Properties

Label 296.2.g.a.73.9
Level $296$
Weight $2$
Character 296.73
Analytic conductor $2.364$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [296,2,Mod(73,296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(296, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("296.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.36357189983\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.49179812660224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 6x^{7} + 53x^{6} - 46x^{5} + 18x^{4} + 12x^{3} + 196x^{2} - 112x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 73.9
Root \(0.279838 + 0.279838i\) of defining polynomial
Character \(\chi\) \(=\) 296.73
Dual form 296.2.g.a.73.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.94825 q^{3} -3.19874i q^{5} -3.28371 q^{7} +5.69219 q^{9} +1.70530 q^{11} -1.45481i q^{13} -9.43070i q^{15} +4.77715i q^{17} +0.209741i q^{19} -9.68119 q^{21} +8.73294i q^{23} -5.23196 q^{25} +7.93725 q^{27} -2.65144i q^{29} +9.47491i q^{31} +5.02764 q^{33} +10.5037i q^{35} +(3.65355 - 4.86329i) q^{37} -4.28913i q^{39} -11.3457 q^{41} -8.67366i q^{43} -18.2079i q^{45} +12.6681 q^{47} +3.78272 q^{49} +14.0842i q^{51} -5.11378 q^{53} -5.45481i q^{55} +0.618369i q^{57} -1.65780i q^{59} +1.90947i q^{61} -18.6915 q^{63} -4.65355 q^{65} +1.90947 q^{67} +25.7469i q^{69} -9.51127 q^{71} +6.10278 q^{73} -15.4251 q^{75} -5.59969 q^{77} +3.62473i q^{79} +6.32446 q^{81} -3.20221 q^{83} +15.2809 q^{85} -7.81711i q^{87} -10.1727i q^{89} +4.77715i q^{91} +27.9344i q^{93} +0.670907 q^{95} -10.1905i q^{97} +9.70687 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{3} - 4 q^{7} + 12 q^{9} + 2 q^{11} - 8 q^{21} + 4 q^{25} + 8 q^{27} + 4 q^{33} - 6 q^{37} - 26 q^{41} + 8 q^{47} + 14 q^{49} - 20 q^{53} - 12 q^{63} - 4 q^{65} - 2 q^{67} - 4 q^{71} - 14 q^{73}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/296\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.94825 1.70217 0.851087 0.525025i \(-0.175944\pi\)
0.851087 + 0.525025i \(0.175944\pi\)
\(4\) 0 0
\(5\) 3.19874i 1.43052i −0.698858 0.715261i \(-0.746308\pi\)
0.698858 0.715261i \(-0.253692\pi\)
\(6\) 0 0
\(7\) −3.28371 −1.24112 −0.620562 0.784157i \(-0.713096\pi\)
−0.620562 + 0.784157i \(0.713096\pi\)
\(8\) 0 0
\(9\) 5.69219 1.89740
\(10\) 0 0
\(11\) 1.70530 0.514166 0.257083 0.966389i \(-0.417239\pi\)
0.257083 + 0.966389i \(0.417239\pi\)
\(12\) 0 0
\(13\) 1.45481i 0.403490i −0.979438 0.201745i \(-0.935339\pi\)
0.979438 0.201745i \(-0.0646613\pi\)
\(14\) 0 0
\(15\) 9.43070i 2.43500i
