Properties

Label 297.2.t.a.233.10
Level $297$
Weight $2$
Character 297.233
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 233.10
Character \(\chi\) \(=\) 297.233
Dual form 297.2.t.a.116.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.43736 - 0.518076i) q^{2} +(3.84522 - 1.71200i) q^{4} +(0.293969 - 1.38302i) q^{5} +(-3.11261 - 0.327148i) q^{7} +(4.45339 - 3.23558i) q^{8} -3.52320i q^{10} +(3.16251 + 0.999276i) q^{11} +(-4.00142 + 3.60290i) q^{13} +(-7.75603 + 0.815191i) q^{14} +(3.54533 - 3.93749i) q^{16} +(0.663043 + 2.04064i) q^{17} +(1.17531 + 1.61768i) q^{19} +(-1.23735 - 5.82127i) q^{20} +(8.22586 + 0.797174i) q^{22} +(1.15277 + 0.665550i) q^{23} +(2.74141 + 1.22055i) q^{25} +(-7.88632 + 10.8546i) q^{26} +(-12.5287 + 4.07083i) q^{28} +(0.107317 - 1.02105i) q^{29} +(-6.29538 - 6.99173i) q^{31} +(1.09663 - 1.89941i) q^{32} +(2.67328 + 4.63025i) q^{34} +(-1.36746 + 4.20862i) q^{35} +(-5.64362 - 4.10033i) q^{37} +(3.70273 + 3.33396i) q^{38} +(-3.16570 - 7.11027i) q^{40} +(0.334840 + 3.18579i) q^{41} +(4.42393 - 2.55416i) q^{43} +(13.8713 - 1.57178i) q^{44} +(3.15451 + 1.02496i) q^{46} +(1.89888 - 4.26495i) q^{47} +(2.73427 + 0.581187i) q^{49} +(7.31414 + 1.55467i) q^{50} +(-9.21818 + 20.7044i) q^{52} +(-4.78123 - 1.55352i) q^{53} +(2.31170 - 4.08004i) q^{55} +(-14.9202 + 8.61416i) q^{56} +(-0.267414 - 2.54427i) q^{58} +(-4.31758 - 9.69744i) q^{59} +(2.18293 + 1.96552i) q^{61} +(-18.9663 - 13.7799i) q^{62} +(-1.58577 + 4.88050i) q^{64} +(3.80657 + 6.59317i) q^{65} +(-0.745757 + 1.29169i) q^{67} +(6.04312 + 6.71156i) q^{68} +(-1.15261 + 10.9664i) q^{70} +(10.6126 - 3.44824i) q^{71} +(-5.45572 + 7.50916i) q^{73} +(-15.8798 - 7.07014i) q^{74} +(7.28879 + 4.20819i) q^{76} +(-9.51673 - 4.14496i) q^{77} +(-2.19814 - 10.3414i) q^{79} +(-4.40339 - 6.06075i) q^{80} +(2.46661 + 7.59144i) q^{82} +(-4.55756 + 5.06168i) q^{83} +(3.01715 - 0.317115i) q^{85} +(9.45944 - 8.51732i) q^{86} +(17.3171 - 5.78237i) q^{88} +8.06536i q^{89} +(13.6335 - 9.90535i) q^{91} +(5.57206 + 0.585647i) q^{92} +(2.41868 - 11.3790i) q^{94} +(2.58278 - 1.14993i) q^{95} +(2.31328 - 0.491702i) q^{97} +6.96550 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.43736 0.518076i 1.72347 0.366335i 0.763365 0.645968i \(-0.223546\pi\)
0.960107 + 0.279632i \(0.0902126\pi\)
\(3\) 0 0
\(4\) 3.84522 1.71200i 1.92261 0.856000i
\(5\) 0.293969 1.38302i 0.131467 0.618504i −0.862241 0.506499i \(-0.830939\pi\)
0.993708 0.112005i \(-0.0357272\pi\)
\(6\) 0 0
\(7\) −3.11261 0.327148i −1.17646 0.123650i −0.503943 0.863737i \(-0.668118\pi\)
−0.672512 + 0.740086i \(0.734785\pi\)
\(8\) 4.45339 3.23558i 1.57451 1.14395i
\(9\) 0 0
\(10\) 3.52320i 1.11413i
\(11\) 3.16251 + 0.999276i 0.953532 + 0.301293i
\(12\) 0 0
\(13\) −4.00142 + 3.60290i −1.10979 + 0.999264i −0.109809 + 0.993953i \(0.535024\pi\)
−0.999986 + 0.00531119i \(0.998309\pi\)
\(14\) −7.75603 + 0.815191i −2.07289 + 0.217869i
\(15\) 0 0
\(16\) 3.54533 3.93749i 0.886332 0.984372i
\(17\) 0.663043 + 2.04064i 0.160812 + 0.494927i 0.998703 0.0509094i \(-0.0162120\pi\)
−0.837892 + 0.545836i \(0.816212\pi\)
\(18\) 0 0
\(19\) 1.17531 + 1.61768i 0.269635 + 0.371121i 0.922266 0.386555i \(-0.126335\pi\)
−0.652632 + 0.757675i \(0.726335\pi\)
\(20\) −1.23735 5.82127i −0.276680 1.30168i
\(21\) 0 0
\(22\) 8.22586 + 0.797174i 1.75376 + 0.169958i
\(23\) 1.15277 + 0.665550i 0.240369 + 0.138777i 0.615346 0.788257i \(-0.289016\pi\)
−0.374978 + 0.927034i \(0.622350\pi\)
\(24\) 0 0
\(25\) 2.74141 + 1.22055i 0.548282 + 0.244111i
\(26\) −7.88632 + 10.8546i −1.54663 + 2.12876i
\(27\) 0 0
\(28\) −12.5287 + 4.07083i −2.36771 + 0.769315i
\(29\) 0.107317 1.02105i 0.0199283 0.189605i −0.980029 0.198855i \(-0.936278\pi\)
0.999957 + 0.00924995i \(0.00294439\pi\)
\(30\) 0 0
\(31\) −6.29538 6.99173i −1.13068 1.25575i −0.962880 0.269931i \(-0.912999\pi\)
−0.167804 0.985820i \(-0.553668\pi\)
\(32\) 1.09663 1.89941i 0.193858 0.335772i
\(33\) 0 0
\(34\) 2.67328 + 4.63025i 0.458463 + 0.794082i
\(35\) −1.36746 + 4.20862i −0.231143 + 0.711386i
\(36\) 0 0
\(37\) −5.64362 4.10033i −0.927805 0.674090i 0.0176490 0.999844i \(-0.494382\pi\)
−0.945455 + 0.325754i \(0.894382\pi\)
\(38\) 3.70273 + 3.33396i 0.600663 + 0.540839i
\(39\) 0 0
\(40\) −3.16570 7.11027i −0.500541 1.12423i
\(41\) 0.334840 + 3.18579i 0.0522932 + 0.497537i 0.989053 + 0.147563i \(0.0471429\pi\)
−0.936759 + 0.349974i \(0.886190\pi\)
\(42\) 0 0
\(43\) 4.42393 2.55416i 0.674642 0.389505i −0.123191 0.992383i \(-0.539313\pi\)
0.797833 + 0.602878i \(0.205979\pi\)
\(44\) 13.8713 1.57178i 2.09117 0.236955i
\(45\) 0 0
\(46\) 3.15451 + 1.02496i 0.465107 + 0.151122i
\(47\) 1.89888 4.26495i 0.276980 0.622107i −0.720469 0.693487i \(-0.756074\pi\)
0.997449 + 0.0713796i \(0.0227402\pi\)
\(48\) 0 0
\(49\) 2.73427 + 0.581187i 0.390610 + 0.0830268i
\(50\) 7.31414 + 1.55467i 1.03438 + 0.219863i
\(51\) 0 0
\(52\) −9.21818 + 20.7044i −1.27833 + 2.87118i
\(53\) −4.78123 1.55352i −0.656752 0.213392i −0.0383632 0.999264i \(-0.512214\pi\)
−0.618389 + 0.785872i \(0.712214\pi\)
\(54\) 0 0
\(55\) 2.31170 4.08004i 0.311709 0.550153i
\(56\) −14.9202 + 8.61416i −1.99379 + 1.15112i
\(57\) 0 0
\(58\) −0.267414 2.54427i −0.0351132 0.334079i
\(59\) −4.31758 9.69744i −0.562101 1.26250i −0.941421 0.337233i \(-0.890509\pi\)
0.379320 0.925265i \(-0.376158\pi\)
\(60\) 0 0
\(61\) 2.18293 + 1.96552i 0.279496 + 0.251659i 0.796941 0.604057i \(-0.206450\pi\)
−0.517445 + 0.855716i \(0.673117\pi\)
\(62\) −18.9663 13.7799i −2.40873 1.75004i
\(63\) 0 0
\(64\) −1.58577 + 4.88050i −0.198221 + 0.610062i
\(65\) 3.80657 + 6.59317i 0.472147 + 0.817783i
\(66\) 0 0
\(67\) −0.745757 + 1.29169i −0.0911087 + 0.157805i −0.907978 0.419018i \(-0.862374\pi\)
0.816869 + 0.576823i \(0.195708\pi\)
\(68\) 6.04312 + 6.71156i 0.732835 + 0.813896i
\(69\) 0 0
\(70\) −1.15261 + 10.9664i −0.137763 + 1.31073i
\(71\) 10.6126 3.44824i 1.25948 0.409231i 0.398173 0.917310i \(-0.369644\pi\)
0.861310 + 0.508080i \(0.169644\pi\)
\(72\) 0 0
\(73\) −5.45572 + 7.50916i −0.638544 + 0.878880i −0.998537 0.0540747i \(-0.982779\pi\)
0.359993 + 0.932955i \(0.382779\pi\)
\(74\) −15.8798 7.07014i −1.84599 0.821888i
\(75\) 0 0
\(76\) 7.28879 + 4.20819i 0.836082 + 0.482712i
\(77\) −9.51673 4.14496i −1.08453 0.472363i
\(78\) 0 0
