 22.4904i 0.793069 + 0.880793i
\(653\) −1.42386 + 6.69872i −0.0557198 + 0.262141i −0.997186 0.0749660i \(-0.976115\pi\)
0.941466 + 0.337107i \(0.109448\pi\)
\(654\) 0 0
\(655\) 9.25136 20.7789i 0.361481 0.811899i
\(656\) 1.71629 + 5.28219i 0.0670098 + 0.206235i
\(657\) 0 0
\(658\) −11.8544 8.61271i −0.462132 0.335759i
\(659\) −5.89894 10.2173i −0.229790 0.398008i 0.727956 0.685624i \(-0.240471\pi\)
−0.957746 + 0.287616i \(0.907137\pi\)
\(660\) 0 0
\(661\) −22.4153 + 38.8245i −0.871855 + 1.51010i −0.0117796 + 0.999931i \(0.503750\pi\)
−0.860076 + 0.510167i \(0.829584\pi\)
\(662\) −64.4084 + 28.6765i −2.50330 + 1.11454i
\(663\) 0 0
\(664\) −2.96078 + 3.28827i −0.114900 + 0.127610i
\(665\) −6.73908 9.27555i −0.261330 0.359690i
\(666\) 0 0
\(667\) −0.354760 + 0.115268i −0.0137364 + 0.00446321i
\(668\) 67.8437 14.4206i 2.62495 0.557950i
\(669\) 0 0
\(670\) 22.4462 + 12.9593i 0.867174 + 0.500663i
\(671\) −6.06094 31.9986i −0.233980 1.23529i
\(672\) 0 0
\(673\) 37.7995 + 3.97289i 1.45706 + 0.153144i 0.799687 0.600418i \(-0.204999\pi\)
0.657378 + 0.753561i \(0.271666\pi\)
\(674\) 49.0427 + 15.9349i 1.88906 + 0.613791i
\(675\) 0 0
\(676\) 61.9866 45.0359i 2.38410 1.73215i
\(677\) 24.5059 + 10.9107i 0.941837 + 0.419333i 0.819451 0.573150i \(-0.194279\pi\)
0.122386 + 0.992483i \(0.460945\pi\)
\(678\) 0 0
\(679\) 13.4637 12.1228i 0.516691 0.465231i
\(680\) −15.8501 35.6000i −0.607825 1.36520i
\(681\) 0 0
\(682\) 15.9526 + 12.1415i 0.610859 + 0.464920i
\(683\) 4.41371i 0.168886i 0.996428 + 0.0844429i \(0.0269111\pi\)
−0.996428 + 0.0844429i \(0.973089\pi\)
\(684\) 0 0
\(685\) 5.67161 17.4554i 0.216701 0.666938i
\(686\) 28.1183 + 25.3178i 1.07356 + 0.966638i
\(687\) 0 0
\(688\) 4.13660 0.434774i 0.157706 0.0165756i
\(689\) −24.2126 5.14654i −0.922425 0.196068i
\(690\) 0 0
\(691\) −1.73073 + 16.4668i −0.0658399 + 0.626425i 0.910993 + 0.412422i \(0.135317\pi\)
−0.976833 + 0.214003i \(0.931350\pi\)
\(692\) 24.4119 0.928003
\(693\) 0 0
\(694\) −35.5463 −1.34932
\(695\) −0.160192 + 1.52412i −0.00607643 + 0.0578133i
\(696\) 0 0
\(697\) 16.8182 + 3.57482i 0.637036 + 0.135406i
\(698\) −43.8217 + 4.60585i −1.65868 + 0.174334i
\(699\) 0 0
\(700\) −12.0843 10.8808i −0.456745 0.411255i
\(701\) 3.17601 9.77475i 0.119956 0.369187i −0.872992 0.487734i \(-0.837824\pi\)
0.992948 + 0.118547i \(0.0378236\pi\)
\(702\) 0 0
\(703\) 20.4454i 0.771114i