\(16\) 0 0
\(17\) 4.77715i 1.15863i 0.815104 + 0.579315i \(0.196680\pi\)
−0.815104 + 0.579315i \(0.803320\pi\)
\(18\) 0 0
\(19\) 0.209741i 0.0481179i 0.999711 + 0.0240589i \(0.00765894\pi\)
−0.999711 + 0.0240589i \(0.992341\pi\)
\(20\) 0 0
\(21\) −9.68119 −2.11261
\(22\) 0 0
\(23\) 8.73294i 1.82094i 0.413571 + 0.910472i \(0.364281\pi\)
−0.413571 + 0.910472i \(0.635719\pi\)
\(24\) 0 0
\(25\) −5.23196 −1.04639
\(26\) 0 0
\(27\) 7.93725 1.52753
\(28\) 0 0
\(29\) 2.65144i 0.492360i −0.969224 0.246180i \(-0.920825\pi\)
0.969224 0.246180i \(-0.0791754\pi\)
\(30\) 0 0
\(31\) 9.47491i 1.70174i 0.525373 + 0.850872i \(0.323926\pi\)
−0.525373 + 0.850872i \(0.676074\pi\)
\(32\) 0 0
\(33\) 5.02764 0.875200
\(34\) 0 0
\(35\) 10.5037i 1.77545i
\(36\) 0 0
\(37\) 3.65355 4.86329i 0.600640 0.799520i
\(38\) 0 0
\(39\) 4.28913i 0.686811i
\(40\) 0 0
\(41\) −11.3457 −1.77191 −0.885953 0.463774i \(-0.846495\pi\)
−0.885953 + 0.463774i \(0.846495\pi\)
\(42\) 0 0
\(43\) 8.67366i 1.32272i −0.750069 0.661360i \(-0.769980\pi\)
0.750069 0.661360i \(-0.230020\pi\)
\(44\) 0 0
\(45\) 18.2079i 2.71427i
\(46\) 0 0
\(47\) 12.6681 1.84783 0.923915 0.382598i \(-0.124970\pi\)
0.923915 + 0.382598i \(0.124970\pi\)
\(48\) 0 0
\(49\) 3.78272 0.540389
\(50\) 0 0
\(51\) 14.0842i 1.97219i
\(52\) 0 0
\(53\) −5.11378 −0.702432 −0.351216 0.936295i \(-0.614232\pi\)
−0.351216 + 0.936295i \(0.614232\pi\)
\(54\) 0 0
\(55\) 5.45481i 0.735526i
\(56\) 0 0
\(57\) 0.618369i 0.0819050i
\(58\) 0 0
\(59\) 1.65780i 0.215827i −0.994160 0.107914i \(-0.965583\pi\)
0.994160 0.107914i \(-0.0344170\pi\)
\(60\) 0 0
\(61\) 1.90947i 0.244482i 0.992500 + 0.122241i \(0.0390081\pi\)
−0.992500 + 0.122241i \(0.960992\pi\)
\(62\) 0 0
\(63\) −18.6915 −2.35490
\(64\) 0 0
\(65\) −4.65355 −0.577202
\(66\) 0 0
\(67\) 1.90947 0.233278 0.116639 0.993174i \(-0.462788\pi\)
0.116639 + 0.993174i \(0.462788\pi\)
\(68\) 0 0
\(69\) 25.7469i 3.09956i
\(70\) 0 0
\(71\) −9.51127 −1.12878 −0.564390 0.825508i \(-0.690889\pi\)
−0.564390 + 0.825508i \(0.690889\pi\)
\(72\) 0 0
\(73\) 6.10278 0.714277 0.357138 0.934051i \(-0.383752\pi\)
0.357138 + 0.934051i \(0.383752\pi\)
\(74\) 0 0
\(75\) −15.4251 −1.78114
\(76\) 0 0
\(77\) −5.59969 −0.638144
\(78\) 0 0
\(79\) 3.62473i 0.407814i 0.978990 + 0.203907i \(0.0653640\pi\)
−0.978990 + 0.203907i \(0.934636\pi\)
\(80\) 0 0
\(81\) 6.32446 0.702717
\(82\) 0 0
\(83\) −3.20221 −0.351488 −0.175744 0.984436i \(-0.556233\pi\)
−0.175744 + 0.984436i \(0.556233\pi\)
\(84\) 0 0
\(85\) 15.2809 1.65744
\(86\) 0 0