\(79\) −2.19814 10.3414i −0.247310 1.16350i −0.910000 0.414609i \(-0.863918\pi\)
0.662689 0.748894i \(-0.269415\pi\)
\(80\) −4.40339 6.06075i −0.492314 0.677612i
\(81\) 0 0
\(82\) 2.46661 + 7.59144i 0.272391 + 0.838334i
\(83\) −4.55756 + 5.06168i −0.500257 + 0.555591i −0.939399 0.342826i \(-0.888616\pi\)
0.439142 + 0.898418i \(0.355282\pi\)
\(84\) 0 0
\(85\) 3.01715 0.317115i 0.327256 0.0343960i
\(86\) 9.45944 8.51732i 1.02004 0.918446i
\(87\) 0 0
\(88\) 17.3171 5.78237i 1.84601 0.616402i
\(89\) 8.06536i 0.854927i 0.904033 + 0.427463i \(0.140593\pi\)
−0.904033 + 0.427463i \(0.859407\pi\)
\(90\) 0 0
\(91\) 13.6335 9.90535i 1.42918 1.03836i
\(92\) 5.57206 + 0.585647i 0.580928 + 0.0610579i
\(93\) 0 0
\(94\) 2.41868 11.3790i 0.249467 1.17365i
\(95\) 2.58278 1.14993i 0.264988 0.117980i
\(96\) 0 0
\(97\) 2.31328 0.491702i 0.234878 0.0499248i −0.0889689 0.996034i \(-0.528357\pi\)
0.323847 + 0.946110i \(0.395024\pi\)
\(98\) 6.96550 0.703622
\(99\) 0 0
\(100\) 12.6309 1.26309
\(101\) 12.9788 2.75873i 1.29144 0.274503i 0.489548 0.871976i \(-0.337162\pi\)
0.801889 + 0.597473i \(0.203828\pi\)
\(102\) 0 0
\(103\) −6.83033 + 3.04106i −0.673013 + 0.299645i −0.714644 0.699489i \(-0.753411\pi\)
0.0416312 + 0.999133i \(0.486745\pi\)
\(104\) −6.16244 + 28.9920i −0.604277 + 2.84290i
\(105\) 0 0
\(106\) −12.4584 1.30943i −1.21007 0.127183i
\(107\) 0.791122 0.574784i 0.0764807 0.0555664i −0.548888 0.835896i \(-0.684949\pi\)
0.625369 + 0.780329i \(0.284949\pi\)
\(108\) 0 0
\(109\) 5.38041i 0.515350i 0.966232 + 0.257675i \(0.0829564\pi\)
−0.966232 + 0.257675i \(0.917044\pi\)
\(110\) 3.52065 11.1422i 0.335681 1.06236i
\(111\) 0 0
\(112\) −12.3234 + 11.0960i −1.16445 + 1.04847i
\(113\) 5.30003 0.557055i 0.498585 0.0524034i 0.148101 0.988972i \(-0.452684\pi\)
0.350484 + 0.936569i \(0.386017\pi\)
\(114\) 0 0
\(115\) 1.25935 1.39864i 0.117435 0.130424i
\(116\) −1.33539 4.10990i −0.123988 0.381595i
\(117\) 0 0
\(118\) −15.5475 21.3993i −1.43126 1.96996i
\(119\) −1.39620 6.56862i −0.127990 0.602144i
\(120\) 0 0
\(121\) 9.00289 + 6.32043i 0.818445 + 0.574585i
\(122\) 6.33887 + 3.65975i 0.573895 + 0.331338i
\(123\) 0 0
\(124\) −36.1769 16.1070i −3.24879 1.44645i
\(125\) 6.64933 9.15201i 0.594734 0.818581i
\(126\) 0 0
\(127\) 10.2499 3.33040i 0.909534 0.295526i 0.183368 0.983044i \(-0.441300\pi\)
0.726167 + 0.687519i \(0.241300\pi\)
\(128\) −1.79513 + 17.0795i −0.158669 + 1.50963i
\(129\) 0 0
\(130\) 12.6937 + 14.0978i 1.11331 + 1.23646i
\(131\) 8.59739 14.8911i 0.751157 1.30104i −0.196105 0.980583i \(-0.562829\pi\)
0.947262 0.320460i \(-0.103837\pi\)
\(132\) 0 0
\(133\) −3.12906 5.41970i −0.271324 0.469947i
\(134\) −1.14848 + 3.53467i −0.0992138 + 0.305349i
\(135\) 0 0
\(136\) 9.55542 + 6.94242i 0.819371 + 0.595308i
\(137\) −7.32502 6.59548i −0.625819 0.563490i 0.294014 0.955801i \(-0.405009\pi\)
−0.919832 + 0.392311i \(0.871676\pi\)
\(138\) 0 0
\(139\) −0.898825 2.01879i −0.0762374 0.171232i 0.871406 0.490562i \(-0.163209\pi\)
−0.947643 + 0.319331i \(0.896542\pi\)
\(140\) 1.94697 + 18.5241i 0.164549 + 1.56558i
\(141\) 0 0
\(142\) 24.0802 13.9027i 2.02077 1.16669i
\(143\) −16.2548 + 7.39566i −1.35930 + 0.618456i
\(144\) 0 0
\(145\) −1.38059 0.448580i −0.114652 0.0372525i
\(146\) −9.40723 + 21.1290i −0.778548 + 1.74865i
\(147\) 0 0
\(148\) −28.7207 6.10478i −2.36083 0.501810i
\(149\) −5.34203 1.13548i −0.437636 0.0930224i −0.0161755 0.999869i \(-0.505149\pi\)
−0.421461 + 0.906847i \(0.638482\pi\)
\(150\) 0 0
\(151\) −0.210462 + 0.472704i −0.0171271 + 0.0384681i −0.921907 0.387412i \(-0.873369\pi\)
0.904779 + 0.425881i \(0.140036\pi\)
\(152\) 10.4682 + 3.40134i 0.849086 + 0.275885i
\(153\) 0 0
\(154\) −25.3431 5.17237i −2.04220 0.416801i
\(155\) −11.5203 + 6.65126i −0.925335 + 0.534242i
\(156\) 0 0
\(157\) 1.40989 + 13.4142i 0.112522 + 1.07057i 0.894439 + 0.447189i \(0.147575\pi\)
−0.781918 + 0.623382i \(0.785758\pi\)
\(158\) −10.7153 24.0670i −0.852465 1.91467i
\(159\) 0 0
\(160\) −2.30454 2.07502i −0.182190 0.164045i
\(161\) −3.37038 2.44872i −0.265623 0.192986i
\(162\) 0 0
\(163\) −5.94061 + 18.2833i −0.465305 + 1.43206i 0.393295 + 0.919413i \(0.371335\pi\)
−0.858599 + 0.512648i \(0.828665\pi\)
\(164\) 6.74161 + 11.6768i 0.526431 + 0.911806i
\(165\) 0 0
\(166\) −8.48606 + 14.6983i −0.658646 + 1.14081i
\(167\) 0.394490 + 0.438126i 0.0305266 + 0.0339032i 0.758215 0.652005i \(-0.226072\pi\)
−0.727688 + 0.685908i \(0.759405\pi\)
\(168\) 0 0
\(169\) 1.67165 15.9046i 0.128588 1.22343i
\(170\) 7.18958 2.33604i 0.551416 0.179166i
\(171\) 0 0
\(172\) 12.6382 17.3950i 0.963657 1.32636i
\(173\) 3.32912 + 1.48222i 0.253109 + 0.112691i 0.529369 0.848392i \(-0.322429\pi\)
−0.276261 + 0.961083i \(0.589095\pi\)
\(174\) 0 0
\(175\) −8.13363 4.69596i −0.614845 0.354981i
\(176\) 15.1468 8.90957i 1.14173 0.671584i
\(177\) 0 0
\(178\) 4.17847 + 19.6582i 0.313190 + 1.47344i
\(179\) 3.36258 + 4.62819i 0.251331 + 0.345927i 0.915977 0.401231i \(-0.131418\pi\)
−0.664646 + 0.747159i \(0.731418\pi\)
\(180\) 0 0
\(181\) −2.48530 7.64897i −0.184731 0.568544i 0.815213 0.579162i \(-0.196620\pi\)
−0.999944 + 0.0106182i \(0.996620\pi\)
\(182\) 28.0981 31.2061i 2.08277 2.31315i
\(183\) 0 0
\(184\) 7.28716 0.765911i 0.537216 0.0564637i
\(185\) −7.32988 + 6.59985i −0.538903 + 0.485231i
\(186\) 0 0
\(187\) 0.0577182 + 7.11609i 0.00422077 + 0.520380i
\(188\) 19.6506i 1.43316i
\(189\) 0 0
\(190\) 5.69941 4.14086i 0.413478 0.300410i
\(191\) 12.1596 + 1.27802i 0.879835 + 0.0924743i 0.533663 0.845697i \(-0.320815\pi\)
0.346171 + 0.938171i \(0.387482\pi\)
\(192\) 0 0
\(193\) 3.48411 16.3915i 0.250792 1.17988i −0.654823 0.755782i \(-0.727257\pi\)
0.905615 0.424101i \(-0.139410\pi\)
\(194\) 5.38354 2.39691i 0.386516 0.172088i
\(195\) 0 0
\(196\) 11.5089 2.44628i 0.822062 0.174735i
\(197\) 6.63610 0.472803 0.236401 0.971656i \(-0.424032\pi\)
0.236401 + 0.971656i \(0.424032\pi\)
\(198\) 0 0
\(199\) −3.24799 −0.230244 −0.115122 0.993351i \(-0.536726\pi\)
−0.115122 + 0.993351i \(0.536726\pi\)
\(200\) 16.1578 3.43444i 1.14253 0.242851i
\(201\) 0 0
\(202\) 30.2047 13.4480i 2.12520 0.946198i
\(203\) −0.668072 + 3.14303i −0.0468895 + 0.220598i
\(204\) 0 0
\(205\) 4.50444 + 0.473435i 0.314603 + 0.0330661i
\(206\) −15.0725 + 10.9508i −1.05015 + 0.762977i
\(207\) 0 0
\(208\) 28.5290i 1.97813i
