Properties

Label 891.2.k.a.728.20
Level $891$
Weight $2$
Character 891.728
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(161,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 728.20
Character \(\chi\) \(=\) 891.728
Dual form 891.2.k.a.809.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.770011 - 2.36985i) q^{2} +(-3.40524 - 2.47406i) q^{4} +(1.34471 - 0.436923i) q^{5} +(1.83962 - 2.53202i) q^{7} +(-4.45339 + 3.23558i) q^{8} -3.52320i q^{10} +(2.44665 - 2.23917i) q^{11} +(5.12091 + 1.66389i) q^{13} +(-4.58399 - 6.30932i) q^{14} +(1.63730 + 5.03909i) q^{16} +(-0.663043 - 2.04064i) q^{17} +(1.17531 + 1.61768i) q^{19} +(-5.66005 - 1.83906i) q^{20} +(-3.42256 - 7.52239i) q^{22} +1.33110i q^{23} +(-2.42774 + 1.76385i) q^{25} +(7.88632 - 10.8546i) q^{26} +(-12.5287 + 4.07083i) q^{28} +(-0.830600 - 0.603467i) q^{29} +(-2.90732 + 8.94782i) q^{31} +2.19325 q^{32} -5.34656 q^{34} +(1.36746 - 4.20862i) q^{35} +(-5.64362 - 4.10033i) q^{37} +(4.73866 - 1.53968i) q^{38} +(-4.57483 + 6.29671i) q^{40} +(-2.59156 + 1.88288i) q^{41} +5.10831i q^{43} +(-13.8713 + 1.57178i) q^{44} +(3.15451 + 1.02496i) q^{46} +(-2.74412 - 3.77695i) q^{47} +(-0.863813 - 2.65854i) q^{49} +(2.31069 + 7.11156i) q^{50} +(-13.3214 - 18.3354i) q^{52} +(4.78123 + 1.55352i) q^{53} +(2.31170 - 4.08004i) q^{55} +17.2283i q^{56} +(-2.06970 + 1.50372i) q^{58} +(6.23944 - 8.58785i) q^{59} +(-2.79366 + 0.907714i) q^{61} +(18.9663 + 13.7799i) q^{62} +(-1.58577 + 4.88050i) q^{64} +7.61314 q^{65} +1.49151 q^{67} +(-2.79082 + 8.58927i) q^{68} +(-8.92084 - 6.48137i) q^{70} +(-10.6126 + 3.44824i) q^{71} +(-5.45572 + 7.50916i) q^{73} +(-14.0628 + 10.2172i) q^{74} -8.41637i q^{76} +(-1.16872 - 10.3142i) q^{77} +(10.0550 + 3.26708i) q^{79} +(4.40339 + 6.06075i) q^{80} +(2.46661 + 7.59144i) q^{82} +(2.10476 + 6.47780i) q^{83} +(-1.78320 - 2.45437i) q^{85} +(12.1059 + 3.93346i) q^{86} +(-3.65088 + 17.8882i) q^{88} -8.06536i q^{89} +(13.6335 - 9.90535i) q^{91} +(3.29322 - 4.53272i) q^{92} +(-11.0638 + 3.59485i) q^{94} +(2.28726 + 1.66179i) q^{95} +(-0.730812 + 2.24921i) q^{97} -6.96550 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.770011 2.36985i 0.544480 1.67574i −0.177742 0.984077i \(-0.556879\pi\)
0.722222 0.691661i \(-0.243121\pi\)
\(3\) 0 0
\(4\) −3.40524 2.47406i −1.70262 1.23703i
\(5\) 1.34471 0.436923i 0.601374 0.195398i 0.00752061 0.999972i \(-0.497606\pi\)
0.593853 + 0.804574i \(0.297606\pi\)
\(6\) 0 0
\(7\) 1.83962 2.53202i 0.695312 0.957015i −0.304677 0.952456i \(-0.598549\pi\)
0.999990 0.00455947i \(-0.00145133\pi\)
\(8\) −4.45339 + 3.23558i −1.57451 + 1.14395i
\(9\) 0 0
\(10\) 3.52320i 1.11413i
\(11\) 2.44665 2.23917i 0.737693 0.675136i
\(12\) 0 0
\(13\) 5.12091 + 1.66389i 1.42029 + 0.461479i 0.915693 0.401879i \(-0.131643\pi\)
0.504593 + 0.863358i \(0.331643\pi\)
\(14\) −4.58399 6.30932i −1.22512 1.68624i
\(15\) 0 0
\(16\) 1.63730 + 5.03909i 0.409325 + 1.25977i
\(17\) −0.663043 2.04064i −0.160812 0.494927i 0.837892 0.545836i \(-0.183788\pi\)
−0.998703 + 0.0509094i \(0.983788\pi\)
\(18\) 0 0
\(19\) 1.17531 + 1.61768i 0.269635 + 0.371121i 0.922266 0.386555i \(-0.126335\pi\)
−0.652632 + 0.757675i \(0.726335\pi\)
\(20\) −5.66005 1.83906i −1.26562 0.411226i
\(21\) 0 0
\(22\) −3.42256 7.52239i −0.729692 1.60378i
\(23\) 1.33110i 0.277554i 0.990324 + 0.138777i \(0.0443171\pi\)
−0.990324 + 0.138777i \(0.955683\pi\)
\(24\) 0 0
\(25\) −2.42774 + 1.76385i −0.485547 + 0.352771i
\(26\) 7.88632 10.8546i 1.54663 2.12876i
\(27\) 0 0
\(28\) −12.5287 + 4.07083i −2.36771 + 0.769315i
\(29\) −0.830600 0.603467i −0.154239 0.112061i 0.507989 0.861363i \(-0.330389\pi\)
−0.662228 + 0.749302i \(0.730389\pi\)
\(30\) 0 0
\(31\) −2.90732 + 8.94782i −0.522171 + 1.60708i 0.247673 + 0.968844i \(0.420334\pi\)
−0.769844 + 0.638233i \(0.779666\pi\)
\(32\) 2.19325 0.387716
\(33\) 0 0
\(34\) −5.34656 −0.916927
\(35\) 1.36746 4.20862i 0.231143 0.711386i
\(36\) 0 0
\(37\) −5.64362 4.10033i −0.927805 0.674090i 0.0176490 0.999844i \(-0.494382\pi\)
−0.945455 + 0.325754i \(0.894382\pi\)
\(38\) 4.73866 1.53968i 0.768712 0.249770i
\(39\) 0 0
\(40\) −4.57483 + 6.29671i −0.723344 + 0.995597i
\(41\) −2.59156 + 1.88288i −0.404733 + 0.294056i −0.771466 0.636270i \(-0.780476\pi\)
0.366733 + 0.930326i \(0.380476\pi\)
\(42\) 0 0
\(43\) 5.10831i 0.779010i 0.921024 + 0.389505i \(0.127354\pi\)
−0.921024 + 0.389505i \(0.872646\pi\)
\(44\) −13.8713 + 1.57178i −2.09117 + 0.236955i
\(45\) 0 0
\(46\) 3.15451 + 1.02496i 0.465107 + 0.151122i
\(47\) −2.74412 3.77695i −0.400271 0.550925i 0.560541 0.828127i \(-0.310593\pi\)
−0.960812 + 0.277201i \(0.910593\pi\)
\(48\) 0 0
\(49\) −0.863813 2.65854i −0.123402 0.379792i
\(50\) 2.31069 + 7.11156i 0.326780 + 1.00573i
\(51\) 0 0
\(52\) −13.3214 18.3354i −1.84735 2.54266i
\(53\) 4.78123 + 1.55352i 0.656752 + 0.213392i 0.618389 0.785872i \(-0.287786\pi\)
0.0383632 + 0.999264i \(0.487786\pi\)
\(54\) 0 0
\(55\) 2.31170 4.08004i 0.311709 0.550153i
\(56\) 17.2283i 2.30223i
\(57\) 0 0
\(58\) −2.06970 + 1.50372i −0.271765 + 0.197449i
\(59\) 6.23944 8.58785i 0.812306 1.11804i −0.178658 0.983911i \(-0.557176\pi\)
0.990964 0.134131i \(-0.0428245\pi\)
\(60\) 0 0
\(61\) −2.79366 + 0.907714i −0.357691 + 0.116221i −0.482350 0.875979i \(-0.660216\pi\)
0.124658 + 0.992200i \(0.460216\pi\)
\(62\) 18.9663 + 13.7799i 2.40873 + 1.75004i
\(63\) 0 0
\(64\) −1.58577 + 4.88050i −0.198221 + 0.610062i
\(65\) 7.61314 0.944294
\(66\) 0 0
\(67\) 1.49151 0.182217 0.0911087 0.995841i \(-0.470959\pi\)
0.0911087 + 0.995841i \(0.470959\pi\)
\(68\) −2.79082 + 8.58927i −0.338437 + 1.04160i
\(69\) 0 0
\(70\) −8.92084 6.48137i −1.06624 0.774672i
\(71\) −10.6126 + 3.44824i −1.25948 + 0.409231i −0.861310 0.508080i \(-0.830356\pi\)
−0.398173 + 0.917310i \(0.630356\pi\)
\(72\) 0 0
\(73\) −5.45572 + 7.50916i −0.638544 + 0.878880i −0.998537 0.0540747i \(-0.982779\pi\)
0.359993 + 0.932955i \(0.382779\pi\)
\(74\) −14.0628 + 10.2172i −1.63477 + 1.18773i
\(75\) 0 0
\(76\) 8.41637i 0.965424i
\(77\) −1.16872 10.3142i −0.133188 1.17541i
\(78\) 0 0