\(704\) −40.2708 0.895960i −1.51776 0.0337677i
\(705\) 0 0
\(706\) −8.43141 18.9373i −0.317320 0.712713i
\(707\) 12.2219 11.0046i 0.459650 0.413871i
\(708\) 0 0
\(709\) −43.9649 19.5745i −1.65114 0.735134i −0.651416 0.758721i \(-0.725825\pi\)
−0.999722 + 0.0235867i \(0.992491\pi\)
\(710\) 24.6077 17.8785i 0.923509 0.670969i
\(711\) 0 0
\(712\) 45.3774 + 14.7440i 1.70059 + 0.552555i
\(713\) 0.217222 + 0.0228310i 0.00813504 + 0.000855027i
\(714\) 0 0
\(715\) −51.7790 24.4476i −1.93642 0.914290i
\(716\) 47.1602 + 27.2279i 1.76246 + 1.01756i
\(717\) 0 0
\(718\) −41.3469 + 8.78854i −1.54305 + 0.327986i
\(719\) 46.0534 14.9636i 1.71750 0.558050i 0.725947 0.687750i \(-0.241402\pi\)
0.991553 + 0.129700i \(0.0414016\pi\)
\(720\) 0 0
\(721\) −4.62838 6.37042i −0.172370 0.237247i
\(722\) 15.8444 17.5970i 0.589666 0.654891i
\(723\) 0 0
\(724\) 51.6822 23.0104i 1.92075 0.855174i
\(725\) 7.78571 13.4852i 0.289154 0.500829i
\(726\) 0 0
\(727\) −14.4674 25.0583i −0.536568 0.929363i −0.999086 0.0427527i \(-0.986387\pi\)
0.462518 0.886610i \(-0.346946\pi\)
\(728\) 22.0507 + 16.0208i 0.817253 + 0.593769i
\(729\) 0 0
\(730\) 18.4841 + 56.8881i 0.684126 + 2.10552i
\(731\) 5.23733 11.7632i 0.193710 0.435079i
\(732\) 0 0
\(733\) −3.48446 + 16.3931i −0.128701 + 0.605492i 0.865766 + 0.500448i \(0.166832\pi\)
−0.994468 + 0.105044i \(0.966502\pi\)
\(734\) 49.1272 + 54.5613i 1.81332 + 2.01389i
\(735\) 0 0
\(736\) −0.303164 + 0.175032i −0.0111748 + 0.00645175i
\(737\) 1.03394 + 12.5079i 0.0380855 + 0.460735i
\(738\) 0 0
\(739\) 16.0114 22.0378i 0.588990 0.810675i −0.405655 0.914026i \(-0.632957\pi\)
0.994645 + 0.103351i \(0.0329566\pi\)
\(740\) 14.5535 + 68.4690i 0.534999 + 2.51697i
\(741\) 0 0
\(742\) −1.35030 12.8472i −0.0495711 0.471637i
\(743\) 4.63093 + 44.0604i 0.169892 + 1.61642i 0.664491 + 0.747296i \(0.268649\pi\)
−0.494598 + 0.869122i \(0.664685\pi\)
\(744\) 0 0
\(745\) 5.84153 + 27.4822i 0.214017 + 1.00687i
\(746\) −4.64095 + 6.38772i −0.169917 + 0.233871i
\(747\) 0 0
\(748\) 22.8948 37.6931i 0.837118 1.37820i
\(749\) 3.50764 2.02514i 0.128166 0.0739970i
\(750\) 0 0
\(751\) 18.9151 + 21.0073i 0.690221 + 0.766568i 0.981787 0.189982i \(-0.0608431\pi\)
−0.291566 + 0.956551i \(0.594176\pi\)
\(752\) −1.21385 + 5.71074i −0.0442647 + 0.208249i
\(753\) 0 0
\(754\) −24.8108 + 55.7259i −0.903554 + 2.02942i
\(755\) 9.03379 + 27.8031i 0.328773 + 1.01186i
\(756\) 0 0