\(209\) 2.10042 + 6.29037i 0.145289 + 0.435114i
\(210\) 0 0
\(211\) 5.93173 5.34095i 0.408357 0.367686i −0.439201 0.898389i \(-0.644739\pi\)
0.847558 + 0.530703i \(0.178072\pi\)
\(212\) −21.0445 + 2.21186i −1.44534 + 0.151911i
\(213\) 0 0
\(214\) 1.63047 1.81082i 0.111456 0.123785i
\(215\) −2.23194 6.86921i −0.152217 0.468476i
\(216\) 0 0
\(217\) 17.3077 + 23.8220i 1.17492 + 1.61715i
\(218\) 2.78746 + 13.1140i 0.188791 + 0.888191i
\(219\) 0 0
\(220\) 1.90393 19.6463i 0.128363 1.32455i
\(221\) −10.0053 5.77657i −0.673031 0.388574i
\(222\) 0 0
\(223\) −12.6995 5.65418i −0.850421 0.378632i −0.0652185 0.997871i \(-0.520774\pi\)
−0.785202 + 0.619239i \(0.787441\pi\)
\(224\) −4.03476 + 5.55336i −0.269583 + 0.371050i
\(225\) 0 0
\(226\) 12.6295 4.10356i 0.840099 0.272965i
\(227\) 2.17751 20.7176i 0.144526 1.37508i −0.646322 0.763065i \(-0.723694\pi\)
0.790848 0.612012i \(-0.209640\pi\)
\(228\) 0 0
\(229\) 9.91278 + 11.0093i 0.655055 + 0.727512i 0.975560 0.219735i \(-0.0705192\pi\)
−0.320505 + 0.947247i \(0.603853\pi\)
\(230\) 2.34487 4.06143i 0.154616 0.267803i
\(231\) 0 0
\(232\) −2.82577 4.89438i −0.185521 0.321332i
\(233\) −5.72371 + 17.6158i −0.374972 + 1.15405i 0.568525 + 0.822666i \(0.307514\pi\)
−0.943497 + 0.331380i \(0.892486\pi\)
\(234\) 0 0
\(235\) −5.34029 3.87995i −0.348362 0.253100i
\(236\) −33.2040 29.8971i −2.16140 1.94613i
\(237\) 0 0
\(238\) −6.80609 15.2867i −0.441173 0.990891i
\(239\) 2.46907 + 23.4916i 0.159711 + 1.51955i 0.721587 + 0.692324i \(0.243413\pi\)
−0.561876 + 0.827221i \(0.689920\pi\)
\(240\) 0 0
\(241\) −8.98897 + 5.18978i −0.579030 + 0.334303i −0.760748 0.649047i \(-0.775168\pi\)
0.181718 + 0.983351i \(0.441834\pi\)
\(242\) 25.2177 + 10.7410i 1.62106 + 0.690456i
\(243\) 0 0
\(244\) 11.7588 + 3.82067i 0.752781 + 0.244593i
\(245\) 1.60758 3.61069i 0.102705 0.230679i
\(246\) 0 0
\(247\) −10.5312 2.23848i −0.670087 0.142431i
\(248\) −50.6580 10.7677i −3.21679 0.683750i
\(249\) 0 0
\(250\) 11.4653 25.7516i 0.725132 1.62867i
\(251\) 6.21725 + 2.02011i 0.392429 + 0.127508i 0.498584 0.866842i \(-0.333854\pi\)
−0.106154 + 0.994350i \(0.533854\pi\)
\(252\) 0 0
\(253\) 2.98056 + 3.25674i 0.187386 + 0.204749i
\(254\) 23.2573 13.4276i 1.45930 0.842525i
\(255\) 0 0
\(256\) 3.40032 + 32.3519i 0.212520 + 2.02199i
\(257\) 4.33722 + 9.74155i 0.270548 + 0.607661i 0.996815 0.0797520i \(-0.0254128\pi\)
−0.726267 + 0.687413i \(0.758746\pi\)
\(258\) 0 0
\(259\) 16.2250 + 14.6090i 1.00817 + 0.907761i
\(260\) 25.9246 + 18.8353i 1.60778 + 1.16812i
\(261\) 0 0
\(262\) 13.2402 40.7491i 0.817981 2.51749i
\(263\) −10.0693 17.4405i −0.620897 1.07543i −0.989319 0.145767i \(-0.953435\pi\)
0.368422 0.929659i \(-0.379898\pi\)
\(264\) 0 0
\(265\) −3.55407 + 6.15583i −0.218325 + 0.378150i
\(266\) −10.4345 11.5886i −0.639778 0.710545i
\(267\) 0 0
\(268\) −0.656225 + 6.24356i −0.0400853 + 0.381386i
\(269\) −9.24045 + 3.00240i −0.563400 + 0.183060i −0.576850 0.816850i \(-0.695718\pi\)
0.0134505 + 0.999910i \(0.495718\pi\)
\(270\) 0 0
\(271\) −13.7884 + 18.9781i −0.837584 + 1.15284i 0.148880 + 0.988855i \(0.452433\pi\)
−0.986464 + 0.163980i \(0.947567\pi\)
\(272\) 10.3857 + 4.62401i 0.629725 + 0.280372i
\(273\) 0 0
\(274\) −21.2707 12.2806i −1.28501 0.741899i
\(275\) 7.45006 + 6.59944i 0.449255 + 0.397961i
\(276\) 0 0
\(277\) 3.62617 + 17.0598i 0.217875 + 1.02502i 0.942067 + 0.335425i \(0.108880\pi\)
−0.724192 + 0.689599i \(0.757787\pi\)
\(278\) −3.23665 4.45486i −0.194121 0.267185i
\(279\) 0 0
\(280\) 7.52746 + 23.1671i 0.449852 + 1.38450i
\(281\) −15.3426 + 17.0397i −0.915263 + 1.01650i 0.0845356 + 0.996420i \(0.473059\pi\)
−0.999798 + 0.0200818i \(0.993607\pi\)
\(282\) 0 0
\(283\) −21.5196 + 2.26180i −1.27921 + 0.134450i −0.719647 0.694340i \(-0.755696\pi\)
−0.559560 + 0.828790i \(0.689030\pi\)
\(284\) 34.9043 31.4280i 2.07119 1.86491i
\(285\) 0 0
\(286\) −35.7873 + 26.4471i −2.11615 + 1.56385i
\(287\) 10.0257i 0.591796i
\(288\) 0 0
\(289\) 10.0287 7.28629i 0.589925 0.428605i
\(290\) −3.59738 0.378100i −0.211246 0.0222028i
\(291\) 0 0
\(292\) −8.12275 + 38.2145i −0.475348 + 2.23634i
\(293\) −17.7719 + 7.91257i −1.03825 + 0.462257i −0.853809 0.520587i \(-0.825713\pi\)
−0.184438 + 0.982844i \(0.559047\pi\)
\(294\) 0 0
\(295\) −14.6809 + 3.12053i −0.854758 + 0.181684i
\(296\) −38.4002 −2.23196
\(297\) 0 0
\(298\) −13.6087 −0.788331
\(299\) −7.01062 + 1.49015i −0.405434 + 0.0861778i
\(300\) 0 0
\(301\) −14.6055 + 6.50280i −0.841849 + 0.374815i
\(302\) −0.268073 + 1.26118i −0.0154259 + 0.0725730i
\(303\) 0 0
\(304\) 10.5364 + 1.10743i 0.604307 + 0.0635152i
\(305\) 3.36006 2.44123i 0.192397 0.139784i
\(306\) 0 0
\(307\) 2.08212i 0.118833i 0.998233 + 0.0594164i \(0.0189240\pi\)
−0.998233 + 0.0594164i \(0.981076\pi\)
\(308\) −43.6901 + 0.354368i −2.48947 + 0.0201920i
\(309\) 0 0
\(310\) −24.6333 + 22.1799i −1.39908 + 1.25973i
\(311\) 13.0185 1.36830i 0.738212 0.0775892i 0.272043 0.962285i \(-0.412301\pi\)
0.466169 + 0.884696i \(0.345634\pi\)
\(312\) 0 0
\(313\) 2.00518 2.22698i 0.113340 0.125876i −0.683805 0.729665i \(-0.739676\pi\)
0.797145 + 0.603788i \(0.206343\pi\)
\(314\) 10.3860 + 31.9648i 0.586116 + 1.80388i
\(315\) 0 0
\(316\) −26.1569 36.0019i −1.47144 2.02526i
\(317\) 6.63939 + 31.2359i 0.372905 + 1.75438i 0.619245 + 0.785198i \(0.287439\pi\)
−0.246340 + 0.969184i \(0.579228\pi\)
\(318\) 0 0
\(319\) 1.35971 3.12185i 0.0761289 0.174790i
\(320\) 6.28364 + 3.62786i 0.351266 + 0.202804i
\(321\) 0 0
\(322\) −9.48344 4.22230i −0.528492 0.235300i
\(323\) −2.52181 + 3.47097i −0.140317 + 0.193130i
\(324\) 0 0
\(325\) −15.3671 + 4.99306i −0.852412 + 0.276965i
\(326\) −5.00724 + 47.6407i −0.277325 + 2.63857i
\(327\) 0 0
\(328\) 11.7990 + 13.1042i 0.651493 + 0.723557i
\(329\) −7.30574 + 12.6539i −0.402779 + 0.697633i
\(330\) 0 0
\(331\) −13.1792 22.8271i −0.724395 1.25469i −0.959223 0.282652i \(-0.908786\pi\)
0.234828 0.972037i \(-0.424547\pi\)
\(332\) −8.85919 + 27.2658i −0.486211 + 1.49640i
\(333\) 0 0
\(334\) 1.18850 + 0.863494i 0.0650317 + 0.0472483i
\(335\) 1.56720 + 1.41111i 0.0856251 + 0.0770972i
\(336\) 0 0
\(337\) −1.70543 3.83045i −0.0929004 0.208658i 0.861118 0.508404i \(-0.169765\pi\)
−0.954019 + 0.299747i \(0.903098\pi\)
\(338\) −4.16542 39.6313i −0.226569 2.15566i
\(339\) 0 0