\(79\) 10.0550 + 3.26708i 1.13128 + 0.367575i 0.814062 0.580778i \(-0.197252\pi\)
0.317217 + 0.948353i \(0.397252\pi\)
\(80\) 4.40339 + 6.06075i 0.492314 + 0.677612i
\(81\) 0 0
\(82\) 2.46661 + 7.59144i 0.272391 + 0.838334i
\(83\) 2.10476 + 6.47780i 0.231028 + 0.711031i 0.997624 + 0.0689006i \(0.0219491\pi\)
−0.766596 + 0.642130i \(0.778051\pi\)
\(84\) 0 0
\(85\) −1.78320 2.45437i −0.193416 0.266214i
\(86\) 12.1059 + 3.93346i 1.30542 + 0.424156i
\(87\) 0 0
\(88\) −3.65088 + 17.8882i −0.389185 + 1.90689i
\(89\) 8.06536i 0.854927i −0.904033 0.427463i \(-0.859407\pi\)
0.904033 0.427463i \(-0.140593\pi\)
\(90\) 0 0
\(91\) 13.6335 9.90535i 1.42918 1.03836i
\(92\) 3.29322 4.53272i 0.343342 0.472569i
\(93\) 0 0
\(94\) −11.0638 + 3.59485i −1.14115 + 0.370781i
\(95\) 2.28726 + 1.66179i 0.234668 + 0.170496i
\(96\) 0 0
\(97\) −0.730812 + 2.24921i −0.0742027 + 0.228372i −0.981278 0.192595i \(-0.938309\pi\)
0.907076 + 0.420968i \(0.138309\pi\)
\(98\) −6.96550 −0.703622
\(99\) 0 0
\(100\) 12.6309 1.26309
\(101\) 4.10027 12.6193i 0.407992 1.25567i −0.510380 0.859949i \(-0.670495\pi\)
0.918371 0.395720i \(-0.129505\pi\)
\(102\) 0 0
\(103\) 6.04880 + 4.39471i 0.596006 + 0.433024i 0.844459 0.535620i \(-0.179922\pi\)
−0.248453 + 0.968644i \(0.579922\pi\)
\(104\) −28.1890 + 9.15917i −2.76416 + 0.898131i
\(105\) 0 0
\(106\) 7.36320 10.1346i 0.715177 0.984357i
\(107\) −0.791122 + 0.574784i −0.0764807 + 0.0555664i −0.625369 0.780329i \(-0.715051\pi\)
0.548888 + 0.835896i \(0.315051\pi\)
\(108\) 0 0
\(109\) 5.38041i 0.515350i 0.966232 + 0.257675i \(0.0829564\pi\)
−0.966232 + 0.257675i \(0.917044\pi\)
\(110\) −7.88906 8.62005i −0.752193 0.821890i
\(111\) 0 0
\(112\) 15.7711 + 5.12434i 1.49023 + 0.484205i
\(113\) 3.13244 + 4.31143i 0.294675 + 0.405585i 0.930526 0.366227i \(-0.119351\pi\)
−0.635851 + 0.771812i \(0.719351\pi\)
\(114\) 0 0
\(115\) 0.581589 + 1.78995i 0.0542335 + 0.166913i
\(116\) 1.33539 + 4.10990i 0.123988 + 0.381595i
\(117\) 0 0
\(118\) −15.5475 21.3993i −1.43126 1.96996i
\(119\) −6.38669 2.07516i −0.585467 0.190230i
\(120\) 0 0
\(121\) 0.972210 10.9570i 0.0883827 0.996087i
\(122\) 7.31950i 0.662677i
\(123\) 0 0
\(124\) 32.0376 23.2766i 2.87706 2.09030i
\(125\) −6.64933 + 9.15201i −0.594734 + 0.818581i
\(126\) 0 0
\(127\) 10.2499 3.33040i 0.909534 0.295526i 0.183368 0.983044i \(-0.441300\pi\)
0.726167 + 0.687519i \(0.241300\pi\)
\(128\) 13.8938 + 10.0944i 1.22805 + 0.892227i
\(129\) 0 0
\(130\) 5.86221 18.0420i 0.514150 1.58239i
\(131\) 17.1948 1.50231 0.751157 0.660123i \(-0.229496\pi\)
0.751157 + 0.660123i \(0.229496\pi\)
\(132\) 0 0
\(133\) 6.25813 0.542648
\(134\) 1.14848 3.53467i 0.0992138 0.305349i
\(135\) 0 0
\(136\) 9.55542 + 6.94242i 0.819371 + 0.595308i
\(137\) −9.37436 + 3.04592i −0.800906 + 0.260230i −0.680741 0.732524i \(-0.738342\pi\)
−0.120165 + 0.992754i \(0.538342\pi\)
\(138\) 0 0
\(139\) −1.29891 + 1.78780i −0.110173 + 0.151639i −0.860543 0.509379i \(-0.829875\pi\)
0.750370 + 0.661018i \(0.229875\pi\)
\(140\) −15.0689 + 10.9482i −1.27355 + 0.925291i
\(141\) 0 0
\(142\) 27.8054i 2.33338i
\(143\) 16.2548 7.39566i 1.35930 0.618456i
\(144\) 0 0
\(145\) −1.38059 0.448580i −0.114652 0.0372525i
\(146\) 13.5946 + 18.7114i 1.12510 + 1.54857i
\(147\) 0 0
\(148\) 9.07347 + 27.9253i 0.745834 + 2.29544i
\(149\) −1.68766 5.19407i −0.138258 0.425515i 0.857824 0.513943i \(-0.171816\pi\)
−0.996083 + 0.0884279i \(0.971816\pi\)
\(150\) 0 0
\(151\) −0.304143 0.418617i −0.0247508 0.0340666i 0.796462 0.604688i \(-0.206702\pi\)
−0.821213 + 0.570622i \(0.806702\pi\)
\(152\) −10.4682 3.40134i −0.849086 0.275885i
\(153\) 0 0
\(154\) −25.3431 5.17237i −2.04220 0.416801i
\(155\) 13.3025i 1.06848i
\(156\) 0 0
\(157\) 10.9121 7.92811i 0.870881 0.632732i −0.0599424 0.998202i \(-0.519092\pi\)
0.930823 + 0.365470i \(0.119092\pi\)
\(158\) 15.4850 21.3132i 1.23192 1.69559i
\(159\) 0 0
\(160\) 2.94929 0.958283i 0.233162 0.0757589i
\(161\) 3.37038 + 2.44872i 0.265623 + 0.192986i
\(162\) 0 0
\(163\) −5.94061 + 18.2833i −0.465305 + 1.43206i 0.393295 + 0.919413i \(0.371335\pi\)
−0.858599 + 0.512648i \(0.828665\pi\)
\(164\) 13.4832 1.05286
\(165\) 0 0
\(166\) 16.9721 1.31729
\(167\) −0.182183 + 0.560702i −0.0140977 + 0.0433884i −0.957858 0.287242i \(-0.907261\pi\)
0.943760 + 0.330631i \(0.107261\pi\)
\(168\) 0 0
\(169\) 12.9380 + 9.40001i 0.995231 + 0.723078i
\(170\) −7.18958 + 2.33604i −0.551416 + 0.179166i
\(171\) 0 0
\(172\) 12.6382 17.3950i 0.963657 1.32636i
\(173\) 2.94820 2.14199i 0.224148 0.162853i −0.470044 0.882643i \(-0.655762\pi\)
0.694192 + 0.719790i \(0.255762\pi\)
\(174\) 0 0
\(175\) 9.39191i 0.709962i
\(176\) 15.2893 + 8.66270i 1.15247 + 0.652976i
\(177\) 0 0
\(178\) −19.1137 6.21042i −1.43263 0.465491i
\(179\) −3.36258 4.62819i −0.251331 0.345927i 0.664646 0.747159i \(-0.268582\pi\)
−0.915977 + 0.401231i \(0.868582\pi\)
\(180\) 0 0
\(181\) −2.48530 7.64897i −0.184731 0.568544i 0.815213 0.579162i \(-0.196620\pi\)
−0.999944 + 0.0106182i \(0.996620\pi\)
\(182\) −12.9762 39.9367i −0.961862 2.96031i
\(183\) 0 0
\(184\) −4.30688 5.92791i −0.317507 0.437011i
\(185\) −9.38058 3.04793i −0.689674 0.224089i
\(186\) 0 0
\(187\) −6.19157 3.50806i −0.452773 0.256535i
\(188\) 19.6506i 1.43316i
\(189\) 0 0
\(190\) 5.69941 4.14086i 0.413478 0.300410i
\(191\) 7.18658 9.89147i 0.520002 0.715722i −0.465563 0.885015i \(-0.654148\pi\)
0.985566 + 0.169293i \(0.0541483\pi\)
\(192\) 0 0
\(193\) −15.9375 + 5.17840i −1.14721 + 0.372750i −0.820090 0.572235i \(-0.806077\pi\)
−0.327115 + 0.944984i \(0.606077\pi\)
\(194\) 4.76755 + 3.46383i 0.342290 + 0.248689i
\(195\) 0 0
\(196\) −3.63589 + 11.1901i −0.259706 + 0.799294i
\(197\) −6.63610 −0.472803 −0.236401 0.971656i \(-0.575968\pi\)
−0.236401 + 0.971656i \(0.575968\pi\)
\(198\) 0 0
\(199\) −3.24799 −0.230244 −0.115122 0.993351i \(-0.536726\pi\)
−0.115122 + 0.993351i \(0.536726\pi\)
\(200\) 5.10457 15.7103i 0.360948 1.11088i
\(201\) 0 0
\(202\) −26.7487 19.4340i −1.88203 1.36737i
\(203\) −3.05598 + 0.992949i −0.214488 + 0.0696914i
\(204\) 0 0
\(205\) −2.66222 + 3.66424i −0.185938 + 0.255921i