\(87\) 7.81711i 0.838082i
\(88\) 0 0
\(89\) 10.1727i 1.07830i −0.842209 0.539151i \(-0.818745\pi\)
0.842209 0.539151i \(-0.181255\pi\)
\(90\) 0 0
\(91\) 4.77715i 0.500782i
\(92\) 0 0
\(93\) 27.9344i 2.89667i
\(94\) 0 0
\(95\) 0.670907 0.0688337
\(96\) 0 0
\(97\) 10.1905i 1.03469i −0.855778 0.517344i \(-0.826921\pi\)
0.855778 0.517344i \(-0.173079\pi\)
\(98\) 0 0
\(99\) 9.70687 0.975577
\(100\) 0 0
\(101\) −14.7607 −1.46875 −0.734374 0.678745i \(-0.762524\pi\)
−0.734374 + 0.678745i \(0.762524\pi\)
\(102\) 0 0
\(103\) 6.42434i 0.633009i −0.948591 0.316504i \(-0.897491\pi\)
0.948591 0.316504i \(-0.102509\pi\)
\(104\) 0 0
\(105\) 30.9676i 3.02213i
\(106\) 0 0
\(107\) −10.3907 −1.00451 −0.502255 0.864719i \(-0.667496\pi\)
−0.502255 + 0.864719i \(0.667496\pi\)
\(108\) 0 0
\(109\) 6.96215i 0.666853i −0.942776 0.333426i \(-0.891795\pi\)
0.942776 0.333426i \(-0.108205\pi\)
\(110\) 0 0
\(111\) 10.7716 14.3382i 1.02239 1.36092i
\(112\) 0 0
\(113\) 10.1905i 0.958641i 0.877640 + 0.479321i \(0.159117\pi\)
−0.877640 + 0.479321i \(0.840883\pi\)
\(114\) 0 0
\(115\) 27.9344 2.60490
\(116\) 0 0
\(117\) 8.28103i 0.765581i
\(118\) 0 0
\(119\) 15.6868i 1.43800i
\(120\) 0 0
\(121\) −8.09196 −0.735633
\(122\) 0 0
\(123\) −33.4501 −3.01609
\(124\) 0 0
\(125\) 0.741973i 0.0663641i
\(126\) 0 0
\(127\) −11.1582 −0.990131 −0.495066 0.868856i \(-0.664856\pi\)
−0.495066 + 0.868856i \(0.664856\pi\)
\(128\) 0 0
\(129\) 25.5721i 2.25150i
\(130\) 0 0
\(131\) 12.0027i 1.04869i 0.851507 + 0.524343i \(0.175689\pi\)
−0.851507 + 0.524343i \(0.824311\pi\)
\(132\) 0 0
\(133\) 0.688728i 0.0597203i
\(134\) 0 0
\(135\) 25.3892i 2.18516i
\(136\) 0 0
\(137\) 10.7005 0.914206 0.457103 0.889414i \(-0.348887\pi\)
0.457103 + 0.889414i \(0.348887\pi\)
\(138\) 0 0
\(139\) 2.74408 0.232750 0.116375 0.993205i \(-0.462873\pi\)
0.116375 + 0.993205i \(0.462873\pi\)
\(140\) 0 0
\(141\) 37.3487 3.14533
\(142\) 0 0
\(143\) 2.48087i 0.207461i
\(144\) 0 0
\(145\) −8.48127 −0.704332
\(146\) 0 0
\(147\) 11.1524 0.919836
\(148\) 0 0
\(149\) 12.9415 1.06021 0.530105 0.847932i \(-0.322153\pi\)
0.530105 + 0.847932i \(0.322153\pi\)
\(150\) 0 0
\(151\) 5.30288 0.431542 0.215771 0.976444i \(-0.430773\pi\)
0.215771 + 0.976444i \(0.430773\pi\)
\(152\) 0 0
\(153\) 27.1925i 2.19838i
\(154\) 0 0
\(155\) 30.3078 2.43438
\(156\) 0 0
\(157\) 20.2359 1.61500 0.807500 0.589868i \(-0.200820\pi\)
0.807500 + 0.589868i \(0.200820\pi\)
\(158\) 0 0
\(159\) −15.0767 −1.19566
\(160\) 0 0
\(161\) 28.6764i 2.26002i
\(162\) 0 0
\(163\) 17.3098i 1.35581i −0.735149 0.677906i \(-0.762888\pi\)