\(340\) 11.0587 6.38474i 0.599742 0.346261i
\(341\) −12.9225 28.4022i −0.699793 1.53807i
\(342\) 0 0
\(343\) 12.5154 + 4.06651i 0.675769 + 0.219571i
\(344\) 11.4373 25.6886i 0.616658 1.38504i
\(345\) 0 0
\(346\) 8.88217 + 1.88796i 0.477508 + 0.101498i
\(347\) 33.6217 + 7.14651i 1.80491 + 0.383645i 0.982650 0.185470i \(-0.0593808\pi\)
0.822258 + 0.569115i \(0.192714\pi\)
\(348\) 0 0
\(349\) −8.47152 + 19.0273i −0.453470 + 1.01851i 0.531700 + 0.846932i \(0.321553\pi\)
−0.985171 + 0.171578i \(0.945113\pi\)
\(350\) −22.2574 7.23188i −1.18971 0.386560i
\(351\) 0 0
\(352\) 5.36612 4.91107i 0.286015 0.261761i
\(353\) 7.16833 4.13864i 0.381532 0.220278i −0.296953 0.954892i \(-0.595970\pi\)
0.678485 + 0.734615i \(0.262637\pi\)
\(354\) 0 0
\(355\) −1.64920 15.6911i −0.0875303 0.832795i
\(356\) 13.8079 + 31.0131i 0.731818 + 1.64369i
\(357\) 0 0
\(358\) 10.5936 + 9.53849i 0.559887 + 0.504125i
\(359\) −10.3031 7.48561i −0.543774 0.395075i 0.281711 0.959499i \(-0.409098\pi\)
−0.825485 + 0.564424i \(0.809098\pi\)
\(360\) 0 0
\(361\) 4.63580 14.2675i 0.243989 0.750922i
\(362\) −10.0203 17.3557i −0.526656 0.912196i
\(363\) 0 0
\(364\) 35.4660 61.4289i 1.85892 3.21975i
\(365\) 8.78147 + 9.75281i 0.459643 + 0.510486i
\(366\) 0 0
\(367\) 2.19865 20.9188i 0.114769 1.09195i −0.773870 0.633344i \(-0.781682\pi\)
0.888639 0.458607i \(-0.151652\pi\)
\(368\) 6.70753 2.17941i 0.349654 0.113610i
\(369\) 0 0
\(370\) −14.4463 + 19.8836i −0.751027 + 1.03370i
\(371\) 14.3739 + 6.39966i 0.746254 + 0.332254i
\(372\) 0 0
\(373\) 14.2942 + 8.25274i 0.740124 + 0.427311i 0.822114 0.569322i \(-0.192794\pi\)
−0.0819904 + 0.996633i \(0.526128\pi\)
\(374\) 3.82736 + 17.3146i 0.197908 + 0.895314i
\(375\) 0 0
\(376\) −5.34313 25.1375i −0.275551 1.29637i
\(377\) 3.24933 + 4.47232i 0.167349 + 0.230336i
\(378\) 0 0
\(379\) −4.41092 13.5754i −0.226574 0.697322i −0.998128 0.0611588i \(-0.980520\pi\)
0.771554 0.636163i \(-0.219480\pi\)
\(380\) 7.96267 8.84344i 0.408476 0.453659i
\(381\) 0 0
\(382\) 30.2993 3.18458i 1.55025 0.162937i
\(383\) −7.54769 + 6.79597i −0.385669 + 0.347258i −0.839046 0.544061i \(-0.816886\pi\)
0.453377 + 0.891319i \(0.350219\pi\)
\(384\) 0 0
\(385\) −8.53018 + 11.9433i −0.434738 + 0.608687i
\(386\) 41.7569i 2.12537i
\(387\) 0 0
\(388\) 8.05326 5.85103i 0.408842 0.297041i
\(389\) −20.5653 2.16150i −1.04270 0.109592i −0.432336 0.901713i \(-0.642310\pi\)
−0.610365 + 0.792120i \(0.708977\pi\)
\(390\) 0 0
\(391\) −0.593812 + 2.79367i −0.0300304 + 0.141282i
\(392\) 14.0573 6.25869i 0.709998 0.316112i
\(393\) 0 0
\(394\) 16.1745 3.43801i 0.814862 0.173204i
\(395\) −14.9486 −0.752144
\(396\) 0 0
\(397\) 33.6048 1.68658 0.843288 0.537463i \(-0.180617\pi\)
0.843288 + 0.537463i \(0.180617\pi\)
\(398\) −7.91651 + 1.68271i −0.396819 + 0.0843464i
\(399\) 0 0
\(400\) 14.5251 6.46700i 0.726256 0.323350i
\(401\) −0.745837 + 3.50889i −0.0372453 + 0.175225i −0.992839 0.119463i \(-0.961883\pi\)
0.955593 + 0.294689i \(0.0952160\pi\)
\(402\) 0 0
\(403\) 50.3810 + 5.29525i 2.50965 + 0.263775i
\(404\) 45.1833 32.8276i 2.24795 1.63323i
\(405\) 0 0
\(406\) 8.00681i 0.397371i
\(407\) −13.7506 18.6069i −0.681593 0.922308i
\(408\) 0 0
\(409\) −2.82298 + 2.54182i −0.139587 + 0.125685i −0.735967 0.677018i \(-0.763272\pi\)
0.596379 + 0.802703i \(0.296605\pi\)
\(410\) 11.2242 1.17971i 0.554323 0.0582617i
\(411\) 0 0
\(412\) −21.0578 + 23.3871i −1.03744 + 1.15220i
\(413\) 10.2664 + 31.5968i 0.505178 + 1.55478i
\(414\) 0 0
\(415\) 5.66060 + 7.79115i 0.277868 + 0.382453i
\(416\) 2.45532 + 11.5514i 0.120382 + 0.566353i
\(417\) 0 0
\(418\) 8.37838 + 14.2437i 0.409800 + 0.696683i
\(419\) −7.80619 4.50691i −0.381357 0.220177i 0.297051 0.954862i \(-0.403997\pi\)
−0.678409 + 0.734685i \(0.737330\pi\)
\(420\) 0 0
\(421\) 8.08646 + 3.60032i 0.394110 + 0.175469i 0.594217 0.804305i \(-0.297462\pi\)
−0.200107 + 0.979774i \(0.564129\pi\)
\(422\) 11.6907 16.0909i 0.569095 0.783292i
\(423\) 0 0
\(424\) −26.3192 + 8.55162i −1.27817 + 0.415303i
\(425\) −0.673035 + 6.40350i −0.0326470 + 0.310616i
\(426\) 0 0
\(427\) −6.15160 6.83204i −0.297697 0.330626i
\(428\) 2.05801 3.56457i 0.0994775 0.172300i
\(429\) 0 0
\(430\) −8.99881 15.5864i −0.433961 0.751643i
\(431\) 11.5395 35.5149i 0.555837 1.71069i −0.137886 0.990448i \(-0.544031\pi\)
0.693723 0.720242i \(-0.255969\pi\)
\(432\) 0 0
\(433\) −32.3699 23.5181i −1.55560 1.13021i −0.939504 0.342537i \(-0.888714\pi\)
−0.616095 0.787672i \(-0.711286\pi\)
\(434\) 54.5267 + 49.0961i 2.61737 + 2.35669i
\(435\) 0 0
\(436\) 9.21127 + 20.6888i 0.441140 + 0.990816i
\(437\) 0.278214 + 2.64703i 0.0133088 + 0.126625i
\(438\) 0 0
\(439\) −11.4812 + 6.62868i −0.547968 + 0.316370i −0.748302 0.663358i \(-0.769131\pi\)
0.200334 + 0.979728i \(0.435797\pi\)
\(440\) −2.90641 25.6497i −0.138558 1.22280i
\(441\) 0 0
\(442\) −27.3792 8.89606i −1.30230 0.423142i
\(443\) −1.63044 + 3.66202i −0.0774644 + 0.173988i −0.948126 0.317894i \(-0.897024\pi\)
0.870662 + 0.491882i \(0.163691\pi\)
\(444\) 0 0
\(445\) 11.1545 + 2.37097i 0.528775 + 0.112395i
\(446\) −33.8825 7.20195i −1.60438 0.341022i
\(447\) 0 0
\(448\) 6.53253 14.6723i 0.308633 0.693201i
\(449\) −20.8754 6.78284i −0.985172 0.320102i −0.228247 0.973603i \(-0.573299\pi\)
−0.756925 + 0.653501i \(0.773299\pi\)
\(450\) 0 0
\(451\) −2.12455 + 10.4097i −0.100041 + 0.490173i
\(452\) 19.4261 11.2156i 0.913726 0.527540i
\(453\) 0 0
\(454\) −5.42594 51.6244i −0.254652 2.42285i
\(455\) −9.69142 21.7673i −0.454341 1.02047i
\(456\) 0 0
\(457\) −13.2628 11.9418i −0.620405 0.558616i 0.297846 0.954614i \(-0.403732\pi\)
−0.918251 + 0.395998i \(0.870399\pi\)
\(458\) 29.8646 + 21.6979i 1.39548 + 1.01388i
\(459\) 0 0
\(460\) 2.44797 7.53409i 0.114137 0.351279i
\(461\) 5.77269 + 9.99860i 0.268861 + 0.465681i 0.968568 0.248749i \(-0.0800194\pi\)
−0.699707 + 0.714430i \(0.746686\pi\)
\(462\) 0 0
\(463\) −7.20503 + 12.4795i −0.334846 + 0.579971i −0.983455 0.181151i \(-0.942018\pi\)
0.648609 + 0.761122i \(0.275351\pi\)
\(464\) −3.63991 4.04253i −0.168979 0.187670i
\(465\) 0 0
\(466\) −4.82441 + 45.9012i −0.223487 + 2.12633i
\(467\) 22.0042 7.14959i 1.01823 0.330844i 0.248104 0.968733i \(-0.420192\pi\)
0.770128 + 0.637890i \(0.220192\pi\)
\(468\) 0 0
\(469\) 2.74382 3.77655i 0.126698 0.174385i