\(206\) 15.0725 10.9508i 1.05015 0.762977i
\(207\) 0 0
\(208\) 28.5290i 1.97813i
\(209\) 6.49784 + 1.32617i 0.449465 + 0.0917329i
\(210\) 0 0
\(211\) −7.59126 2.46655i −0.522604 0.169804i 0.0358228 0.999358i \(-0.488595\pi\)
−0.558427 + 0.829554i \(0.688595\pi\)
\(212\) −12.4378 17.1191i −0.854230 1.17575i
\(213\) 0 0
\(214\) 0.752979 + 2.31743i 0.0514726 + 0.158416i
\(215\) 2.23194 + 6.86921i 0.152217 + 0.468476i
\(216\) 0 0
\(217\) 17.3077 + 23.8220i 1.17492 + 1.61715i
\(218\) 12.7508 + 4.14298i 0.863591 + 0.280598i
\(219\) 0 0
\(220\) −17.9661 + 8.17428i −1.21128 + 0.551110i
\(221\) 11.5531i 0.777149i
\(222\) 0 0
\(223\) 11.2464 8.17099i 0.753115 0.547170i −0.143676 0.989625i \(-0.545892\pi\)
0.896791 + 0.442455i \(0.145892\pi\)
\(224\) 4.03476 5.55336i 0.269583 0.371050i
\(225\) 0 0
\(226\) 12.6295 4.10356i 0.840099 0.272965i
\(227\) −16.8532 12.2446i −1.11859 0.812702i −0.134594 0.990901i \(-0.542973\pi\)
−0.983995 + 0.178198i \(0.942973\pi\)
\(228\) 0 0
\(229\) 4.57791 14.0893i 0.302517 0.931050i −0.678076 0.734992i \(-0.737186\pi\)
0.980592 0.196058i \(-0.0628141\pi\)
\(230\) 4.68974 0.309232
\(231\) 0 0
\(232\) 5.65155 0.371042
\(233\) 5.72371 17.6158i 0.374972 1.15405i −0.568525 0.822666i \(-0.692486\pi\)
0.943497 0.331380i \(-0.107514\pi\)
\(234\) 0 0
\(235\) −5.34029 3.87995i −0.348362 0.253100i
\(236\) −42.4936 + 13.8070i −2.76610 + 0.898760i
\(237\) 0 0
\(238\) −9.83565 + 13.5376i −0.637550 + 0.877513i
\(239\) −19.1098 + 13.8841i −1.23611 + 0.898086i −0.997333 0.0729883i \(-0.976746\pi\)
−0.238777 + 0.971074i \(0.576746\pi\)
\(240\) 0 0
\(241\) 10.3796i 0.668607i −0.942466 0.334303i \(-0.891499\pi\)
0.942466 0.334303i \(-0.108501\pi\)
\(242\) −25.2177 10.7410i −1.62106 0.690456i
\(243\) 0 0
\(244\) 11.7588 + 3.82067i 0.752781 + 0.244593i
\(245\) −2.32316 3.19755i −0.148421 0.204284i
\(246\) 0 0
\(247\) 3.32704 + 10.2396i 0.211694 + 0.651528i
\(248\) −16.0039 49.2550i −1.01625 3.12770i
\(249\) 0 0
\(250\) 16.5689 + 22.8051i 1.04791 + 1.44232i
\(251\) −6.21725 2.02011i −0.392429 0.127508i 0.106154 0.994350i \(-0.466146\pi\)
−0.498584 + 0.866842i \(0.666146\pi\)
\(252\) 0 0
\(253\) 2.98056 + 3.25674i 0.187386 + 0.204749i
\(254\) 26.8553i 1.68505i
\(255\) 0 0
\(256\) 26.3174 19.1207i 1.64484 1.19504i
\(257\) −6.26782 + 8.62691i −0.390976 + 0.538132i −0.958451 0.285259i \(-0.907920\pi\)
0.567475 + 0.823391i \(0.307920\pi\)
\(258\) 0 0
\(259\) −20.7643 + 6.74672i −1.29023 + 0.419221i
\(260\) −25.9246 18.8353i −1.60778 1.16812i
\(261\) 0 0
\(262\) 13.2402 40.7491i 0.817981 2.51749i
\(263\) −20.1385 −1.24179 −0.620897 0.783892i \(-0.713232\pi\)
−0.620897 + 0.783892i \(0.713232\pi\)
\(264\) 0 0
\(265\) 7.10814 0.436650
\(266\) 4.81883 14.8308i 0.295461 0.909337i
\(267\) 0 0
\(268\) −5.07897 3.69009i −0.310247 0.225408i
\(269\) 9.24045 3.00240i 0.563400 0.183060i −0.0134505 0.999910i \(-0.504282\pi\)
0.576850 + 0.816850i \(0.304282\pi\)
\(270\) 0 0
\(271\) −13.7884 + 18.9781i −0.837584 + 1.15284i 0.148880 + 0.988855i \(0.452433\pi\)
−0.986464 + 0.163980i \(0.947567\pi\)
\(272\) 9.19735 6.68227i 0.557671 0.405172i
\(273\) 0 0
\(274\) 24.5612i 1.48380i
\(275\) −1.99025 + 9.75166i −0.120017 + 0.588047i
\(276\) 0 0
\(277\) −16.5873 5.38954i −0.996634 0.323826i −0.235114 0.971968i \(-0.575546\pi\)
−0.761520 + 0.648142i \(0.775546\pi\)
\(278\) 3.23665 + 4.45486i 0.194121 + 0.267185i
\(279\) 0 0
\(280\) 7.52746 + 23.1671i 0.449852 + 1.38450i
\(281\) 7.08550 + 21.8069i 0.422685 + 1.30089i 0.905193 + 0.425000i \(0.139726\pi\)
−0.482508 + 0.875892i \(0.660274\pi\)
\(282\) 0 0
\(283\) 12.7186 + 17.5056i 0.756041 + 1.04060i 0.997533 + 0.0701981i \(0.0223631\pi\)
−0.241492 + 0.970403i \(0.577637\pi\)
\(284\) 44.6696 + 14.5140i 2.65065 + 0.861250i
\(285\) 0 0
\(286\) −5.01022 44.2162i −0.296261 2.61456i
\(287\) 10.0257i 0.591796i
\(288\) 0 0
\(289\) 10.0287 7.28629i 0.589925 0.428605i
\(290\) −2.12614 + 2.92637i −0.124851 + 0.171843i
\(291\) 0 0
\(292\) 37.1561 12.0728i 2.17440 0.706505i
\(293\) −15.7384 11.4347i −0.919450 0.668020i 0.0239370 0.999713i \(-0.492380\pi\)
−0.943387 + 0.331694i \(0.892380\pi\)
\(294\) 0 0
\(295\) 4.63801 14.2743i 0.270036 0.831084i
\(296\) 38.4002 2.23196
\(297\) 0 0
\(298\) −13.6087 −0.788331
\(299\) −2.21480 + 6.81645i −0.128085 + 0.394205i
\(300\) 0 0
\(301\) 12.9344 + 9.39736i 0.745524 + 0.541655i
\(302\) −1.22625 + 0.398434i −0.0705630 + 0.0229273i
\(303\) 0 0
\(304\) −6.22728 + 8.57112i −0.357159 + 0.491587i
\(305\) −3.36006 + 2.44123i −0.192397 + 0.139784i
\(306\) 0 0
\(307\) 2.08212i 0.118833i 0.998233 + 0.0594164i \(0.0189240\pi\)
−0.998233 + 0.0594164i \(0.981076\pi\)
\(308\) −21.5382 + 38.0139i −1.22725 + 2.16604i
\(309\) 0 0
\(310\) 31.5250 + 10.2431i 1.79050 + 0.581769i
\(311\) 7.69423 + 10.5902i 0.436300 + 0.600515i 0.969385 0.245546i \(-0.0789674\pi\)
−0.533085 + 0.846062i \(0.678967\pi\)
\(312\) 0 0
\(313\) 0.926030 + 2.85003i 0.0523423 + 0.161093i 0.973811 0.227360i \(-0.0730095\pi\)
−0.921468 + 0.388453i \(0.873009\pi\)
\(314\) −10.3860 31.9648i −0.586116 1.80388i
\(315\) 0 0
\(316\) −26.1569 36.0019i −1.47144 2.02526i
\(317\) 30.3708 + 9.86806i 1.70579 + 0.554245i 0.989624 0.143683i \(-0.0458946\pi\)
0.716168 + 0.697928i \(0.245895\pi\)
\(318\) 0 0
\(319\) −3.38346 + 0.383385i −0.189437 + 0.0214655i
\(320\) 7.25573i 0.405607i
\(321\) 0 0
\(322\) 8.39834 6.10175i 0.468021 0.340037i
\(323\) 2.52181 3.47097i 0.140317 0.193130i
\(324\) 0 0
\(325\) −15.3671 + 4.99306i −0.852412 + 0.276965i
\(326\) 38.7544 + 28.1567i 2.14641 + 1.55946i
\(327\) 0 0
\(328\) 5.44902 16.7704i 0.300872 0.925988i
\(329\) −14.6115 −0.805557
\(330\) 0 0
\(331\) 26.3584 1.44879 0.724395 0.689385i \(-0.242119\pi\)
0.724395 + 0.689385i \(0.242119\pi\)
\(332\) 8.85919 27.2658i 0.486211 1.49640i
\(333\) 0 0
\(334\) 1.18850 + 0.863494i 0.0650317 + 0.0472483i
\(335\) 2.00566 0.651677i 0.109581 0.0356049i
\(336\) 0 0
\(337\) −2.46455 + 3.39217i −0.134253 + 0.184783i −0.870850 0.491548i \(-0.836431\pi\)
0.736598 + 0.676331i \(0.236431\pi\)
\(338\) 32.2390 23.4230i 1.75357 1.27404i