0.735149 0.677906i \(-0.237112\pi\)
\(164\) 0 0
\(165\) 16.0821i 1.25199i
\(166\) 0 0
\(167\) 2.58312i 0.199888i −0.994993 0.0999440i \(-0.968134\pi\)
0.994993 0.0999440i \(-0.0318664\pi\)
\(168\) 0 0
\(169\) 10.8835 0.837196
\(170\) 0 0
\(171\) 1.19389i 0.0912987i
\(172\) 0 0
\(173\) 7.29878 0.554916 0.277458 0.960738i \(-0.410508\pi\)
0.277458 + 0.960738i \(0.410508\pi\)
\(174\) 0 0
\(175\) 17.1802 1.29870
\(176\) 0 0
\(177\) 4.88761i 0.367376i
\(178\) 0 0
\(179\) 21.7157i 1.62311i 0.584276 + 0.811555i \(0.301378\pi\)
−0.584276 + 0.811555i \(0.698622\pi\)
\(180\) 0 0
\(181\) −4.11182 −0.305629 −0.152814 0.988255i \(-0.548834\pi\)
−0.152814 + 0.988255i \(0.548834\pi\)
\(182\) 0 0
\(183\) 5.62959i 0.416151i
\(184\) 0 0
\(185\) −15.5564 11.6868i −1.14373 0.859228i
\(186\) 0 0
\(187\) 8.14646i 0.595728i
\(188\) 0 0
\(189\) −26.0636 −1.89585
\(190\) 0 0
\(191\) 0.715581i 0.0517776i −0.999665 0.0258888i \(-0.991758\pi\)
0.999665 0.0258888i \(-0.00824159\pi\)
\(192\) 0 0
\(193\) 10.2430i 0.737310i 0.929566 + 0.368655i \(0.120182\pi\)
−0.929566 + 0.368655i \(0.879818\pi\)
\(194\) 0 0
\(195\) −13.7198 −0.982498
\(196\) 0 0
\(197\) −3.68119 −0.262274 −0.131137 0.991364i \(-0.541863\pi\)
−0.131137 + 0.991364i \(0.541863\pi\)
\(198\) 0 0
\(199\) 6.08150i 0.431106i −0.976492 0.215553i \(-0.930845\pi\)
0.976492 0.215553i \(-0.0691554\pi\)
\(200\) 0 0
\(201\) 5.62959 0.397081
\(202\) 0 0
\(203\) 8.70655i 0.611080i
\(204\) 0 0
\(205\) 36.2921i 2.53475i
\(206\) 0 0
\(207\) 49.7096i 3.45505i
\(208\) 0 0
\(209\) 0.357671i 0.0247406i
\(210\) 0 0
\(211\) 4.47970 0.308395 0.154198 0.988040i \(-0.450721\pi\)
0.154198 + 0.988040i \(0.450721\pi\)
\(212\) 0 0
\(213\) −28.0416 −1.92138
\(214\) 0 0
\(215\) −27.7448 −1.89218
\(216\) 0 0
\(217\) 31.1128i 2.11208i
\(218\) 0 0
\(219\) 17.9925 1.21582
\(220\) 0 0
\(221\) 6.94983 0.467496
\(222\) 0 0
\(223\) −11.2837 −0.755613 −0.377806 0.925885i \(-0.623322\pi\)
−0.377806 + 0.925885i \(0.623322\pi\)
\(224\) 0 0
\(225\) −29.7813 −1.98542
\(226\) 0 0
\(227\) 6.54542i 0.434435i −0.976123 0.217217i \(-0.930302\pi\)
0.976123 0.217217i \(-0.0696980\pi\)
\(228\) 0 0
\(229\) −12.9883 −0.858290 −0.429145 0.903236i \(-0.641185\pi\)
−0.429145 + 0.903236i \(0.641185\pi\)
\(230\) 0 0
\(231\) −16.5093 −1.08623
\(232\) 0 0
\(233\) 17.6978 1.15942 0.579712 0.814821i \(-0.303165\pi\)
0.579712 + 0.814821i \(0.303165\pi\)
\(234\) 0 0
\(235\) 40.5220i 2.64336i
\(236\) 0 0
\(237\) 10.6866i 0.694170i
\(238\) 0 0