\(470\) −15.0263 6.69014i −0.693112 0.308593i
\(471\) 0 0
\(472\) −50.6046 29.2166i −2.32927 1.34480i
\(473\) 16.5430 3.65681i 0.760648 0.168140i
\(474\) 0 0
\(475\) 1.24755 + 5.86925i 0.0572414 + 0.269300i
\(476\) −16.6142 22.8675i −0.761510 1.04813i
\(477\) 0 0
\(478\) 18.1884 + 55.9783i 0.831920 + 2.56039i
\(479\) −0.299837 + 0.333002i −0.0136999 + 0.0152153i −0.749956 0.661488i \(-0.769925\pi\)
0.736256 + 0.676703i \(0.236592\pi\)
\(480\) 0 0
\(481\) 37.3556 3.92623i 1.70327 0.179021i
\(482\) −19.2206 + 17.3063i −0.875476 + 0.788282i
\(483\) 0 0
\(484\) 45.4387 + 8.89048i 2.06539 + 0.404113i
\(485\) 3.34385i 0.151836i
\(486\) 0 0
\(487\) 3.32024 2.41230i 0.150455 0.109312i −0.510011 0.860168i \(-0.670359\pi\)
0.660466 + 0.750856i \(0.270359\pi\)
\(488\) 16.0810 + 1.69018i 0.727954 + 0.0765111i
\(489\) 0 0
\(490\) 2.04764 9.63340i 0.0925030 0.435193i
\(491\) −22.6072 + 10.0654i −1.02025 + 0.454245i −0.847542 0.530729i \(-0.821918\pi\)
−0.172708 + 0.984973i \(0.555252\pi\)
\(492\) 0 0
\(493\) 2.15476 0.458008i 0.0970454 0.0206276i
\(494\) −26.8281 −1.20705
\(495\) 0 0
\(496\) −49.8490 −2.23829
\(497\) −34.1609 + 7.26113i −1.53233 + 0.325706i
\(498\) 0 0
\(499\) 1.42258 0.633373i 0.0636834 0.0283537i −0.374648 0.927167i \(-0.622236\pi\)
0.438331 + 0.898814i \(0.355570\pi\)
\(500\) 9.89985 46.5751i 0.442735 2.08290i
\(501\) 0 0
\(502\) 16.2002 + 1.70271i 0.723052 + 0.0759958i
\(503\) 3.60435 2.61872i 0.160710 0.116763i −0.504524 0.863398i \(-0.668332\pi\)
0.665234 + 0.746635i \(0.268332\pi\)
\(504\) 0 0
\(505\) 18.7609i 0.834847i
\(506\) 8.95194 + 6.39368i 0.397962 + 0.284234i
\(507\) 0 0
\(508\) 33.7116 30.3540i 1.49571 1.34674i
\(509\) 28.7887 3.02581i 1.27604 0.134117i 0.557835 0.829952i \(-0.311632\pi\)
0.718202 + 0.695835i \(0.244966\pi\)
\(510\) 0 0
\(511\) 19.4381 21.5882i 0.859892 0.955007i
\(512\) 14.4346 + 44.4253i 0.637927 + 1.96334i
\(513\) 0 0
\(514\) 15.6182 + 21.4966i 0.688890 + 0.948176i
\(515\) 2.19793 + 10.3404i 0.0968523 + 0.455654i
\(516\) 0 0
\(517\) 10.2671 11.5904i 0.451546 0.509747i
\(518\) 47.1146 + 27.2016i 2.07010 + 1.19517i
\(519\) 0 0
\(520\) 38.2849 + 17.0455i 1.67890 + 0.747495i
\(521\) 24.7832 34.1112i 1.08577 1.49444i 0.232769 0.972532i \(-0.425221\pi\)
0.853003 0.521905i \(-0.174779\pi\)
\(522\) 0 0
\(523\) −12.4929 + 4.05920i −0.546277 + 0.177496i −0.569137 0.822242i \(-0.692723\pi\)
0.0228601 + 0.999739i \(0.492723\pi\)
\(524\) 7.56523 71.9783i 0.330488 3.14439i
\(525\) 0 0
\(526\) −33.5779 37.2920i −1.46407 1.62601i
\(527\) 10.0935 17.4824i 0.439678 0.761545i
\(528\) 0 0
\(529\) −10.6141 18.3841i −0.461482 0.799310i
\(530\) −5.47335 + 16.8452i −0.237747 + 0.731711i
\(531\) 0 0
\(532\) −21.3105 15.4829i −0.923925 0.671271i
\(533\) −12.8179 11.5413i −0.555206 0.499909i
\(534\) 0 0
\(535\) −0.562370 1.26310i −0.0243134 0.0546087i
\(536\) 0.858212 + 8.16534i 0.0370691 + 0.352689i
\(537\) 0 0
\(538\) −20.9668 + 12.1052i −0.903943 + 0.521892i
\(539\) 8.06639 + 4.57030i 0.347444 + 0.196857i
\(540\) 0 0
\(541\) −9.06438 2.94519i −0.389708 0.126624i 0.107608 0.994193i \(-0.465681\pi\)
−0.497316 + 0.867570i \(0.665681\pi\)
\(542\) −23.7751 + 53.3997i −1.02123 + 2.29372i
\(543\) 0 0
\(544\) 4.60312 + 0.978423i 0.197357 + 0.0419495i
\(545\) 7.44120 + 1.58168i 0.318746 + 0.0677515i
\(546\) 0 0
\(547\) −9.92567 + 22.2934i −0.424391 + 0.953197i 0.567175 + 0.823597i \(0.308036\pi\)
−0.991566 + 0.129600i \(0.958631\pi\)
\(548\) −39.4578 12.8206i −1.68555 0.547669i
\(549\) 0 0
\(550\) 21.5775 + 12.2255i 0.920066 + 0.521297i
\(551\) 1.77787 1.02645i 0.0757397 0.0437283i
\(552\) 0 0
\(553\) 3.45877 + 32.9080i 0.147082 + 1.39939i
\(554\) 17.6765 + 39.7022i 0.751005 + 1.68678i
\(555\) 0 0
\(556\) −6.91236 6.22391i −0.293149 0.263953i
\(557\) 10.0179 + 7.27845i 0.424473 + 0.308398i 0.779435 0.626483i \(-0.215506\pi\)
−0.354962 + 0.934881i \(0.615506\pi\)
\(558\) 0 0
\(559\) −8.49964 + 26.1592i −0.359497 + 1.10642i
\(560\) 11.7233 + 20.3053i 0.495399 + 0.858056i
\(561\) 0 0
\(562\) −28.5675 + 49.4804i −1.20505 + 2.08721i
\(563\) 1.96151 + 2.17848i 0.0826679 + 0.0918120i 0.783060 0.621947i \(-0.213658\pi\)
−0.700392 + 0.713759i \(0.746991\pi\)
\(564\) 0 0
\(565\) 0.787628 7.49378i 0.0331358 0.315266i
\(566\) −51.2792 + 16.6616i −2.15542 + 0.700340i
\(567\) 0 0
\(568\) 36.1049 49.6942i 1.51493 2.08512i
\(569\) −11.6758 5.19842i −0.489476 0.217929i 0.147131 0.989117i \(-0.452996\pi\)
−0.636607 + 0.771188i \(0.719663\pi\)
\(570\) 0 0
\(571\) 0.582904 + 0.336539i 0.0243938 + 0.0140837i 0.512147 0.858898i \(-0.328850\pi\)
−0.487754 + 0.872981i \(0.662184\pi\)
\(572\) −49.8419 + 56.2662i −2.08400 + 2.35261i
\(573\) 0 0
\(574\) −5.19406 24.4361i −0.216796 1.01994i
\(575\) 2.34787 + 3.23156i 0.0979128 + 0.134765i
\(576\) 0 0
\(577\) −7.29562 22.4536i −0.303721 0.934756i −0.980151 0.198250i \(-0.936474\pi\)
0.676431 0.736506i \(-0.263526\pi\)
\(578\) 20.6687 22.9549i 0.859705 0.954799i
\(579\) 0 0
\(580\) −6.07663 + 0.638679i −0.252318 + 0.0265197i
\(581\) 15.8418 14.2640i 0.657229 0.591772i
\(582\) 0 0
\(583\) −13.5683 9.69077i −0.561941 0.401351i
\(584\) 51.0936i 2.11427i
\(585\) 0 0
\(586\) −39.2172 + 28.4930i −1.62005 + 1.17703i
\(587\) −12.9008 1.35593i −0.532475 0.0559653i −0.165524 0.986206i \(-0.552932\pi\)
−0.366951 + 0.930240i \(0.619598\pi\)
\(588\) 0 0
\(589\) 3.91133 18.4013i 0.161163 0.758214i
\(590\) −34.1660 + 15.2117i −1.40659 + 0.626256i
\(591\) 0 0
\(592\) −36.1535 + 7.68466i −1.48590 + 0.315838i
\(593\) 35.3371 1.45112 0.725561 0.688158i \(-0.241581\pi\)
0.725561 + 0.688158i \(0.241581\pi\)
\(594\) 0 0
\(595\) −9.49495 −0.389255
\(596\) −22.4852 + 4.77938i −0.921030 + 0.195771i
\(597\) 0 0
\(598\) −16.3154 + 7.26407i −0.667185 + 0.297050i
\(599\) 5.17750 24.3582i 0.211547 0.995250i −0.736332 0.676620i \(-0.763444\pi\)
0.947879 0.318630i \(-0.103223\pi\)
\(600\) 0 0
\(601\) −31.8867 3.35142i −1.30068 0.136707i −0.571260 0.820769i \(-0.693545\pi\)
−0.729424 + 0.684062i \(0.760212\pi\)
\(602\) −32.2300 + 23.4164i −1.31360 + 0.954383i
\(603\) 0 0
\(604\) 2.17796i 0.0886200i
\(605\) 11.3878 10.5931i 0.462982 0.430672i
\(606\) 0 0
\(607\) 17.8339 16.0577i 0.723857 0.651764i −0.222483 0.974937i \(-0.571416\pi\)
0.946340 + 0.323173i \(0.104750\pi\)
\(608\) 4.36151 0.458413i 0.176883 0.0185911i