\(339\) 0 0
\(340\) 12.7695i 0.692522i
\(341\) 12.9225 + 28.4022i 0.699793 + 1.53807i
\(342\) 0 0
\(343\) 12.5154 + 4.06651i 0.675769 + 0.219571i
\(344\) −16.5283 22.7493i −0.891148 1.22656i
\(345\) 0 0
\(346\) −2.80606 8.63616i −0.150855 0.464283i
\(347\) 10.6218 + 32.6905i 0.570208 + 1.75492i 0.651947 + 0.758265i \(0.273953\pi\)
−0.0817393 + 0.996654i \(0.526047\pi\)
\(348\) 0 0
\(349\) −12.2424 16.8502i −0.655321 0.901972i 0.343994 0.938972i \(-0.388220\pi\)
−0.999315 + 0.0369999i \(0.988220\pi\)
\(350\) 22.2574 + 7.23188i 1.18971 + 0.386560i
\(351\) 0 0
\(352\) 5.36612 4.91107i 0.286015 0.261761i
\(353\) 8.27728i 0.440555i −0.975437 0.220278i \(-0.929304\pi\)
0.975437 0.220278i \(-0.0706963\pi\)
\(354\) 0 0
\(355\) −12.7643 + 9.27378i −0.677457 + 0.492201i
\(356\) −19.9542 + 27.4645i −1.05757 + 1.45562i
\(357\) 0 0
\(358\) −13.5574 + 4.40505i −0.716529 + 0.232814i
\(359\) 10.3031 + 7.48561i 0.543774 + 0.395075i 0.825485 0.564424i \(-0.190902\pi\)
−0.281711 + 0.959499i \(0.590902\pi\)
\(360\) 0 0
\(361\) 4.63580 14.2675i 0.243989 0.750922i
\(362\) −20.0406 −1.05331
\(363\) 0 0
\(364\) −70.9319 −3.71784
\(365\) −4.05545 + 12.4814i −0.212272 + 0.653306i
\(366\) 0 0
\(367\) 17.0169 + 12.3635i 0.888274 + 0.645369i 0.935427 0.353519i \(-0.115015\pi\)
−0.0471537 + 0.998888i \(0.515015\pi\)
\(368\) −6.70753 + 2.17941i −0.349654 + 0.113610i
\(369\) 0 0
\(370\) −14.4463 + 19.8836i −0.751027 + 1.03370i
\(371\) 12.7292 9.24830i 0.660867 0.480148i
\(372\) 0 0
\(373\) 16.5055i 0.854622i −0.904105 0.427311i \(-0.859461\pi\)
0.904105 0.427311i \(-0.140539\pi\)
\(374\) −13.0812 + 11.9719i −0.676411 + 0.619050i
\(375\) 0 0
\(376\) 24.4412 + 7.94144i 1.26046 + 0.409549i
\(377\) −3.24933 4.47232i −0.167349 0.230336i
\(378\) 0 0
\(379\) −4.41092 13.5754i −0.226574 0.697322i −0.998128 0.0611588i \(-0.980520\pi\)
0.771554 0.636163i \(-0.219480\pi\)
\(380\) −3.67731 11.3176i −0.188642 0.580580i
\(381\) 0 0
\(382\) −17.9076 24.6477i −0.916231 1.26108i
\(383\) −9.65933 3.13851i −0.493569 0.160370i 0.0516479 0.998665i \(-0.483553\pi\)
−0.545217 + 0.838295i \(0.683553\pi\)
\(384\) 0 0
\(385\) −6.07812 13.3590i −0.309770 0.680838i
\(386\) 41.7569i 2.12537i
\(387\) 0 0
\(388\) 8.05326 5.85103i 0.408842 0.297041i
\(389\) −12.1545 + 16.7293i −0.616260 + 0.848209i −0.997074 0.0764426i \(-0.975644\pi\)
0.380814 + 0.924652i \(0.375644\pi\)
\(390\) 0 0
\(391\) 2.71629 0.882577i 0.137369 0.0446338i
\(392\) 12.4488 + 9.04459i 0.628760 + 0.456821i
\(393\) 0 0
\(394\) −5.10987 + 15.7266i −0.257432 + 0.792293i
\(395\) 14.9486 0.752144
\(396\) 0 0
\(397\) 33.6048 1.68658 0.843288 0.537463i \(-0.180617\pi\)
0.843288 + 0.537463i \(0.180617\pi\)
\(398\) −2.50099 + 7.69725i −0.125363 + 0.385828i
\(399\) 0 0
\(400\) −12.8631 9.34562i −0.643157 0.467281i
\(401\) −3.41170 + 1.10853i −0.170372 + 0.0553573i −0.392961 0.919555i \(-0.628549\pi\)
0.222589 + 0.974912i \(0.428549\pi\)
\(402\) 0 0
\(403\) −29.7763 + 40.9836i −1.48326 + 2.04154i
\(404\) −45.1833 + 32.8276i −2.24795 + 1.63323i
\(405\) 0 0
\(406\) 8.00681i 0.397371i
\(407\) −22.9893 + 2.60496i −1.13954 + 0.129123i
\(408\) 0 0
\(409\) 3.61277 + 1.17386i 0.178640 + 0.0580437i 0.396971 0.917831i \(-0.370061\pi\)
−0.218331 + 0.975875i \(0.570061\pi\)
\(410\) 6.63376 + 9.13058i 0.327618 + 0.450927i
\(411\) 0 0
\(412\) −9.72489 29.9301i −0.479111 1.47455i
\(413\) −10.2664 31.5968i −0.505178 1.55478i
\(414\) 0 0
\(415\) 5.66060 + 7.79115i 0.277868 + 0.382453i
\(416\) 11.2314 + 3.64932i 0.550667 + 0.178923i
\(417\) 0 0
\(418\) 8.14623 14.3777i 0.398445 0.703238i
\(419\) 9.01381i 0.440354i −0.975460 0.220177i \(-0.929337\pi\)
0.975460 0.220177i \(-0.0706634\pi\)
\(420\) 0 0
\(421\) −7.16120 + 5.20292i −0.349016 + 0.253575i −0.748456 0.663185i \(-0.769204\pi\)
0.399440 + 0.916759i \(0.369204\pi\)
\(422\) −11.6907 + 16.0909i −0.569095 + 0.783292i
\(423\) 0 0
\(424\) −26.3192 + 8.55162i −1.27817 + 0.415303i
\(425\) 5.20908 + 3.78462i 0.252677 + 0.183581i
\(426\) 0 0
\(427\) −2.84092 + 8.74346i −0.137482 + 0.423126i
\(428\) 4.11601 0.198955
\(429\) 0 0
\(430\) 17.9976 0.867922
\(431\) −11.5395 + 35.5149i −0.555837 + 1.71069i 0.137886 + 0.990448i \(0.455969\pi\)
−0.693723 + 0.720242i \(0.744031\pi\)
\(432\) 0 0
\(433\) −32.3699 23.5181i −1.55560 1.13021i −0.939504 0.342537i \(-0.888714\pi\)
−0.616095 0.787672i \(-0.711286\pi\)
\(434\) 69.7818 22.6735i 3.34963 1.08836i
\(435\) 0 0
\(436\) 13.3114 18.3216i 0.637502 0.877446i
\(437\) −2.15329 + 1.56446i −0.103006 + 0.0748381i
\(438\) 0 0
\(439\) 13.2574i 0.632739i −0.948636 0.316370i \(-0.897536\pi\)
0.948636 0.316370i \(-0.102464\pi\)
\(440\) 2.90641 + 25.6497i 0.138558 + 1.22280i
\(441\) 0 0
\(442\) −27.3792 8.89606i −1.30230 0.423142i
\(443\) 2.35618 + 3.24301i 0.111946 + 0.154080i 0.861313 0.508074i \(-0.169642\pi\)
−0.749368 + 0.662154i \(0.769642\pi\)
\(444\) 0 0
\(445\) −3.52395 10.8456i −0.167051 0.514130i
\(446\) −10.7042 32.9441i −0.506858 1.55995i
\(447\) 0 0
\(448\) 9.44032 + 12.9935i 0.446013 + 0.613884i
\(449\) 20.8754 + 6.78284i 0.985172 + 0.320102i 0.756925 0.653501i \(-0.226701\pi\)
0.228247 + 0.973603i \(0.426701\pi\)
\(450\) 0 0
\(451\) −2.12455 + 10.4097i −0.100041 + 0.490173i
\(452\) 22.4313i 1.05508i
\(453\) 0 0
\(454\) −41.9951 + 30.5112i −1.97093 + 1.43196i
\(455\) 14.0053 19.2767i 0.656579 0.903704i
\(456\) 0 0
\(457\) 16.9733 5.51496i 0.793978 0.257979i 0.116181 0.993228i \(-0.462935\pi\)
0.677797 + 0.735249i \(0.262935\pi\)
\(458\) −29.8646 21.6979i −1.39548 1.01388i
\(459\) 0 0
\(460\) 2.44797 7.53409i 0.114137 0.351279i
\(461\) 11.5454 0.537722 0.268861 0.963179i \(-0.413353\pi\)
0.268861 + 0.963179i \(0.413353\pi\)
\(462\) 0 0
\(463\) 14.4101 0.669693 0.334846 0.942273i \(-0.391316\pi\)
0.334846 + 0.942273i \(0.391316\pi\)
\(464\) 1.68098 5.17353i 0.0780376 0.240175i
\(465\) 0 0
\(466\) −37.3394 27.1287i −1.72971 1.25671i
\(467\) −22.0042 + 7.14959i −1.01823 + 0.330844i −0.770128 0.637890i \(-0.779808\pi\)
−0.248104 + 0.968733i \(0.579808\pi\)
\(468\) 0 0
\(469\) 2.74382 3.77655i 0.126698 0.174385i