\(239\) 5.13928i 0.332432i 0.986089 + 0.166216i \(0.0531550\pi\)
−0.986089 + 0.166216i \(0.946845\pi\)
\(240\) 0 0
\(241\) 23.2327i 1.49655i −0.663390 0.748274i \(-0.730883\pi\)
0.663390 0.748274i \(-0.269117\pi\)
\(242\) 0 0
\(243\) −5.16567 −0.331378
\(244\) 0 0
\(245\) 12.1000i 0.773038i
\(246\) 0 0
\(247\) 0.305132 0.0194151
\(248\) 0 0
\(249\) −9.44091 −0.598293
\(250\) 0 0
\(251\) 14.9383i 0.942896i 0.881894 + 0.471448i \(0.156269\pi\)
−0.881894 + 0.471448i \(0.843731\pi\)
\(252\) 0 0
\(253\) 14.8923i 0.936268i
\(254\) 0 0
\(255\) 45.0519 2.82126
\(256\) 0 0
\(257\) 14.1109i 0.880211i 0.897946 + 0.440106i \(0.145059\pi\)
−0.897946 + 0.440106i \(0.854941\pi\)
\(258\) 0 0
\(259\) −11.9972 + 15.9696i −0.745468 + 0.992303i
\(260\) 0 0
\(261\) 15.0925i 0.934202i
\(262\) 0 0
\(263\) −1.20613 −0.0743734 −0.0371867 0.999308i \(-0.511840\pi\)
−0.0371867 + 0.999308i \(0.511840\pi\)
\(264\) 0 0
\(265\) 16.3577i 1.00484i
\(266\) 0 0
\(267\) 29.9916i 1.83546i
\(268\) 0 0
\(269\) 11.6427 0.709870 0.354935 0.934891i \(-0.384503\pi\)
0.354935 + 0.934891i \(0.384503\pi\)
\(270\) 0 0
\(271\) 2.25946 0.137252 0.0686261 0.997642i \(-0.478138\pi\)
0.0686261 + 0.997642i \(0.478138\pi\)
\(272\) 0 0
\(273\) 14.0842i 0.852418i
\(274\) 0 0
\(275\) −8.92204 −0.538019
\(276\) 0 0
\(277\) 7.35320i 0.441811i −0.975295 0.220905i \(-0.929099\pi\)
0.975295 0.220905i \(-0.0709012\pi\)
\(278\) 0 0
\(279\) 53.9330i 3.22888i
\(280\) 0 0
\(281\) 23.3735i 1.39435i 0.716902 + 0.697174i \(0.245559\pi\)
−0.716902 + 0.697174i \(0.754441\pi\)
\(282\) 0 0
\(283\) 28.8503i 1.71497i −0.514509 0.857485i \(-0.672026\pi\)
0.514509 0.857485i \(-0.327974\pi\)
\(284\) 0 0
\(285\) 1.97800 0.117167
\(286\) 0 0
\(287\) 37.2561 2.19916
\(288\) 0 0
\(289\) −5.82119 −0.342423
\(290\) 0 0
\(291\) 30.0441i 1.76122i
\(292\) 0 0
\(293\) −7.47937 −0.436950 −0.218475 0.975843i \(-0.570108\pi\)
−0.218475 + 0.975843i \(0.570108\pi\)
\(294\) 0 0
\(295\) −5.30288 −0.308746
\(296\) 0 0
\(297\) 13.5354 0.785402
\(298\) 0 0
\(299\) 12.7047 0.734733
\(300\) 0 0
\(301\) 28.4817i 1.64166i
\(302\) 0 0
\(303\) −43.5183 −2.50006
\(304\) 0 0
\(305\) 6.10789 0.349737
\(306\) 0 0
\(307\) −7.74322 −0.441929 −0.220965 0.975282i \(-0.570921\pi\)
−0.220965 + 0.975282i \(0.570921\pi\)
\(308\) 0 0
\(309\) 18.9406i 1.07749i
\(310\) 0 0
\(311\) 5.25867i 0.298192i −0.988823 0.149096i \(-0.952364\pi\)
0.988823 0.149096i \(-0.0476363\pi\)
\(312\) 0 0
\(313\) 12.5165i 0.707472i −0.935345 0.353736i \(-0.884911\pi\)
0.935345 0.353736i \(-0.115089\pi\)
\(314\) 0 0
\(315\) 59.7892i 3.36874i