\(609\) 0 0
\(610\) 6.92493 7.69091i 0.280382 0.311396i
\(611\) 7.76797 + 23.9073i 0.314258 + 0.967188i
\(612\) 0 0
\(613\) −21.1678 29.1350i −0.854959 1.17675i −0.982748 0.184949i \(-0.940788\pi\)
0.127789 0.991801i \(-0.459212\pi\)
\(614\) 1.07870 + 5.07487i 0.0435327 + 0.204805i
\(615\) 0 0
\(616\) −55.7931 + 12.3330i −2.24797 + 0.496910i
\(617\) −39.9420 23.0605i −1.60800 0.928381i −0.989816 0.142350i \(-0.954534\pi\)
−0.618187 0.786031i \(-0.712132\pi\)
\(618\) 0 0
\(619\) 40.6867 + 18.1149i 1.63534 + 0.728100i 0.999060 0.0433597i \(-0.0138062\pi\)
0.636279 + 0.771459i \(0.280473\pi\)
\(620\) −32.9112 + 45.2983i −1.32174 + 1.81923i
\(621\) 0 0
\(622\) 31.0219 10.0796i 1.24386 0.404156i
\(623\) 2.63857 25.1043i 0.105712 1.00578i
\(624\) 0 0
\(625\) −0.662894 0.736219i −0.0265158 0.0294487i
\(626\) 3.73360 6.46678i 0.149225 0.258465i
\(627\) 0 0
\(628\) 28.3865 + 49.1668i 1.13274 + 1.96197i
\(629\) 4.62532 14.2353i 0.184424 0.567598i
\(630\) 0 0
\(631\) 29.7072 + 21.5835i 1.18262 + 0.859227i 0.992465 0.122527i \(-0.0390997\pi\)
0.190159 + 0.981753i \(0.439100\pi\)
\(632\) −43.2497 38.9422i −1.72038 1.54904i
\(633\) 0 0
\(634\) 32.3651 + 72.6933i 1.28538 + 2.88702i
\(635\) −1.59284 15.1549i −0.0632099 0.601402i
\(636\) 0 0
\(637\) −13.0349 + 7.52572i −0.516463 + 0.298180i
\(638\) 1.69673 8.31350i 0.0671743 0.329135i
\(639\) 0 0
\(640\) 23.0936 + 7.50356i 0.912854 + 0.296604i
\(641\) 14.2905 32.0971i 0.564442 1.26776i −0.375626 0.926771i \(-0.622572\pi\)
0.940068 0.340987i \(-0.110761\pi\)
\(642\) 0 0
\(643\) −4.78014 1.01605i −0.188510 0.0400691i 0.112689 0.993630i \(-0.464054\pi\)
−0.301199 + 0.953561i \(0.597387\pi\)
\(644\) −17.1521 3.64578i −0.675886 0.143664i
\(645\) 0 0
\(646\) −4.34832 + 9.76649i −0.171082 + 0.384257i
\(647\) 13.2744 + 4.31311i 0.521870 + 0.169566i 0.558094 0.829778i \(-0.311533\pi\)
−0.0362237 + 0.999344i \(0.511533\pi\)
\(648\) 0 0
\(649\) −3.96395 34.9827i −0.155599 1.37319i
\(650\) −34.8683 + 20.1312i −1.36765 + 0.789611i
\(651\) 0 0
\(652\) 8.45812 + 80.4737i 0.331246 + 3.15159i
\(653\) −4.92843 11.0694i −0.192865 0.433181i 0.791066 0.611730i \(-0.209526\pi\)
−0.983931 + 0.178549i \(0.942860\pi\)
\(654\) 0 0
\(655\) −18.0673 16.2679i −0.705948 0.635638i
\(656\) 13.7311 + 9.97625i 0.536111 + 0.389507i
\(657\) 0 0
\(658\) −11.2510 + 34.6270i −0.438610 + 1.34990i
\(659\) 24.0221 + 41.6074i 0.935767 + 1.62080i 0.773261 + 0.634088i \(0.218624\pi\)
0.162506 + 0.986708i \(0.448042\pi\)
\(660\) 0 0
\(661\) 0.589966 1.02185i 0.0229470 0.0397454i −0.854324 0.519741i \(-0.826028\pi\)
0.877271 + 0.479996i \(0.159362\pi\)
\(662\) −43.9486 48.8099i −1.70811 1.89705i
\(663\) 0 0
\(664\) −3.91912 + 37.2879i −0.152091 + 1.44705i
\(665\) −8.41538 + 2.73432i −0.326334 + 0.106032i
\(666\) 0 0
\(667\) 0.803275 1.10561i 0.0311029 0.0428095i
\(668\) 2.26697 + 1.00932i 0.0877118 + 0.0390518i
\(669\) 0 0
\(670\) 4.55088 + 2.62745i 0.175816 + 0.101507i
\(671\) 4.93944 + 8.39732i 0.190685 + 0.324175i
\(672\) 0 0
\(673\) 5.10854 + 24.0338i 0.196920 + 0.926435i 0.959972 + 0.280097i \(0.0903668\pi\)
−0.763052 + 0.646337i \(0.776300\pi\)
\(674\) −6.14120 8.45263i −0.236550 0.325583i
\(675\) 0 0
\(676\) −20.8009 64.0187i −0.800036 2.46226i
\(677\) 28.0942 31.2017i 1.07975 1.19918i 0.100833 0.994903i \(-0.467849\pi\)
0.978913 0.204276i \(-0.0654841\pi\)
\(678\) 0 0
\(679\) −7.36118 + 0.773692i −0.282496 + 0.0296916i
\(680\) 12.4105 11.1745i 0.475920 0.428521i
\(681\) 0 0
\(682\) −46.2113 62.5315i −1.76952 2.39445i
\(683\) 45.5024i 1.74110i 0.492081 + 0.870550i \(0.336236\pi\)
−0.492081 + 0.870550i \(0.663764\pi\)
\(684\) 0 0
\(685\) −11.2750 + 8.19176i −0.430795 + 0.312991i
\(686\) 32.6113 + 3.42759i 1.24511 + 0.130866i
\(687\) 0 0
\(688\) 5.62732 26.4745i 0.214540 1.00933i
\(689\) 24.7289 11.0100i 0.942095 0.419448i
\(690\) 0 0
\(691\) 45.9376 9.76434i 1.74755 0.371453i 0.780324 0.625375i \(-0.215054\pi\)
0.967225 + 0.253922i \(0.0817207\pi\)
\(692\) 15.3388 0.583092
\(693\) 0 0
\(694\) 85.6506 3.25125
\(695\) −3.05625 + 0.649627i −0.115930 + 0.0246417i
\(696\) 0 0
\(697\) −6.27903 + 2.79560i −0.237835 + 0.105891i
\(698\) −10.7905 + 50.7653i −0.408427 + 1.92150i
\(699\) 0 0
\(700\) −39.3151 4.13218i −1.48597 0.156182i
\(701\) −7.98290 + 5.79992i −0.301510 + 0.219060i −0.728245 0.685317i \(-0.759664\pi\)
0.426735 + 0.904377i \(0.359664\pi\)
\(702\) 0 0
\(703\) 13.9487i 0.526086i
\(704\) −9.89197 + 13.8500i −0.372818 + 0.521991i
\(705\) 0 0
\(706\) 15.3277 13.8011i 0.576864 0.519411i
\(707\) −41.3004 + 4.34085i −1.55326 + 0.163254i
\(708\) 0 0
\(709\) −17.8763 + 19.8536i −0.671357 + 0.745618i −0.978545 0.206031i \(-0.933945\pi\)
0.307188 + 0.951649i \(0.400612\pi\)
\(710\) −12.1489 37.3903i −0.455938 1.40323i
\(711\) 0 0
\(712\) 26.0961 + 35.9182i 0.977992 + 1.34609i
\(713\) −2.60376 12.2497i −0.0975116 0.458756i
\(714\) 0 0
\(715\) 5.44990 + 24.6548i 0.203815 + 0.922036i
\(716\) 20.8533 + 12.0397i 0.779325 + 0.449944i
\(717\) 0 0
\(718\) −28.9903 12.9073i −1.08191 0.481697i
\(719\) −16.7605 + 23.0689i −0.625061 + 0.860323i −0.997709 0.0676497i \(-0.978450\pi\)
0.372648 + 0.927973i \(0.378450\pi\)
\(720\) 0 0
\(721\) 22.2550 7.23110i 0.828821 0.269300i
\(722\) 3.90743 37.1768i 0.145420 1.38358i
\(723\) 0 0
\(724\) −22.6516 25.1571i −0.841839 0.934957i
\(725\) 1.54045 2.66814i 0.0572110 0.0990923i
\(726\) 0 0
\(727\) −0.983296 1.70312i −0.0364684 0.0631652i 0.847215 0.531250i \(-0.178278\pi\)
−0.883684 + 0.468085i \(0.844944\pi\)
\(728\) 28.6660 88.2247i 1.06243 3.26983i
\(729\) 0 0
\(730\) 26.4563 + 19.2216i 0.979191 + 0.711424i
\(731\) 8.14536 + 7.33411i 0.301267 + 0.271262i
\(732\) 0 0
\(733\) −19.0092 42.6955i −0.702122 1.57699i −0.812406 0.583093i \(-0.801842\pi\)
0.110283 0.993900i \(-0.464824\pi\)
\(734\) −5.47862 52.1256i −0.202220 1.92399i
\(735\) 0 0
\(736\) 2.52831 1.45972i 0.0931947 0.0538060i
\(737\) −3.64921 + 3.33976i −0.134421 + 0.123022i
\(738\) 0 0
\(739\) 16.2275 + 5.27262i 0.596937 + 0.193957i 0.591874 0.806031i \(-0.298388\pi\)
0.00506302 + 0.999987i \(0.498388\pi\)
\(740\) −16.8860 + 37.9266i −0.620742 + 1.39421i
\(741\) 0 0
\(742\) 38.3497 + 8.15149i 1.40786 + 0.299251i
\(743\) −40.4330 8.59430i −1.48334 0.315294i −0.606119 0.795374i \(-0.707274\pi\)