\(757\) −13.9254 10.1174i −0.506129 0.367724i 0.305224 0.952280i \(-0.401269\pi\)
−0.811353 + 0.584556i \(0.801269\pi\)
\(758\) −28.2980 49.0137i −1.02783 1.78026i
\(759\) 0 0
\(760\) −15.2809 + 26.4674i −0.554298 + 0.960072i
\(761\) 44.2426 19.6981i 1.60379 0.714054i 0.607046 0.794666i \(-0.292354\pi\)
0.996746 + 0.0806124i \(0.0256876\pi\)
\(762\) 0 0
\(763\) 8.79125 9.76367i 0.318265 0.353469i
\(764\) −30.2463 41.6305i −1.09427 1.50614i
\(765\) 0 0
\(766\) −20.1757 + 6.55549i −0.728978 + 0.236859i
\(767\) 81.1332 17.2454i 2.92955 0.622695i
\(768\) 0 0
\(769\) 8.98495 + 5.18746i 0.324006 + 0.187065i 0.653177 0.757206i \(-0.273436\pi\)
−0.329171 + 0.944270i \(0.606769\pi\)
\(770\) 3.78380 29.6417i 0.136359 1.06821i
\(771\) 0 0
\(772\) 23.8211 + 2.50370i 0.857340 + 0.0901100i
\(773\) −7.58873 2.46573i −0.272947 0.0886860i 0.169345 0.985557i \(-0.445835\pi\)
−0.442293 + 0.896871i \(0.645835\pi\)
\(774\) 0 0
\(775\) −7.37646 + 5.35931i −0.264970 + 0.192512i
\(776\) −44.1185 19.6428i −1.58376 0.705136i
\(777\) 0 0
\(778\) 45.4484 40.9219i 1.62940 1.46712i
\(779\) −5.48465 12.3187i −0.196508 0.441364i
\(780\) 0 0
\(781\) 13.9031 + 4.86185i 0.497491 + 0.173971i
\(782\) 0.755389i 0.0270126i
\(783\) 0 0
\(784\) 2.00084 6.15795i 0.0714585 0.219927i
\(785\) 7.12515 + 6.41551i 0.254308 + 0.228980i
\(786\) 0 0
\(787\) −17.6056 + 1.85042i −0.627572 + 0.0659604i −0.412975 0.910742i \(-0.635510\pi\)
−0.214597 + 0.976703i \(0.568844\pi\)
\(788\) −30.1463 6.40779i −1.07392 0.228268i
\(789\) 0 0
\(790\) −3.98256 + 37.8916i −0.141693 + 1.34812i
\(791\) 6.20131 0.220493
\(792\) 0 0
\(793\) −58.0249 −2.06052
\(794\) −4.87223 + 46.3562i −0.172909 + 1.64512i
\(795\) 0 0
\(796\) −28.7410 6.10908i −1.01870 0.216531i
\(797\) 31.2927 3.28900i 1.10845 0.116502i 0.467430 0.884030i \(-0.345180\pi\)
0.641015 + 0.767528i \(0.278513\pi\)
\(798\) 0 0
\(799\) 13.4316 + 12.0939i 0.475177 + 0.427852i
\(800\) 4.51574 13.8980i 0.159656 0.491370i
\(801\) 0 0
\(802\) 23.2933i 0.822516i
\(803\) −17.5419 + 23.0483i −0.619040 + 0.813356i
\(804\) 0 0
\(805\) −0.132421 0.297422i −0.00466722 0.0104828i
\(806\) 26.5437 23.9001i 0.934963 0.841845i
\(807\) 0 0
\(808\) −40.0490 17.8310i −1.40892 0.627292i
\(809\) −17.3896 + 12.6343i −0.611384 + 0.444197i −0.849902 0.526942i \(-0.823339\pi\)
0.238517 + 0.971138i \(0.423339\pi\)
\(810\) 0 0