\(470\) −13.3070 + 9.66809i −0.613805 + 0.445956i
\(471\) 0 0
\(472\) 58.4332i 2.68961i
\(473\) 11.4384 + 12.4983i 0.525938 + 0.574670i
\(474\) 0 0
\(475\) −5.70669 1.85422i −0.261841 0.0850773i
\(476\) 16.6142 + 22.8675i 0.761510 + 1.04813i
\(477\) 0 0
\(478\) 18.1884 + 55.9783i 0.831920 + 2.56039i
\(479\) 0.138470 + 0.426167i 0.00632686 + 0.0194721i 0.954170 0.299265i \(-0.0967414\pi\)
−0.947843 + 0.318737i \(0.896741\pi\)
\(480\) 0 0
\(481\) −22.0780 30.3878i −1.00667 1.38556i
\(482\) −24.5980 7.99239i −1.12041 0.364043i
\(483\) 0 0
\(484\) −30.4187 + 34.9058i −1.38267 + 1.58663i
\(485\) 3.34385i 0.151836i
\(486\) 0 0
\(487\) 3.32024 2.41230i 0.150455 0.109312i −0.510011 0.860168i \(-0.670359\pi\)
0.660466 + 0.750856i \(0.270359\pi\)
\(488\) 9.50426 13.0815i 0.430238 0.592171i
\(489\) 0 0
\(490\) −9.36659 + 3.04339i −0.423139 + 0.137486i
\(491\) −20.0205 14.5457i −0.903512 0.656440i 0.0358534 0.999357i \(-0.488585\pi\)
−0.939366 + 0.342917i \(0.888585\pi\)
\(492\) 0 0
\(493\) −0.680732 + 2.09508i −0.0306586 + 0.0943576i
\(494\) 26.8281 1.20705
\(495\) 0 0
\(496\) −49.8490 −2.23829
\(497\) −10.7921 + 33.2148i −0.484094 + 1.48989i
\(498\) 0 0
\(499\) −1.25981 0.915304i −0.0563967 0.0409746i 0.559230 0.829013i \(-0.311097\pi\)
−0.615626 + 0.788038i \(0.711097\pi\)
\(500\) 45.2852 14.7140i 2.02521 0.658032i
\(501\) 0 0
\(502\) −9.57471 + 13.1785i −0.427340 + 0.588183i
\(503\) −3.60435 + 2.61872i −0.160710 + 0.116763i −0.665234 0.746635i \(-0.731668\pi\)
0.504524 + 0.863398i \(0.331668\pi\)
\(504\) 0 0
\(505\) 18.7609i 0.834847i
\(506\) 10.0131 4.55577i 0.445135 0.202529i
\(507\) 0 0
\(508\) −43.1431 14.0181i −1.91417 0.621951i
\(509\) 17.0148 + 23.4188i 0.754167 + 1.03802i 0.997677 + 0.0681234i \(0.0217011\pi\)
−0.243510 + 0.969898i \(0.578299\pi\)
\(510\) 0 0
\(511\) 8.97689 + 27.6280i 0.397114 + 1.22219i
\(512\) −14.4346 44.4253i −0.637927 1.96334i
\(513\) 0 0
\(514\) 15.6182 + 21.4966i 0.688890 + 0.948176i
\(515\) 10.0540 + 3.26676i 0.443034 + 0.143951i
\(516\) 0 0
\(517\) −15.1712 3.09634i −0.667227 0.136177i
\(518\) 54.4033i 2.39034i
\(519\) 0 0
\(520\) −33.9043 + 24.6329i −1.48680 + 1.08022i
\(521\) −24.7832 + 34.1112i −1.08577 + 1.49444i −0.232769 + 0.972532i \(0.574779\pi\)
−0.853003 + 0.521905i \(0.825221\pi\)
\(522\) 0 0
\(523\) −12.4929 + 4.05920i −0.546277 + 0.177496i −0.569137 0.822242i \(-0.692723\pi\)
0.0228601 + 0.999739i \(0.492723\pi\)
\(524\) −58.5524 42.5408i −2.55788 1.85840i
\(525\) 0 0
\(526\) −15.5069 + 47.7253i −0.676133 + 2.08092i
\(527\) 20.1869 0.879357
\(528\) 0 0
\(529\) 21.2282 0.922964
\(530\) 5.47335 16.8452i 0.237747 0.731711i
\(531\) 0 0
\(532\) −21.3105 15.4829i −0.923925 0.671271i
\(533\) −16.4040 + 5.32999i −0.710537 + 0.230867i
\(534\) 0 0
\(535\) −0.812695 + 1.11858i −0.0351359 + 0.0483604i
\(536\) −6.64229 + 4.82591i −0.286903 + 0.208447i
\(537\) 0 0
\(538\) 24.2104i 1.04378i
\(539\) −8.06639 4.57030i −0.347444 0.196857i
\(540\) 0 0
\(541\) −9.06438 2.94519i −0.389708 0.126624i 0.107608 0.994193i \(-0.465681\pi\)
−0.497316 + 0.867570i \(0.665681\pi\)
\(542\) 34.3580 + 47.2897i 1.47580 + 2.03127i
\(543\) 0 0
\(544\) −1.45422 4.47563i −0.0623492 0.191891i
\(545\) 2.35083 + 7.23510i 0.100698 + 0.309918i
\(546\) 0 0
\(547\) −14.3438 19.7426i −0.613298 0.844132i 0.383546 0.923522i \(-0.374703\pi\)
−0.996844 + 0.0793899i \(0.974703\pi\)
\(548\) 39.4578 + 12.8206i 1.68555 + 0.547669i
\(549\) 0 0
\(550\) 21.5775 + 12.2255i 0.920066 + 0.521297i
\(551\) 2.05290i 0.0874567i
\(552\) 0 0
\(553\) 26.7698 19.4494i 1.13837 0.827071i
\(554\) −25.5448 + 35.1594i −1.08530 + 1.49378i
\(555\) 0 0
\(556\) 8.84625 2.87432i 0.375164 0.121898i
\(557\) −10.0179 7.27845i −0.424473 0.308398i 0.354962 0.934881i \(-0.384494\pi\)
−0.779435 + 0.626483i \(0.784494\pi\)
\(558\) 0 0
\(559\) −8.49964 + 26.1592i −0.359497 + 1.10642i
\(560\) 23.4465 0.990797
\(561\) 0 0
\(562\) 57.1351 2.41010
\(563\) −0.905863 + 2.78796i −0.0381776 + 0.117499i −0.968329 0.249678i \(-0.919675\pi\)
0.930151 + 0.367176i \(0.119675\pi\)
\(564\) 0 0
\(565\) 6.09599 + 4.42900i 0.256460 + 0.186329i
\(566\) 51.2792 16.6616i 2.15542 0.700340i
\(567\) 0 0
\(568\) 36.1049 49.6942i 1.51493 2.08512i
\(569\) −10.3399 + 7.51236i −0.433470 + 0.314935i −0.783035 0.621978i \(-0.786329\pi\)
0.349565 + 0.936912i \(0.386329\pi\)
\(570\) 0 0
\(571\) 0.673079i 0.0281675i −0.999901 0.0140837i \(-0.995517\pi\)
0.999901 0.0140837i \(-0.00448314\pi\)
\(572\) −73.6489 15.0313i −3.07941 0.628489i
\(573\) 0 0
\(574\) 23.7593 + 7.71988i 0.991695 + 0.322221i
\(575\) −2.34787 3.23156i −0.0979128 0.134765i
\(576\) 0 0
\(577\) −7.29562 22.4536i −0.303721 0.934756i −0.980151 0.198250i \(-0.936474\pi\)
0.676431 0.736506i \(-0.263526\pi\)
\(578\) −9.54520 29.3771i −0.397028 1.22193i
\(579\) 0 0
\(580\) 3.59143 + 4.94317i 0.149126 + 0.205254i
\(581\) 20.2739 + 6.58739i 0.841104 + 0.273291i
\(582\) 0 0
\(583\) 15.1766 6.90509i 0.628550 0.285979i
\(584\) 51.0936i 2.11427i
\(585\) 0 0
\(586\) −39.2172 + 28.4930i −1.62005 + 1.17703i
\(587\) −7.62469 + 10.4945i −0.314705 + 0.433154i −0.936841 0.349755i \(-0.886265\pi\)
0.622137 + 0.782909i \(0.286265\pi\)
\(588\) 0 0
\(589\) −17.8917 + 5.81337i −0.737215 + 0.239536i
\(590\) −30.2567 21.9828i −1.24565 0.905018i
\(591\) 0 0
\(592\) 11.4216 35.1522i 0.469426 1.44475i
\(593\) −35.3371 −1.45112 −0.725561 0.688158i \(-0.758419\pi\)
−0.725561 + 0.688158i \(0.758419\pi\)
\(594\) 0 0
\(595\) −9.49495 −0.389255
\(596\) −7.10354 + 21.8624i −0.290972 + 0.895521i
\(597\) 0 0
\(598\) 14.4486 + 10.4975i 0.590845 + 0.429274i
\(599\) 23.6836 7.69526i 0.967685 0.314420i 0.217804 0.975993i \(-0.430111\pi\)
0.749881 + 0.661573i \(0.230111\pi\)
\(600\) 0 0
\(601\) 18.8457 25.9389i 0.768734 1.05807i −0.227703 0.973731i \(-0.573122\pi\)
0.996437 0.0843409i \(-0.0268785\pi\)
\(602\) 32.2300 23.4164i 1.31360 0.954383i
\(603\) 0 0
\(604\) 2.17796i 0.0886200i
\(605\) −3.48001 15.1587i −0.141482 0.616290i
\(606\) 0 0
\(607\) −22.8234 7.41576i −0.926372 0.300997i −0.193294 0.981141i \(-0.561917\pi\)