−0.877225 + 0.480080i \(0.840608\pi\)
\(744\) 0 0
\(745\) −3.14078 + 7.05432i −0.115069 + 0.258450i
\(746\) 39.1155 + 12.7094i 1.43212 + 0.465325i
\(747\) 0 0
\(748\) 12.4047 + 27.2641i 0.453560 + 0.996874i
\(749\) −2.65049 + 1.53026i −0.0968469 + 0.0559146i
\(750\) 0 0
\(751\) −4.75912 45.2800i −0.173663 1.65229i −0.640508 0.767952i \(-0.721276\pi\)
0.466845 0.884339i \(-0.345391\pi\)
\(752\) −10.0610 22.5975i −0.366889 0.824045i
\(753\) 0 0
\(754\) 10.2368 + 9.21725i 0.372802 + 0.335672i
\(755\) 0.591889 + 0.430032i 0.0215410 + 0.0156505i
\(756\) 0 0
\(757\) −13.3554 + 41.1036i −0.485409 + 1.49393i 0.345979 + 0.938242i \(0.387547\pi\)
−0.831388 + 0.555692i \(0.812453\pi\)
\(758\) −17.7841 30.8029i −0.645947 1.11881i
\(759\) 0 0
\(760\) 7.78144 13.4779i 0.282263 0.488893i
\(761\) 13.3175 + 14.7906i 0.482761 + 0.536160i 0.934487 0.355996i \(-0.115858\pi\)
−0.451727 + 0.892156i \(0.649192\pi\)
\(762\) 0 0
\(763\) 1.76019 16.7471i 0.0637232 0.606286i
\(764\) 48.9441 15.9029i 1.77074 0.575347i
\(765\) 0 0
\(766\) −14.8756 + 20.4745i −0.537477 + 0.739774i
\(767\) 52.2153 + 23.2478i 1.88539 + 0.839428i
\(768\) 0 0
\(769\) 34.6081 + 19.9810i 1.24800 + 0.720534i 0.970711 0.240252i \(-0.0772300\pi\)
0.277291 + 0.960786i \(0.410563\pi\)
\(770\) −14.6036 + 33.5294i −0.526276 + 1.20832i
\(771\) 0 0
\(772\) −14.6650 68.9936i −0.527806 2.48313i
\(773\) −0.983134 1.35317i −0.0353609 0.0486701i 0.790970 0.611854i \(-0.209576\pi\)
−0.826331 + 0.563184i \(0.809576\pi\)
\(774\) 0 0
\(775\) −8.72443 26.8510i −0.313391 0.964518i
\(776\) 8.71098 9.67452i 0.312706 0.347295i
\(777\) 0 0
\(778\) −51.2447 + 5.38604i −1.83721 + 0.193099i
\(779\) −4.76004 + 4.28596i −0.170546 + 0.153560i
\(780\) 0 0
\(781\) 37.0081 0.300171i 1.32426 0.0107410i
\(782\) 7.11680i 0.254496i
\(783\) 0 0
\(784\) 11.9823 8.70566i 0.427940 0.310916i
\(785\) 18.9665 + 1.99346i 0.676945 + 0.0711498i
\(786\) 0 0
\(787\) −1.95508 + 9.19792i −0.0696910 + 0.327870i −0.999158 0.0410357i \(-0.986934\pi\)
0.929467 + 0.368906i \(0.120268\pi\)
\(788\) 25.5172 11.3610i 0.909014 0.404719i
\(789\) 0 0
\(790\) −36.4350 + 7.74450i −1.29630 + 0.275537i
\(791\) −16.6791 −0.593042
\(792\) 0 0
\(793\) −15.8164 −0.561657
\(794\) 81.9068 17.4098i 2.90676 0.617852i
\(795\) 0 0
\(796\) −12.4892 + 5.56056i −0.442669 + 0.197089i
\(797\) −6.13517 + 28.8637i −0.217319 + 1.02241i 0.725274 + 0.688461i \(0.241713\pi\)
−0.942593 + 0.333945i \(0.891620\pi\)
\(798\) 0 0
\(799\) 9.96226 + 1.04708i 0.352439 + 0.0370429i
\(800\) 5.32464 3.86857i 0.188254 0.136775i
\(801\) 0 0
\(802\) 8.93881i 0.315640i
\(803\) −24.7575 + 18.2960i −0.873672 + 0.645651i
\(804\) 0 0
\(805\) −4.37741 + 3.94144i −0.154284 + 0.138918i
\(806\) 125.540 13.1948i 4.42195 0.464766i
\(807\) 0 0
\(808\) 48.8735 54.2795i 1.71936 1.90955i
\(809\) −16.3139 50.2091i −0.573567 1.76526i −0.641008 0.767534i \(-0.721484\pi\)
0.0674416 0.997723i \(-0.478516\pi\)
\(810\) 0 0
\(811\) 9.82048 + 13.5167i 0.344844 + 0.474636i 0.945848 0.324609i \(-0.105233\pi\)
−0.601005 + 0.799245i \(0.705233\pi\)
\(812\) 2.81199 + 13.2294i 0.0986816 + 0.464260i
\(813\) 0 0
\(814\) −43.1550 38.2277i −1.51258 1.33988i
\(815\) 23.5398 + 13.5907i 0.824562 + 0.476061i
\(816\) 0 0
\(817\) 9.33129 + 4.15456i 0.326460 + 0.145350i
\(818\) −5.56375 + 7.65785i −0.194532 + 0.267750i
\(819\) 0 0
\(820\) 18.1311 5.89114i 0.633164 0.205727i
\(821\) −1.91377 + 18.2083i −0.0667909 + 0.635473i 0.909004 + 0.416787i \(0.136844\pi\)
−0.975795 + 0.218686i \(0.929823\pi\)
\(822\) 0 0
\(823\) −7.62614 8.46969i −0.265831 0.295235i 0.595421 0.803414i \(-0.296985\pi\)
−0.861251 + 0.508179i \(0.830319\pi\)
\(824\) −20.5785 + 35.6431i −0.716887 + 1.24169i
\(825\) 0 0
\(826\) 41.3925 + 71.6939i 1.44023 + 2.49455i
\(827\) 5.84858 18.0001i 0.203375 0.625924i −0.796401 0.604769i \(-0.793266\pi\)
0.999776 0.0211551i \(-0.00673439\pi\)
\(828\) 0 0
\(829\) 13.0466 + 9.47891i 0.453127 + 0.329216i 0.790829 0.612037i \(-0.209650\pi\)
−0.337702 + 0.941253i \(0.609650\pi\)
\(830\) 17.8333 + 16.0572i 0.619004 + 0.557354i
\(831\) 0 0
\(832\) −11.2386 25.2423i −0.389628 0.875119i
\(833\) 0.626948 + 5.96501i 0.0217224 + 0.206675i
\(834\) 0 0
\(835\) 0.721904 0.416791i 0.0249825 0.0144237i
\(836\) 18.8457 + 20.5919i 0.651792 + 0.712187i
\(837\) 0 0
\(838\) −21.3614 6.94074i −0.737917 0.239764i
\(839\) 9.44446 21.2126i 0.326059 0.732341i −0.673920 0.738804i \(-0.735391\pi\)
0.999979 + 0.00646370i \(0.00205747\pi\)
\(840\) 0 0
\(841\) 27.3352 + 5.81029i 0.942595 + 0.200355i
\(842\) 21.5748 + 4.58587i 0.743518 + 0.158040i
\(843\) 0 0
\(844\) 13.6651 30.6922i 0.470371 1.05647i
\(845\) −21.5050 6.98739i −0.739794 0.240374i
\(846\) 0 0
\(847\) −25.9548 22.6183i −0.891816 0.777175i
\(848\) −23.0680 + 13.3183i −0.792158 + 0.457352i
\(849\) 0 0
\(850\) 1.67708 + 15.9563i 0.0575232 + 0.547297i
\(851\) −3.77680 8.48284i −0.129467 0.290788i
\(852\) 0 0
\(853\) 18.3942 + 16.5622i 0.629805 + 0.567079i 0.920989 0.389588i \(-0.127383\pi\)
−0.291184 + 0.956667i \(0.594049\pi\)
\(854\) −18.5332 13.4651i −0.634191 0.460767i
\(855\) 0 0
\(856\) 1.66342 5.11947i 0.0568544 0.174980i
\(857\) 4.20876 + 7.28979i 0.143769 + 0.249014i 0.928913 0.370298i \(-0.120745\pi\)
−0.785144 + 0.619313i \(0.787411\pi\)
\(858\) 0 0
\(859\) −26.3276 + 45.6007i −0.898285 + 1.55587i −0.0685984 + 0.997644i \(0.521853\pi\)
−0.829686 + 0.558230i \(0.811481\pi\)
\(860\) −20.3424 22.5925i −0.693670 0.770398i
\(861\) 0 0
\(862\) 9.72642 92.5407i 0.331283 3.15195i
\(863\) −37.6211 + 12.2238i −1.28064 + 0.416104i −0.868804 0.495156i \(-0.835111\pi\)
−0.411832 + 0.911260i \(0.635111\pi\)
\(864\) 0 0
\(865\) 3.02860 4.16851i 0.102975 0.141733i
\(866\) −91.0812 40.5520i −3.09507 1.37801i
\(867\) 0 0
\(868\) 107.335 + 61.9701i 3.64320 + 2.10340i
\(869\) 3.38232 34.9014i 0.114737 1.18395i
\(870\) 0 0
\(871\) −1.66973 7.85548i −0.0565768 0.266173i
\(872\) 17.4087 + 23.9611i 0.589534 + 0.811424i
\(873\) 0 0
\(874\) 2.04947 + 6.30763i 0.0693245 + 0.213359i
\(875\) −23.6908 + 26.3113i −0.800896 + 0.889485i
\(876\) 0 0
\(877\) −38.1756 + 4.01242i −1.28910 + 0.135490i −0.724154 0.689639i \(-0.757769\pi\)
−0.564945 + 0.825129i \(0.691103\pi\)
\(878\) −24.5496 + 22.1046i −0.828510 + 0.745994i
\(879\) 0 0
\(880\) −7.86939 23.5674i −0.265277 0.794456i