\(811\) 31.2311 + 10.1476i 1.09667 + 0.356331i 0.800822 0.598903i \(-0.204396\pi\)
0.295852 + 0.955234i \(0.404396\pi\)
\(812\) −20.1379 2.11657i −0.706700 0.0742772i
\(813\) 0 0
\(814\) −36.5285 + 38.7976i −1.28032 + 1.35986i
\(815\) −21.9053 12.6470i −0.767308 0.443005i
\(816\) 0 0
\(817\) −9.87782 + 2.09960i −0.345581 + 0.0734556i
\(818\) −0.00343919 + 0.00111746i −0.000120249 + 3.90711e-5i
\(819\) 0 0
\(820\) −27.1361 37.3497i −0.947635 1.30431i
\(821\) −37.5063 + 41.6550i −1.30898 + 1.45377i −0.499884 + 0.866092i \(0.666624\pi\)
−0.809095 + 0.587677i \(0.800042\pi\)
\(822\) 0 0
\(823\) 48.7936 21.7243i 1.70084 0.757261i 0.701847 0.712328i \(-0.252359\pi\)
0.998990 0.0449335i \(-0.0143076\pi\)
\(824\) −10.4949 + 18.1777i −0.365607 + 0.633250i
\(825\) 0 0
\(826\) 21.6433 + 37.4873i 0.753067 + 1.30435i
\(827\) 15.2821 + 11.1031i 0.531410 + 0.386092i 0.820885 0.571094i \(-0.193481\pi\)
−0.289475 + 0.957186i \(0.593481\pi\)
\(828\) 0 0
\(829\) −8.51237 26.1984i −0.295647 0.909907i −0.983003 0.183587i \(-0.941229\pi\)
0.687357 0.726320i \(-0.258771\pi\)
\(830\) 3.51548 7.89590i 0.122024 0.274071i
\(831\) 0 0
\(832\) −14.9213 + 70.1990i −0.517302 + 2.43371i
\(833\) −13.4125 14.8960i −0.464714 0.516117i
\(834\) 0 0
\(835\) −50.2030 + 28.9847i −1.73735 + 1.00306i
\(836\) −34.4695 + 2.84934i −1.19215 + 0.0985464i
\(837\) 0 0
\(838\) 21.2768 29.2850i 0.734996 1.01164i
\(839\) −0.747267 3.51562i −0.0257985 0.121373i 0.963364 0.268197i \(-0.0864279\pi\)
−0.989162 + 0.146825i \(0.953095\pi\)
\(840\) 0 0
\(841\) 1.00452 + 9.55736i 0.0346386 + 0.329564i
\(842\) −6.00711 57.1539i −0.207019 1.96965i
\(843\) 0 0
\(844\) −12.6607 59.5641i −0.435801 2.05028i
\(845\) −37.6403 + 51.8074i −1.29487 + 1.78223i
\(846\) 0 0
\(847\) 12.8406 6.67044i 0.441209 0.229199i
\(848\) −4.45751 + 2.57355i −0.153072 + 0.0883759i
\(849\) 0 0
\(850\) 21.1000 + 23.4339i 0.723723 + 0.803775i
\(851\) −0.120708 + 0.567886i −0.00413782 + 0.0194669i
\(852\) 0 0
\(853\) 5.57862 12.5298i 0.191008 0.429012i −0.792501 0.609871i \(-0.791221\pi\)
0.983509 + 0.180859i \(0.0578879\pi\)
\(854\) −9.35741 28.7991i −0.320204 0.985486i
\(855\) 0 0
\(856\) −8.73455 6.34602i −0.298541 0.216902i
\(857\) −1.82655 3.16368i −0.0623939 0.108069i 0.833141 0.553060i \(-0.186540\pi\)
−0.895535 + 0.444991i \(0.853207\pi\)
\(858\) 0 0
\(859\) −12.4493 + 21.5628i −0.424764 + 0.735713i −0.996398 0.0847953i \(-0.972976\pi\)