\(316\) 0 0
\(317\) −6.80377 −0.382138 −0.191069 0.981577i \(-0.561195\pi\)
−0.191069 + 0.981577i \(0.561195\pi\)
\(318\) 0 0
\(319\) 4.52149i 0.253155i
\(320\) 0 0
\(321\) −30.6345 −1.70985
\(322\) 0 0
\(323\) −1.00196 −0.0557508
\(324\) 0 0
\(325\) 7.61148i 0.422209i
\(326\) 0 0
\(327\) 20.5262i 1.13510i
\(328\) 0 0
\(329\) −41.5983 −2.29339
\(330\) 0 0
\(331\) 7.10153i 0.390335i −0.980770 0.195168i \(-0.937475\pi\)
0.980770 0.195168i \(-0.0625251\pi\)
\(332\) 0 0
\(333\) 20.7967 27.6828i 1.13965 1.51701i
\(334\) 0 0
\(335\) 6.10789i 0.333710i
\(336\) 0 0
\(337\) 5.41838 0.295158 0.147579 0.989050i \(-0.452852\pi\)
0.147579 + 0.989050i \(0.452852\pi\)
\(338\) 0 0
\(339\) 30.0441i 1.63177i
\(340\) 0 0
\(341\) 16.1575i 0.874980i
\(342\) 0 0
\(343\) 10.5646 0.570434
\(344\) 0 0
\(345\) 82.3577 4.43399
\(346\) 0 0
\(347\) 11.3844i 0.611146i 0.952169 + 0.305573i \(0.0988479\pi\)
−0.952169 + 0.305573i \(0.901152\pi\)
\(348\) 0 0
\(349\) −3.02425 −0.161884 −0.0809422 0.996719i \(-0.525793\pi\)
−0.0809422 + 0.996719i \(0.525793\pi\)
\(350\) 0 0
\(351\) 11.5472i 0.616342i
\(352\) 0 0
\(353\) 32.6984i 1.74036i −0.492732 0.870181i \(-0.664002\pi\)
0.492732 0.870181i \(-0.335998\pi\)
\(354\) 0 0
\(355\) 30.4241i 1.61474i
\(356\) 0 0
\(357\) 46.2485i 2.44773i
\(358\) 0 0
\(359\) −11.3351 −0.598242 −0.299121 0.954215i \(-0.596693\pi\)
−0.299121 + 0.954215i \(0.596693\pi\)
\(360\) 0 0
\(361\) 18.9560 0.997685
\(362\) 0 0
\(363\) −23.8571 −1.25218
\(364\) 0 0
\(365\) 19.5212i 1.02179i
\(366\) 0 0
\(367\) 14.1503 0.738639 0.369319 0.929303i \(-0.379591\pi\)
0.369319 + 0.929303i \(0.379591\pi\)
\(368\) 0 0
\(369\) −64.5821 −3.36201
\(370\) 0 0
\(371\) 16.7922 0.871805
\(372\) 0 0
\(373\) 23.2506 1.20387 0.601934 0.798546i \(-0.294397\pi\)
0.601934 + 0.798546i \(0.294397\pi\)
\(374\) 0 0
\(375\) 2.18752i 0.112963i
\(376\) 0 0
\(377\) −3.85733 −0.198663
\(378\) 0 0
\(379\) −23.6659 −1.21564 −0.607819 0.794076i \(-0.707955\pi\)
−0.607819 + 0.794076i \(0.707955\pi\)
\(380\) 0 0
\(381\) −32.8972 −1.68538
\(382\) 0 0
\(383\) 11.8483i 0.605420i 0.953083 + 0.302710i \(0.0978913\pi\)
−0.953083 + 0.302710i \(0.902109\pi\)
\(384\) 0 0
\(385\) 17.9120i 0.912879i
\(386\) 0 0
\(387\) 49.3721i 2.50972i
\(388\) 0 0
\(389\) 23.5738i 1.19524i 0.801780 + 0.597619i \(0.203886\pi\)
−0.801780 + 0.597619i \(0.796114\pi\)
\(390\) 0 0
\(391\) −41.7186 −2.10980
\(392\) 0 0
\(393\) 35.3871i 1.78504i
\(394\) 0 0
\(395\) 11.5946 0.583387
\(396\) 0 0
\(397\) −22.9153 −1.15009 −0.575043 0.818123i \(-0.695015\pi\)