\(881\) 25.4083i 0.856026i 0.903772 + 0.428013i \(0.140786\pi\)
−0.903772 + 0.428013i \(0.859214\pi\)
\(882\) 0 0
\(883\) 4.42613 3.21577i 0.148951 0.108219i −0.510814 0.859691i \(-0.670656\pi\)
0.659765 + 0.751472i \(0.270656\pi\)
\(884\) −48.3621 5.08306i −1.62659 0.170962i
\(885\) 0 0
\(886\) −2.07675 + 9.77034i −0.0697698 + 0.328241i
\(887\) −3.83963 + 1.70951i −0.128922 + 0.0573998i −0.470184 0.882568i \(-0.655812\pi\)
0.341262 + 0.939968i \(0.389146\pi\)
\(888\) 0 0
\(889\) −32.9936 + 7.01300i −1.10657 + 0.235208i
\(890\) 28.4159 0.952504
\(891\) 0 0
\(892\) −58.5123 −1.95914
\(893\) 9.13109 1.94087i 0.305560 0.0649489i
\(894\) 0 0
\(895\) 7.38936 3.28996i 0.246999 0.109971i
\(896\) 11.1751 52.5747i 0.373333 1.75640i
\(897\) 0 0
\(898\) −54.3949 5.71713i −1.81518 0.190783i
\(899\) −7.81454 + 5.67759i −0.260629 + 0.189358i
\(900\) 0 0
\(901\) 10.7868i 0.359360i
\(902\) 0.214719 + 26.4728i 0.00714938 + 0.881448i
\(903\) 0 0
\(904\) 21.8007 19.6294i 0.725080 0.652865i
\(905\) −11.3093 + 1.18865i −0.375932 + 0.0395121i
\(906\) 0 0
\(907\) −26.3613 + 29.2772i −0.875312 + 0.972133i −0.999798 0.0200885i \(-0.993605\pi\)
0.124486 + 0.992221i \(0.460272\pi\)
\(908\) −27.0956 83.3917i −0.899199 2.76745i
\(909\) 0 0
\(910\) −34.8986 48.0338i −1.15688 1.59230i
\(911\) 1.63359 + 7.68544i 0.0541233 + 0.254630i 0.996888 0.0788280i \(-0.0251178\pi\)
−0.942765 + 0.333458i \(0.891784\pi\)
\(912\) 0 0
\(913\) −19.4713 + 11.4533i −0.644407 + 0.379050i
\(914\) −38.5129 22.2354i −1.27389 0.735482i
\(915\) 0 0
\(916\) 56.9646 + 25.3623i 1.88216 + 0.837994i
\(917\) −31.6319 + 43.5376i −1.04458 + 1.43774i
\(918\) 0 0
\(919\) −39.9674 + 12.9862i −1.31840 + 0.428376i −0.881947 0.471349i \(-0.843767\pi\)
−0.436458 + 0.899725i \(0.643767\pi\)
\(920\) 1.08293 10.3034i 0.0357032 0.339693i
\(921\) 0 0
\(922\) 19.2502 + 21.3795i 0.633970 + 0.704095i
\(923\) −30.0418 + 52.0339i −0.988838 + 1.71272i
\(924\) 0 0
\(925\) −10.4668 18.1290i −0.344146 0.596079i
\(926\) −11.0959 + 34.1497i −0.364635 + 1.12223i
\(927\) 0 0
\(928\) −1.82172 1.32355i −0.0598007 0.0434478i
\(929\) −14.8715 13.3904i −0.487919 0.439324i 0.388088 0.921622i \(-0.373136\pi\)
−0.876007 + 0.482298i \(0.839802\pi\)
\(930\) 0 0
\(931\) 2.27345 + 5.10625i 0.0745092 + 0.167350i
\(932\) 8.14930 + 77.5354i 0.266939 + 2.53976i
\(933\) 0 0
\(934\) 49.9280 28.8260i 1.63369 0.943214i
\(935\) 9.85864 + 2.01209i 0.322412 + 0.0658023i
\(936\) 0 0
\(937\) −39.0020 12.6725i −1.27414 0.413993i −0.407627 0.913149i \(-0.633643\pi\)
−0.866512 + 0.499156i \(0.833643\pi\)
\(938\) 4.73114 10.6263i 0.154477 0.346961i
\(939\) 0 0
\(940\) −27.1770 5.77666i −0.886417 0.188414i
\(941\) −14.9704 3.18207i −0.488023 0.103732i −0.0426729 0.999089i \(-0.513587\pi\)
−0.445350 + 0.895357i \(0.646921\pi\)
\(942\) 0 0
\(943\) −1.73431 + 3.89533i −0.0564770 + 0.126849i
\(944\) −53.4908 17.3802i −1.74098 0.565677i
\(945\) 0 0
\(946\) 38.4267 17.4835i 1.24936 0.568437i
\(947\) −30.7631 + 17.7611i −0.999667 + 0.577158i −0.908150 0.418645i \(-0.862505\pi\)
−0.0915174 + 0.995803i \(0.529172\pi\)
\(948\) 0 0
\(949\) −5.22407 49.7037i −0.169581 1.61345i
\(950\) 6.08144 + 13.6591i 0.197308 + 0.443161i
\(951\) 0 0
\(952\) −27.4711 24.7351i −0.890343 0.801669i
\(953\) 24.4990 + 17.7996i 0.793602 + 0.576585i 0.909030 0.416730i \(-0.136824\pi\)
−0.115428 + 0.993316i \(0.536824\pi\)
\(954\) 0 0
\(955\) 5.34206 16.4412i 0.172865 0.532024i
\(956\) 49.7117 + 86.1033i 1.60779 + 2.78478i
\(957\) 0 0
\(958\) −0.558288 + 0.966984i −0.0180375 + 0.0312418i
\(959\) 20.6422 + 22.9255i 0.666572 + 0.740304i
\(960\) 0 0
\(961\) −6.01207 + 57.2010i −0.193938 + 1.84519i
\(962\) 89.0148 28.9227i 2.86995 0.932504i
\(963\) 0 0
\(964\) −25.6796 + 35.3450i −0.827085 + 1.13838i
\(965\) −21.6455 9.63718i −0.696792 0.310232i
\(966\) 0 0
\(967\) −17.1890 9.92405i −0.552760 0.319136i 0.197474 0.980308i \(-0.436726\pi\)
−0.750234 + 0.661172i \(0.770059\pi\)
\(968\) 60.5436 0.982197i 1.94595 0.0315690i
\(969\) 0 0
\(970\) −1.73237 8.15015i −0.0556230 0.261685i
\(971\) 2.26406 + 3.11621i 0.0726570 + 0.100004i 0.843799 0.536660i \(-0.180314\pi\)
−0.771142 + 0.636663i \(0.780314\pi\)
\(972\) 0 0
\(973\) 2.13725 + 6.57777i 0.0685170 + 0.210874i
\(974\) 6.84286 7.59977i 0.219260 0.243512i
\(975\) 0 0
\(976\) 15.4784 1.62685i 0.495452 0.0520741i
\(977\) 4.61642 4.15665i 0.147693 0.132983i −0.591973 0.805958i \(-0.701651\pi\)
0.739665 + 0.672975i \(0.234984\pi\)
\(978\) 0 0
\(979\) −8.05953 + 25.5068i −0.257584 + 0.815200i
\(980\) 16.6361i 0.531420i
\(981\) 0 0
\(982\) −49.8873 + 36.2452i −1.59197 + 1.15663i
\(983\) 28.8816 + 3.03558i 0.921179 + 0.0968198i 0.553232 0.833027i \(-0.313394\pi\)
0.367947 + 0.929847i \(0.380061\pi\)
\(984\) 0 0
\(985\) 1.95081 9.17784i 0.0621580 0.292430i
\(986\) 5.01463 2.23266i 0.159698 0.0711023i
\(987\) 0 0
\(988\) −44.3272 + 9.42204i −1.41024 + 0.299755i
\(989\) 6.79967 0.216217
\(990\) 0 0
\(991\) −0.476493 −0.0151363 −0.00756816 0.999971i \(-0.502409\pi\)
−0.00756816 + 0.999971i \(0.502409\pi\)
\(992\) −20.1838 + 4.29021i −0.640838 + 0.136214i
\(993\) 0 0
\(994\) −79.5006 + 35.3959i −2.52160 + 1.12269i
\(995\) −0.954809 + 4.49202i −0.0302695 + 0.142407i
\(996\) 0 0
\(997\) 25.7030 + 2.70150i 0.814024 + 0.0855573i 0.502386 0.864644i \(-0.332456\pi\)
0.311638 + 0.950201i \(0.399122\pi\)
\(998\) 3.13920 2.28076i 0.0993696 0.0721963i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.233.10 80
3.2 odd 2 99.2.p.a.68.1 yes 80
9.2 odd 6 inner 297.2.t.a.35.10 80
9.4 even 3 891.2.k.a.728.1 80
9.5 odd 6 891.2.k.a.728.20 80
9.7 even 3 99.2.p.a.2.1 80
11.6 odd 10 inner 297.2.t.a.17.10 80
33.17 even 10 99.2.p.a.50.1 yes 80
99.50 even 30 891.2.k.a.809.1 80
99.61 odd 30 99.2.p.a.83.1 yes 80
99.83 even 30 inner 297.2.t.a.116.10 80
99.94 odd 30 891.2.k.a.809.20 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.1 80 9.7 even 3
99.2.p.a.50.1 yes 80 33.17 even 10
99.2.p.a.68.1 yes 80 3.2 odd 2
99.2.p.a.83.1 yes 80 99.61 odd 30
297.2.t.a.17.10 80 11.6 odd 10 inner
297.2.t.a.35.10 80 9.2 odd 6 inner
297.2.t.a.116.10 80 99.83 even 30 inner
297.2.t.a.233.10 80 1.1 even 1 trivial
891.2.k.a.728.1 80 9.4 even 3
891.2.k.a.728.20 80 9.5 odd 6
891.2.k.a.809.1 80 99.50 even 30
891.2.k.a.809.20 80 99.94 odd 30