0.571634 + 0.820509i \(0.306310\pi\)
\(860\) −31.5850 + 14.0625i −1.07704 + 0.479529i
\(861\) 0 0
\(862\) −18.8274 + 20.9100i −0.641265 + 0.712196i
\(863\) −4.84824 6.67303i −0.165036 0.227152i 0.718487 0.695540i \(-0.244835\pi\)
−0.883523 + 0.468388i \(0.844835\pi\)
\(864\) 0 0
\(865\) −19.4045 + 6.30490i −0.659773 + 0.214373i
\(866\) −2.05703 + 0.437235i −0.0699008 + 0.0148579i
\(867\) 0 0
\(868\) 10.2681 + 5.92831i 0.348523 + 0.201220i
\(869\) −16.1787 + 8.86695i −0.548826 + 0.300791i
\(870\) 0 0
\(871\) 22.2385 + 2.33737i 0.753524 + 0.0791986i
\(872\) −33.3076 10.8223i −1.12794 0.366490i
\(873\) 0 0
\(874\) −0.479279 + 0.348216i −0.0162118 + 0.0117786i
\(875\) −5.13936 2.28819i −0.173742 0.0773550i
\(876\) 0 0
\(877\) −7.38760 + 6.65182i −0.249462 + 0.224616i −0.784369 0.620294i \(-0.787013\pi\)
0.534908 + 0.844911i \(0.320346\pi\)
\(878\) 4.14893 + 9.31864i 0.140019 + 0.314489i
\(879\) 0 0
\(880\) −11.4027 + 3.42649i −0.384384 + 0.115507i
\(881\) 46.2212i 1.55723i 0.627501 + 0.778616i \(0.284078\pi\)
−0.627501 + 0.778616i \(0.715922\pi\)
\(882\) 0 0
\(883\) 9.04674 27.8430i 0.304447 0.936991i −0.675436 0.737419i \(-0.736045\pi\)
0.979883 0.199573i \(-0.0639554\pi\)
\(884\) −58.3923 52.5767i −1.96395 1.76834i
\(885\) 0 0
\(886\) 89.6349 9.42100i 3.01134 0.316505i
\(887\) 49.0001 + 10.4153i 1.64526 + 0.349711i 0.935115 0.354343i \(-0.115296\pi\)
0.710146 + 0.704054i \(0.248629\pi\)
\(888\) 0 0
\(889\) 0.409867 3.89962i 0.0137465 0.130789i
\(890\) −93.1987 −3.12403
\(891\) 0 0
\(892\) 59.9122 2.00601
\(893\) 1.48167 14.0971i 0.0495820 0.471742i
\(894\) 0 0
\(895\) −44.5188 9.46275i −1.48810 0.316305i
\(896\) −26.4354 + 2.77847i −0.883143 + 0.0928221i
\(897\) 0 0
\(898\) 31.5634 + 28.4198i 1.05328 + 0.948382i
\(899\) −3.50850 + 10.7981i −0.117015 + 0.360136i
\(900\) 0 0
\(901\) 15.9342i 0.530845i
\(902\) 11.6013 33.1753i 0.386280 1.10462i
\(903\) 0 0
\(904\) −6.72349 15.1012i −0.223620 0.502258i
\(905\) −35.1381 + 31.6385i −1.16803 + 1.05170i
\(906\) 0 0
\(907\) 12.7171 + 5.66202i 0.422264 + 0.188004i 0.606857 0.794811i \(-0.292430\pi\)
−0.184593 + 0.982815i \(0.559097\pi\)
\(908\) 48.9042 35.5310i 1.62294 1.17914i
\(909\) 0 0
\(910\) −50.6347 16.4522i −1.67852 0.545385i
\(911\) −13.8046 1.45092i −0.457367 0.0480712i −0.126956 0.991908i \(-0.540521\pi\)
−0.330411 + 0.943837i \(0.607187\pi\)
\(912\) 0 0
\(913\) 4.11214 0.778891i 0.136092 0.0257775i