−0.733078 + 0.680144i \(0.761917\pi\)
\(608\) 2.57775 + 3.54797i 0.104542 + 0.143889i
\(609\) 0 0
\(610\) 3.19806 + 9.84262i 0.129486 + 0.398516i
\(611\) −7.76797 23.9073i −0.314258 0.967188i
\(612\) 0 0
\(613\) −21.1678 29.1350i −0.854959 1.17675i −0.982748 0.184949i \(-0.940788\pi\)
0.127789 0.991801i \(-0.459212\pi\)
\(614\) 4.93431 + 1.60326i 0.199133 + 0.0647021i
\(615\) 0 0
\(616\) 38.5772 + 42.1517i 1.55432 + 1.69834i
\(617\) 46.1210i 1.85676i −0.371630 0.928381i \(-0.621201\pi\)
0.371630 0.928381i \(-0.378799\pi\)
\(618\) 0 0
\(619\) −36.0313 + 26.1783i −1.44822 + 1.05219i −0.461979 + 0.886891i \(0.652861\pi\)
−0.986243 + 0.165304i \(0.947139\pi\)
\(620\) 32.9112 45.2983i 1.32174 1.81923i
\(621\) 0 0
\(622\) 31.0219 10.0796i 1.24386 0.404156i
\(623\) −20.4217 14.8372i −0.818178 0.594441i
\(624\) 0 0
\(625\) −0.306137 + 0.942193i −0.0122455 + 0.0376877i
\(626\) 7.46720 0.298449
\(627\) 0 0
\(628\) −56.7730 −2.26549
\(629\) −4.62532 + 14.2353i −0.184424 + 0.567598i
\(630\) 0 0
\(631\) 29.7072 + 21.5835i 1.18262 + 0.859227i 0.992465 0.122527i \(-0.0390997\pi\)
0.190159 + 0.981753i \(0.439100\pi\)
\(632\) −55.3498 + 17.9842i −2.20170 + 0.715375i
\(633\) 0 0
\(634\) 46.7717 64.3757i 1.85754 2.55668i
\(635\) 12.3281 8.95687i 0.489225 0.355443i
\(636\) 0 0
\(637\) 15.0514i 0.596360i
\(638\) −1.69673 + 8.31350i −0.0671743 + 0.329135i
\(639\) 0 0
\(640\) 23.0936 + 7.50356i 0.912854 + 0.296604i
\(641\) −20.6516 28.4245i −0.815690 1.12270i −0.990420 0.138084i \(-0.955906\pi\)
0.174731 0.984616i \(-0.444094\pi\)
\(642\) 0 0
\(643\) 1.51014 + 4.64774i 0.0595542 + 0.183289i 0.976408 0.215934i \(-0.0692797\pi\)
−0.916854 + 0.399224i \(0.869280\pi\)
\(644\) −5.41869 16.6770i −0.213526 0.657166i
\(645\) 0 0
\(646\) −6.28387 8.64900i −0.247235 0.340290i
\(647\) −13.2744 4.31311i −0.521870 0.169566i 0.0362237 0.999344i \(-0.488467\pi\)
−0.558094 + 0.829778i \(0.688467\pi\)
\(648\) 0 0
\(649\) −3.96395 34.9827i −0.155599 1.37319i
\(650\) 40.2624i 1.57922i
\(651\) 0 0
\(652\) 65.4632 47.5618i 2.56374 1.86266i
\(653\) 7.12220 9.80287i 0.278713 0.383616i −0.646594 0.762834i \(-0.723807\pi\)
0.925307 + 0.379218i \(0.123807\pi\)
\(654\) 0 0
\(655\) 23.1220 7.51280i 0.903452 0.293550i
\(656\) −13.7311 9.97625i −0.536111 0.389507i
\(657\) 0 0
\(658\) −11.2510 + 34.6270i −0.438610 + 1.34990i
\(659\) 48.0441 1.87153 0.935767 0.352619i \(-0.114709\pi\)
0.935767 + 0.352619i \(0.114709\pi\)
\(660\) 0 0
\(661\) −1.17993 −0.0458941 −0.0229470 0.999737i \(-0.507305\pi\)
−0.0229470 + 0.999737i \(0.507305\pi\)
\(662\) 20.2963 62.4655i 0.788838 2.42779i
\(663\) 0 0
\(664\) −30.3327 22.0380i −1.17714 0.855241i
\(665\) 8.41538 2.73432i 0.326334 0.106032i
\(666\) 0 0
\(667\) 0.803275 1.10561i 0.0311029 0.0428095i
\(668\) 2.00759 1.45860i 0.0776758 0.0564348i
\(669\) 0 0
\(670\) 5.25491i 0.203015i
\(671\) −4.80258 + 8.47634i −0.185401 + 0.327226i
\(672\) 0 0
\(673\) −23.3681 7.59277i −0.900776 0.292680i −0.178219 0.983991i \(-0.557033\pi\)
−0.722557 + 0.691311i \(0.757033\pi\)
\(674\) 6.14120 + 8.45263i 0.236550 + 0.325583i
\(675\) 0 0
\(676\) −20.8009 64.0187i −0.800036 2.46226i
\(677\) −12.9744 39.9311i −0.498647 1.53468i −0.811195 0.584776i \(-0.801183\pi\)
0.312548 0.949902i \(-0.398817\pi\)
\(678\) 0 0
\(679\) 4.35063 + 5.98813i 0.166962 + 0.229803i
\(680\) 15.8826 + 5.16057i 0.609070 + 0.197899i
\(681\) 0 0
\(682\) 77.2595 8.75441i 2.95842 0.335224i
\(683\) 45.5024i 1.74110i −0.492081 0.870550i \(-0.663764\pi\)
0.492081 0.870550i \(-0.336236\pi\)
\(684\) 0 0
\(685\) −11.2750 + 8.19176i −0.430795 + 0.312991i
\(686\) 19.2740 26.5284i 0.735886 1.01286i
\(687\) 0 0
\(688\) −25.7412 + 8.36383i −0.981375 + 0.318868i
\(689\) 21.8994 + 15.9108i 0.834300 + 0.606154i
\(690\) 0 0
\(691\) −14.5126 + 44.6653i −0.552087 + 1.69915i 0.151429 + 0.988468i \(0.451613\pi\)
−0.703515 + 0.710680i \(0.748387\pi\)
\(692\) −15.3388 −0.583092
\(693\) 0 0
\(694\) 85.6506 3.25125
\(695\) −0.965534 + 2.97161i −0.0366248 + 0.112719i
\(696\) 0 0
\(697\) 5.56058 + 4.04000i 0.210622 + 0.153026i
\(698\) −49.3593 + 16.0378i −1.86828 + 0.607040i
\(699\) 0 0
\(700\) 23.2361 31.9818i 0.878242 1.20880i
\(701\) 7.98290 5.79992i 0.301510 0.219060i −0.426735 0.904377i \(-0.640336\pi\)
0.728245 + 0.685317i \(0.240336\pi\)
\(702\) 0 0
\(703\) 13.9487i 0.526086i
\(704\) 7.04845 + 15.4917i 0.265649 + 0.583865i
\(705\) 0 0
\(706\) −19.6159 6.37360i −0.738255 0.239874i
\(707\) −24.4095 33.5968i −0.918013 1.26354i
\(708\) 0 0
\(709\) −8.25559 25.4081i −0.310045 0.954221i −0.977746 0.209791i \(-0.932721\pi\)
0.667701 0.744430i \(-0.267279\pi\)
\(710\) 12.1489 + 37.3903i 0.455938 + 1.40323i
\(711\) 0 0
\(712\) 26.0961 + 35.9182i 0.977992 + 1.34609i
\(713\) −11.9105 3.86994i −0.446050 0.144930i
\(714\) 0 0
\(715\) 18.6267 17.0471i 0.696599 0.637527i
\(716\) 24.0793i 0.899887i
\(717\) 0 0
\(718\) 25.6732 18.6527i 0.958117 0.696113i
\(719\) 16.7605 23.0689i 0.625061 0.860323i −0.372648 0.927973i \(-0.621550\pi\)
0.997709 + 0.0676497i \(0.0215500\pi\)
\(720\) 0 0
\(721\) 22.2550 7.23110i 0.828821 0.269300i
\(722\) −30.2423 21.9723i −1.12550 0.817725i
\(723\) 0 0
\(724\) −10.4609 + 32.1954i −0.388777 + 1.19653i
\(725\) 3.08091 0.114422
\(726\) 0 0
\(727\) 1.96659 0.0729369 0.0364684 0.999335i \(-0.488389\pi\)
0.0364684 + 0.999335i \(0.488389\pi\)
\(728\) −28.6660 + 88.2247i −1.06243 + 3.26983i
\(729\) 0 0
\(730\) 26.4563 + 19.2216i 0.979191 + 0.711424i
\(731\) 10.4242 3.38703i 0.385553 0.125274i
\(732\) 0 0
\(733\) −27.4707 + 37.8102i −1.01465 + 1.39655i −0.0987701 + 0.995110i \(0.531491\pi\)
−0.915884 + 0.401442i \(0.868509\pi\)
\(734\) 42.4028 30.8074i 1.56512 1.13712i
\(735\) 0 0
\(736\) 2.91944i 0.107612i
\(737\) 3.64921 3.33976i 0.134421 0.123022i
\(738\) 0 0
\(739\) 16.2275 + 5.27262i 0.596937 + 0.193957i 0.591874 0.806031i \(-0.298388\pi\)
0.00506302 + 0.999987i \(0.498388\pi\)
\(740\) 24.4024 + 33.5870i 0.897050 + 1.23468i
\(741\) 0 0
\(742\) −12.1155 37.2876i −0.444773 1.36887i
\(743\) −12.7736 39.3132i −0.468619 1.44226i −0.854374 0.519659i \(-0.826059\pi\)