\(914\) −65.3799 37.7471i −2.16257 1.24856i
\(915\) 0 0
\(916\) −54.0391 + 11.4864i −1.78550 + 0.379520i
\(917\) 9.73950 3.16456i 0.321627 0.104503i
\(918\) 0 0
\(919\) 11.1835 + 15.3927i 0.368908 + 0.507759i 0.952604 0.304214i \(-0.0983938\pi\)
−0.583695 + 0.811973i \(0.698394\pi\)
\(920\) −0.580700 + 0.644933i −0.0191451 + 0.0212628i
\(921\) 0 0
\(922\) −83.7270 + 37.2777i −2.75740 + 1.22767i
\(923\) 13.1208 22.7260i 0.431878 0.748034i
\(924\) 0 0
\(925\) −12.1179 20.9888i −0.398434 0.690108i
\(926\) 32.3111 + 23.4754i 1.06181 + 0.771448i
\(927\) 0 0
\(928\) −5.62314 17.3062i −0.184588 0.568105i
\(929\) −6.58671 + 14.7940i −0.216103 + 0.485375i −0.988772 0.149434i \(-0.952255\pi\)
0.772669 + 0.634809i \(0.218921\pi\)
\(930\) 0 0
\(931\) −3.26841 + 15.3767i −0.107118 + 0.503949i
\(932\) 7.96330 + 8.84414i 0.260847 + 0.289699i
\(933\) 0 0
\(934\) 45.9628 26.5366i 1.50395 0.868305i
\(935\) −8.46353 + 35.8745i −0.276787 + 1.17322i
\(936\) 0 0
\(937\) −24.7387 + 34.0498i −0.808177 + 1.11236i 0.183425 + 0.983034i \(0.441281\pi\)
−0.991602 + 0.129326i \(0.958719\pi\)
\(938\) 2.42622 + 11.4145i 0.0792189 + 0.372696i
\(939\) 0 0
\(940\) −5.07275 48.2640i −0.165455 1.57420i
\(941\) −0.0442293 0.420814i −0.00144183 0.0137181i 0.993777 0.111385i \(-0.0355287\pi\)
−0.995219 + 0.0976669i \(0.968862\pi\)
\(942\) 0 0
\(943\) −0.0796115 0.374543i −0.00259251 0.0121968i
\(944\) 10.1377 13.9533i 0.329954 0.454142i
\(945\) 0 0
\(946\) −22.4955 13.6638i −0.731393 0.444249i
\(947\) 10.8999 6.29305i 0.354199 0.204497i −0.312334 0.949972i \(-0.601111\pi\)
0.666533 + 0.745475i \(0.267778\pi\)
\(948\) 0 0
\(949\) 34.5307 + 38.3502i 1.12091 + 1.24490i
\(950\) 5.14173 24.1900i 0.166820 0.784826i
\(951\) 0 0
\(952\) 7.13627 16.0283i 0.231288 0.519481i
\(953\) −16.7845 51.6574i −0.543703 1.67335i −0.724053 0.689745i \(-0.757723\pi\)
0.180349 0.983603i \(-0.442277\pi\)
\(954\) 0 0
\(955\) 34.7941 + 25.2794i 1.12591 + 0.818022i
\(956\) −10.1483 17.5774i −0.328220 0.568494i
\(957\) 0 0
\(958\) −15.9406 + 27.6099i −0.515017 + 0.892036i
\(959\) 7.54905 3.36105i 0.243772 0.108534i
\(960\) 0 0
\(961\) −16.2946 + 18.0969i −0.525631 + 0.583772i
\(962\) 55.8052 + 76.8092i 1.79923 + 2.47643i
\(963\) 0 0
\(964\) −10.0079 + 3.25175i −0.322332 + 0.104732i
\(965\) −19.5815 + 4.16217i −0.630350 + 0.133985i
\(966\) 0 0
\(967\) 23.2525 + 13.4249i 0.747751 + 0.431714i 0.824881 0.565307i \(-0.191242\pi\)
−0.0771296 + 0.997021i \(0.524576\pi\)
\(968\) −30.1655 24.0369i −0.969554 0.772575i
\(969\) 0 0
\(970\) 93.8170 + 9.86057i 3.01228 + 0.316604i
\(971\) −25.9476 8.43088i −0.832697 0.270560i −0.138516 0.990360i \(-0.544233\pi\)
−0.694181 + 0.719801i \(0.744233\pi\)
\(972\) 0 0
\(973\) −0.558215 + 0.405567i −0.0178956 + 0.0130019i
\(974\) 18.7502 + 8.34815i 0.600797 + 0.267492i
\(975\) 0 0
\(976\) −8.96630 + 8.07329i −0.287004 + 0.258420i
\(977\) −14.0102 31.4674i −0.448226 1.00673i −0.986470 0.163942i \(-0.947579\pi\)
0.538244 0.842789i \(-0.319088\pi\)
\(978\) 0 0
\(979\) −25.7078 37.0915i −0.821624 1.18545i
\(980\) 53.8209i 1.71925i
\(981\) 0 0
\(982\) 24.3234 74.8598i 0.776191 2.38887i
\(983\) −12.1930 10.9786i −0.388896 0.350163i 0.451371 0.892336i \(-0.350935\pi\)
−0.840267 + 0.542173i \(0.817602\pi\)
\(984\) 0 0
\(985\) 25.6176 2.69251i 0.816243 0.0857906i
\(986\) 38.4082 + 8.16393i 1.22317 + 0.259992i
\(987\) 0 0
\(988\) −6.44135 + 61.2853i −0.204927 + 1.94975i
\(989\) −0.286760 −0.00911842
\(990\) 0 0
\(991\) 59.6539 1.89497 0.947484 0.319804i \(-0.103617\pi\)
0.947484 + 0.319804i \(0.103617\pi\)
\(992\) −1.11376 + 10.5967i −0.0353620 + 0.336447i
\(993\) 0 0
\(994\) 13.3954 + 2.84728i 0.424876 + 0.0903102i
\(995\) 24.4234 2.56700i 0.774273 0.0813793i
\(996\) 0 0
\(997\) −30.2638 27.2496i −0.958463 0.863004i 0.0321797 0.999482i \(-0.489755\pi\)
−0.990643 + 0.136478i \(0.956422\pi\)
\(998\) 1.62771 5.00958i 0.0515243 0.158575i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.260.1 80
3.2 odd 2 99.2.p.a.95.10 yes 80
9.2 odd 6 inner 297.2.t.a.62.1 80
9.4 even 3 891.2.k.a.161.2 80
9.5 odd 6 891.2.k.a.161.19 80
9.7 even 3 99.2.p.a.29.10 80
11.8 odd 10 inner 297.2.t.a.206.1 80
33.8 even 10 99.2.p.a.41.10 yes 80
99.41 even 30 891.2.k.a.404.2 80
99.52 odd 30 99.2.p.a.74.10 yes 80
99.74 even 30 inner 297.2.t.a.8.1 80
99.85 odd 30 891.2.k.a.404.19 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.10 80 9.7 even 3
99.2.p.a.41.10 yes 80 33.8 even 10
99.2.p.a.74.10 yes 80 99.52 odd 30
99.2.p.a.95.10 yes 80 3.2 odd 2
297.2.t.a.8.1 80 99.74 even 30 inner
297.2.t.a.62.1 80 9.2 odd 6 inner
297.2.t.a.206.1 80 11.8 odd 10 inner
297.2.t.a.260.1 80 1.1 even 1 trivial
891.2.k.a.161.2 80 9.4 even 3
891.2.k.a.161.19 80 9.5 odd 6
891.2.k.a.404.2 80 99.41 even 30
891.2.k.a.404.19 80 99.85 odd 30