0.385755 0.922601i \(-0.373941\pi\)
\(744\) 0 0
\(745\) −4.53883 6.24716i −0.166290 0.228878i
\(746\) −39.1155 12.7094i −1.43212 0.465325i
\(747\) 0 0
\(748\) 12.4047 + 27.2641i 0.453560 + 0.996874i
\(749\) 3.06053i 0.111829i
\(750\) 0 0
\(751\) −36.8341 + 26.7615i −1.34409 + 0.976542i −0.344812 + 0.938672i \(0.612057\pi\)
−0.999283 + 0.0378703i \(0.987943\pi\)
\(752\) 14.5395 20.0119i 0.530200 0.729757i
\(753\) 0 0
\(754\) −13.1008 + 4.25670i −0.477102 + 0.155020i
\(755\) −0.591889 0.430032i −0.0215410 0.0156505i
\(756\) 0 0
\(757\) −13.3554 + 41.1036i −0.485409 + 1.49393i 0.345979 + 0.938242i \(0.387547\pi\)
−0.831388 + 0.555692i \(0.812453\pi\)
\(758\) −35.5682 −1.29189
\(759\) 0 0
\(760\) −15.5629 −0.564525
\(761\) −6.15029 + 18.9287i −0.222948 + 0.686163i 0.775546 + 0.631292i \(0.217475\pi\)
−0.998493 + 0.0548715i \(0.982525\pi\)
\(762\) 0 0
\(763\) 13.6233 + 9.89793i 0.493198 + 0.358329i
\(764\) −48.9441 + 15.9029i −1.77074 + 0.575347i
\(765\) 0 0
\(766\) −14.8756 + 20.4745i −0.537477 + 0.739774i
\(767\) 46.2408 33.5959i 1.66966 1.21308i
\(768\) 0 0
\(769\) 39.9620i 1.44107i −0.693419 0.720534i \(-0.743897\pi\)
0.693419 0.720534i \(-0.256103\pi\)
\(770\) −36.3391 + 4.11765i −1.30957 + 0.148390i
\(771\) 0 0
\(772\) 67.0827 + 21.7965i 2.41436 + 0.784473i
\(773\) 0.983134 + 1.35317i 0.0353609 + 0.0486701i 0.826331 0.563184i \(-0.190424\pi\)
−0.790970 + 0.611854i \(0.790424\pi\)
\(774\) 0 0
\(775\) −8.72443 26.8510i −0.313391 0.964518i
\(776\) −4.02289 12.3812i −0.144413 0.444459i
\(777\) 0 0
\(778\) 30.2868 + 41.6862i 1.08583 + 1.49452i
\(779\) −6.09177 1.97934i −0.218260 0.0709171i
\(780\) 0 0
\(781\) −18.2441 + 32.2001i −0.652826 + 1.15221i
\(782\) 7.11680i 0.254496i
\(783\) 0 0
\(784\) 11.9823 8.70566i 0.427940 0.310916i
\(785\) 11.2097 15.4288i 0.400090 0.550677i
\(786\) 0 0
\(787\) 8.94317 2.90581i 0.318790 0.103581i −0.145251 0.989395i \(-0.546399\pi\)
0.464041 + 0.885814i \(0.346399\pi\)
\(788\) 22.5975 + 16.4181i 0.805004 + 0.584870i
\(789\) 0 0
\(790\) 11.5106 35.4259i 0.409528 1.26040i
\(791\) 16.6791 0.593042
\(792\) 0 0
\(793\) −15.8164 −0.561657
\(794\) 25.8761 79.6383i 0.918307 2.82626i
\(795\) 0 0
\(796\) 11.0602 + 8.03570i 0.392018 + 0.284818i
\(797\) −28.0643 + 9.11865i −0.994089 + 0.322999i −0.760501 0.649337i \(-0.775047\pi\)
−0.233588 + 0.972336i \(0.575047\pi\)
\(798\) 0 0
\(799\) −5.88792 + 8.10403i −0.208300 + 0.286700i
\(800\) −5.32464 + 3.86857i −0.188254 + 0.136775i
\(801\) 0 0
\(802\) 8.93881i 0.315640i
\(803\) 3.46605 + 30.5886i 0.122314 + 1.07945i
\(804\) 0 0
\(805\) 5.60209 + 1.82023i 0.197448 + 0.0641547i
\(806\) 74.1969 + 102.123i 2.61347 + 3.59714i
\(807\) 0 0
\(808\) 22.5707 + 69.4655i 0.794034 + 2.44379i
\(809\) 16.3139 + 50.2091i 0.573567 + 1.76526i 0.641008 + 0.767534i \(0.278516\pi\)
−0.0674416 + 0.997723i \(0.521484\pi\)
\(810\) 0 0
\(811\) 9.82048 + 13.5167i 0.344844 + 0.474636i 0.945848 0.324609i \(-0.105233\pi\)
−0.601005 + 0.799245i \(0.705233\pi\)
\(812\) 12.8630 + 4.17944i 0.451402 + 0.146669i
\(813\) 0 0
\(814\) −11.5287 + 56.4871i −0.404080 + 1.97987i
\(815\) 27.1814i 0.952123i
\(816\) 0 0
\(817\) −8.26360 + 6.00385i −0.289107 + 0.210048i
\(818\) 5.56375 7.65785i 0.194532 0.267750i
\(819\) 0 0
\(820\) 18.1311 5.89114i 0.633164 0.205727i
\(821\) 14.8119 + 10.7615i 0.516940 + 0.375579i 0.815450 0.578828i \(-0.196490\pi\)
−0.298510 + 0.954407i \(0.596490\pi\)
\(822\) 0 0
\(823\) −3.52189 + 10.8393i −0.122766 + 0.377833i −0.993487 0.113942i \(-0.963652\pi\)
0.870722 + 0.491776i \(0.163652\pi\)
\(824\) −41.1571 −1.43377
\(825\) 0 0
\(826\) −82.7850 −2.88046
\(827\) −5.84858 + 18.0001i −0.203375 + 0.625924i 0.796401 + 0.604769i \(0.206734\pi\)
−0.999776 + 0.0211551i \(0.993266\pi\)
\(828\) 0 0
\(829\) 13.0466 + 9.47891i 0.453127 + 0.329216i 0.790829 0.612037i \(-0.209650\pi\)
−0.337702 + 0.941253i \(0.609650\pi\)
\(830\) 22.8226 7.41551i 0.792184 0.257396i
\(831\) 0 0
\(832\) −16.2412 + 22.3541i −0.563062 + 0.774988i
\(833\) −4.85238 + 3.52546i −0.168125 + 0.122150i
\(834\) 0 0
\(835\) 0.833583i 0.0288473i
\(836\) −18.8457 20.5919i −0.651792 0.712187i
\(837\) 0 0
\(838\) −21.3614 6.94074i −0.737917 0.239764i
\(839\) −13.6484 18.7854i −0.471196 0.648546i 0.505587 0.862775i \(-0.331276\pi\)
−0.976783 + 0.214230i \(0.931276\pi\)
\(840\) 0 0
\(841\) −8.63577 26.5782i −0.297785 0.916488i
\(842\) 6.81593 + 20.9773i 0.234893 + 0.722925i
\(843\) 0 0
\(844\) 19.7477 + 27.1804i 0.679745 + 0.935588i
\(845\) 21.5050 + 6.98739i 0.739794 + 0.240374i
\(846\) 0 0
\(847\) −25.9548 22.6183i −0.891816 0.777175i
\(848\) 26.6366i 0.914705i
\(849\) 0 0
\(850\) 12.9800 9.43054i 0.445211 0.323465i
\(851\) 5.45795 7.51223i 0.187096 0.257516i
\(852\) 0 0
\(853\) −23.5404 + 7.64874i −0.806008 + 0.261888i −0.682906 0.730506i \(-0.739284\pi\)
−0.123102 + 0.992394i \(0.539284\pi\)
\(854\) 18.5332 + 13.4651i 0.634191 + 0.460767i
\(855\) 0 0
\(856\) 1.66342 5.11947i 0.0568544 0.174980i
\(857\) 8.41752 0.287537 0.143769 0.989611i \(-0.454078\pi\)
0.143769 + 0.989611i \(0.454078\pi\)
\(858\) 0 0
\(859\) 52.6551 1.79657 0.898285 0.439414i \(-0.144814\pi\)
0.898285 + 0.439414i \(0.144814\pi\)
\(860\) 9.39449 28.9133i 0.320350 0.985934i
\(861\) 0 0
\(862\) 75.2794 + 54.6937i 2.56403 + 1.86287i
\(863\) 37.6211 12.2238i 1.28064 0.416104i 0.411832 0.911260i \(-0.364889\pi\)
0.868804 + 0.495156i \(0.164889\pi\)
\(864\) 0 0
\(865\) 3.02860 4.16851i 0.102975 0.141733i
\(866\) −80.6597 + 58.6027i −2.74093 + 1.99140i
\(867\) 0 0
\(868\) 123.940i 4.20680i
\(869\) 31.9167 14.5215i 1.08270 0.492610i
\(870\) 0 0
\(871\) 7.63791 + 2.48171i 0.258801 + 0.0840894i
\(872\) −17.4087 23.9611i −0.589534 0.811424i
\(873\) 0 0
\(874\) 2.04947 + 6.30763i 0.0693245 + 0.213359i
\(875\) 10.9409 + 33.6725i 0.369869 + 1.13834i
\(876\) 0 0
\(877\) 22.5627 + 31.0548i 0.761887 + 1.04865i 0.997055 + 0.0766925i \(0.0244360\pi\)
−0.235168 + 0.971955i \(0.575564\pi\)
\(878\) −31.4180 10.2083i −1.06031 0.344514i
\(879\) 0 0
\(880\) 24.3446 + 4.96859i 0.820657 + 0.167491i
\(881\) 25.4083i 0.856026i −0.903772 0.428013i \(-0.859214\pi\)
0.903772 0.428013i \(-0.140786\pi\)
\(882\) 0 0
\(883\) 4.42613 3.21577i 0.148951 0.108219i −0.510814 0.859691i \(-0.670656\pi\)
0.659765 + 0.751472i \(0.270656\pi\)
\(884\) −28.5831 + 39.3413i −0.961355 + 1.32319i
\(885\) 0 0
\(886\) 9.49974 3.08665i 0.319150 0.103698i
\(887\) −3.40029 2.47046i −0.114171 0.0829499i 0.529235 0.848475i \(-0.322479\pi\)
−0.643406 + 0.765526i \(0.722479\pi\)
\(888\) 0 0
\(889\) 10.4233 32.0798i 0.349588 1.07592i
\(890\) −28.4159 −0.952504
\(891\) 0 0
\(892\) −58.5123 −1.95914
\(893\) 2.88470 8.87819i 0.0965328 0.297097i
\(894\) 0 0
\(895\) −6.54387 4.75440i −0.218737 0.158922i
\(896\) 51.1185 16.6094i 1.70775 0.554882i
\(897\) 0 0
\(898\) 32.1486 44.2488i 1.07281 1.47660i
\(899\) 7.81454 5.67759i 0.260629 0.189358i
\(900\) 0 0
\(901\) 10.7868i 0.359360i
\(902\) 23.0335 + 13.0504i 0.766931 + 0.434532i
\(903\) 0 0
\(904\) −27.8999 9.06523i −0.927938 0.301505i
\(905\) −6.68403 9.19978i −0.222185 0.305811i
\(906\) 0 0
\(907\) −12.1741 37.4681i −0.404236 1.24411i −0.921532 0.388303i \(-0.873061\pi\)
0.517296 0.855806i \(-0.326939\pi\)
\(908\) 27.0956 + 83.3917i 0.899199 + 2.76745i
\(909\) 0 0
\(910\) −34.8986 48.0338i −1.15688 1.59230i
\(911\) 7.47258 + 2.42799i 0.247578 + 0.0804429i 0.430177 0.902745i \(-0.358451\pi\)
−0.182599 + 0.983187i \(0.558451\pi\)
\(912\) 0 0
\(913\) 19.6545 + 11.1360i 0.650470 + 0.368547i
\(914\) 44.4708i 1.47096i
\(915\) 0 0
\(916\) −50.4467 + 36.6517i −1.66681 + 1.21101i
\(917\) 31.6319 43.5376i 1.04458 1.43774i
\(918\) 0 0
\(919\) −39.9674 + 12.9862i −1.31840 + 0.428376i −0.881947 0.471349i \(-0.843767\pi\)
−0.436458 + 0.899725i \(0.643767\pi\)
\(920\) −8.38155 6.08955i −0.276332 0.200767i
\(921\) 0 0
\(922\) 8.89008 27.3609i 0.292779 0.901082i
\(923\) −60.0836 −1.97768
\(924\) 0 0
\(925\) 20.9336 0.688293
\(926\) 11.0959 34.1497i 0.364635 1.12223i
\(927\) 0 0
\(928\) −1.82172 1.32355i −0.0598007 0.0434478i
\(929\) −19.0322 + 6.18393i −0.624426 + 0.202888i −0.604104 0.796905i \(-0.706469\pi\)
−0.0203214 + 0.999793i \(0.506469\pi\)
\(930\) 0 0
\(931\) 3.28541 4.52199i 0.107675 0.148202i
\(932\) −63.0730 + 45.8252i −2.06602 + 1.50105i
\(933\) 0 0
\(934\) 57.6519i 1.88643i
\(935\) −9.85864 2.01209i −0.322412 0.0658023i
\(936\) 0 0
\(937\) −39.0020 12.6725i −1.27414 0.413993i −0.407627 0.913149i \(-0.633643\pi\)
−0.866512 + 0.499156i \(0.833643\pi\)
\(938\) −6.83708 9.41044i −0.223239 0.307262i
\(939\) 0 0
\(940\) 8.58579 + 26.4243i 0.280038 + 0.861867i
\(941\) −4.72947 14.5558i −0.154176 0.474506i 0.843900 0.536500i \(-0.180254\pi\)
−0.998077 + 0.0619941i \(0.980254\pi\)
\(942\) 0 0
\(943\) −2.50630 3.44962i −0.0816163 0.112335i
\(944\) 53.4908 + 17.3802i 1.74098 + 0.565677i
\(945\) 0 0
\(946\) 38.4267 17.4835i 1.24936 0.568437i
\(947\) 35.5222i 1.15432i 0.816632 + 0.577158i \(0.195838\pi\)
−0.816632 + 0.577158i \(0.804162\pi\)
\(948\) 0 0
\(949\) −40.4326 + 29.3760i −1.31250 + 0.953586i
\(950\) −8.78844 + 12.0962i −0.285135 + 0.392454i
\(951\) 0 0
\(952\) 35.1568 11.4231i 1.13944 0.370226i
\(953\) −24.4990 17.7996i −0.793602 0.576585i 0.115428 0.993316i \(-0.463176\pi\)
−0.909030 + 0.416730i \(0.863176\pi\)
\(954\) 0 0
\(955\) 5.34206 16.4412i 0.172865 0.532024i
\(956\) 99.4235 3.21559
\(957\) 0 0
\(958\) 1.11658 0.0360750
\(959\) −9.53297 + 29.3395i −0.307836 + 0.947420i
\(960\) 0 0
\(961\) −46.5315 33.8071i −1.50102 1.09055i
\(962\) −89.0148 + 28.9227i −2.86995 + 0.932504i
\(963\) 0 0
\(964\) −25.6796 + 35.3450i −0.827085 + 1.13838i
\(965\) −19.1688 + 13.9269i −0.617064 + 0.448324i
\(966\) 0 0
\(967\) 19.8481i 0.638272i 0.947709 + 0.319136i \(0.103393\pi\)
−0.947709 + 0.319136i \(0.896607\pi\)
\(968\) 31.1224 + 51.9412i 1.00031 + 1.66945i
\(969\) 0 0
\(970\) 7.92442 + 2.57480i 0.254438 + 0.0826718i
\(971\) −2.26406 3.11621i −0.0726570 0.100004i 0.771142 0.636663i \(-0.219686\pi\)
−0.843799 + 0.536660i \(0.819686\pi\)
\(972\) 0 0
\(973\) 2.13725 + 6.57777i 0.0685170 + 0.210874i
\(974\) −3.16016 9.72598i −0.101258 0.311640i
\(975\) 0 0
\(976\) −9.14811 12.5913i −0.292824 0.403037i
\(977\) 5.90797 + 1.91962i 0.189013 + 0.0614140i 0.401994 0.915642i \(-0.368317\pi\)
−0.212981 + 0.977056i \(0.568317\pi\)
\(978\) 0 0
\(979\) −18.0597 19.7331i −0.577192 0.630674i
\(980\) 16.6361i 0.531420i
\(981\) 0 0
\(982\) −49.8873 + 36.2452i −1.59197 + 1.15663i
\(983\) 17.0697 23.4944i 0.544438 0.749355i −0.444806 0.895627i \(-0.646727\pi\)
0.989244 + 0.146272i \(0.0467275\pi\)
\(984\) 0 0
\(985\) −8.92364 + 2.89947i −0.284331 + 0.0923847i
\(986\) 4.44085 + 3.22647i 0.141426 + 0.102752i
\(987\) 0 0
\(988\) 14.0039 43.0995i 0.445523 1.37118i
\(989\) −6.79967 −0.216217
\(990\) 0 0
\(991\) −0.476493 −0.0151363 −0.00756816 0.999971i \(-0.502409\pi\)
−0.00756816 + 0.999971i \(0.502409\pi\)
\(992\) −6.37649 + 19.6248i −0.202454 + 0.623089i
\(993\) 0 0
\(994\) 70.4041 + 51.1515i 2.23308 + 1.62243i
\(995\) −4.36761 + 1.41912i −0.138463 + 0.0449892i
\(996\) 0 0
\(997\) −15.1911 + 20.9087i −0.481107 + 0.662187i −0.978717 0.205214i \(-0.934211\pi\)
0.497610 + 0.867401i \(0.334211\pi\)
\(998\) −3.13920 + 2.28076i −0.0993696 + 0.0721963i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.728.20 80
3.2 odd 2 inner 891.2.k.a.728.1 80
9.2 odd 6 297.2.t.a.233.10 80
9.4 even 3 297.2.t.a.35.10 80
9.5 odd 6 99.2.p.a.2.1 80
9.7 even 3 99.2.p.a.68.1 yes 80
11.6 odd 10 inner 891.2.k.a.809.1 80
33.17 even 10 inner 891.2.k.a.809.20 80
99.50 even 30 99.2.p.a.83.1 yes 80
99.61 odd 30 99.2.p.a.50.1 yes 80
99.83 even 30 297.2.t.a.17.10 80
99.94 odd 30 297.2.t.a.116.10 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.1 80 9.5 odd 6
99.2.p.a.50.1 yes 80 99.61 odd 30
99.2.p.a.68.1 yes 80 9.7 even 3
99.2.p.a.83.1 yes 80 99.50 even 30
297.2.t.a.17.10 80 99.83 even 30
297.2.t.a.35.10 80 9.4 even 3
297.2.t.a.116.10 80 99.94 odd 30
297.2.t.a.233.10 80 9.2 odd 6
891.2.k.a.728.1 80 3.2 odd 2 inner
891.2.k.a.728.20 80 1.1 even 1 trivial
891.2.k.a.809.1 80 11.6 odd 10 inner
891.2.k.a.809.20 80 33.17 even 10 inner