−0.575043 + 0.818123i \(0.695015\pi\)
\(398\) 0 0
\(399\) 2.03054i 0.101654i
\(400\) 0 0
\(401\) 14.7107i 0.734618i 0.930099 + 0.367309i \(0.119721\pi\)
−0.930099 + 0.367309i \(0.880279\pi\)
\(402\) 0 0
\(403\) 13.7842 0.686638
\(404\) 0 0
\(405\) 20.2303i 1.00525i
\(406\) 0 0
\(407\) 6.23038 8.29335i 0.308829 0.411086i
\(408\) 0 0
\(409\) 17.9298i 0.886571i 0.896380 + 0.443286i \(0.146187\pi\)
−0.896380 + 0.443286i \(0.853813\pi\)
\(410\) 0 0
\(411\) 31.5478 1.55614
\(412\) 0 0
\(413\) 5.44373i 0.267868i
\(414\) 0 0
\(415\) 10.2430i 0.502811i
\(416\) 0 0
\(417\) 8.09025 0.396181
\(418\) 0 0
\(419\) −10.3546 −0.505857 −0.252928 0.967485i \(-0.581394\pi\)
−0.252928 + 0.967485i \(0.581394\pi\)
\(420\) 0 0
\(421\) 24.9829i 1.21759i −0.793327 0.608796i \(-0.791653\pi\)
0.793327 0.608796i \(-0.208347\pi\)
\(422\) 0 0
\(423\) 72.1091 3.50607
\(424\) 0 0
\(425\) 24.9939i 1.21238i
\(426\) 0 0
\(427\) 6.27013i 0.303433i
\(428\) 0 0
\(429\) 7.31424i 0.353135i
\(430\) 0 0
\(431\) 34.5108i 1.66233i 0.556028 + 0.831164i \(0.312325\pi\)
−0.556028 + 0.831164i \(0.687675\pi\)
\(432\) 0 0
\(433\) 8.87225 0.426373 0.213187 0.977012i \(-0.431616\pi\)
0.213187 + 0.977012i \(0.431616\pi\)
\(434\) 0 0
\(435\) −25.0049 −1.19889
\(436\) 0 0
\(437\) −1.83166 −0.0876200
\(438\) 0 0
\(439\) 17.4395i 0.832341i 0.909287 + 0.416171i \(0.136628\pi\)
−0.909287 + 0.416171i \(0.863372\pi\)
\(440\) 0 0
\(441\) 21.5320 1.02533
\(442\) 0 0
\(443\) 9.49973 0.451346 0.225673 0.974203i \(-0.427542\pi\)
0.225673 + 0.974203i \(0.427542\pi\)
\(444\) 0 0
\(445\) −32.5398 −1.54253
\(446\) 0 0
\(447\) 38.1548 1.80466
\(448\) 0 0
\(449\) 9.99582i 0.471732i −0.971786 0.235866i \(-0.924207\pi\)
0.971786 0.235866i \(-0.0757927\pi\)
\(450\) 0 0
\(451\) −19.3478 −0.911055
\(452\) 0 0
\(453\) 15.6342 0.734560
\(454\) 0 0
\(455\) 15.2809 0.716379
\(456\) 0 0
\(457\) 6.49951i 0.304034i 0.988378 + 0.152017i \(0.0485769\pi\)
−0.988378 + 0.152017i \(0.951423\pi\)
\(458\) 0 0
\(459\) 37.9175i 1.76984i
\(460\) 0 0
\(461\) 9.20085i 0.428526i −0.976776 0.214263i \(-0.931265\pi\)
0.976776 0.214263i \(-0.0687350\pi\)
\(462\) 0 0
\(463\) 9.19686i 0.427414i −0.976898 0.213707i \(-0.931446\pi\)
0.976898 0.213707i \(-0.0685538\pi\)
\(464\) 0 0
\(465\) 89.3551 4.14374
\(466\) 0 0
\(467\) 2.62505i 0.121473i −0.998154 0.0607364i \(-0.980655\pi\)
0.998154 0.0607364i \(-0.0193449\pi\)
\(468\) 0 0
\(469\) −6.27013 −0.289528
\(470\) 0 0
\(471\) 59.6605 2.74901
\(472\) 0 0
\(473\) 14.7912i 0.680098i
\(474\) 0 0
\(475\) 1.09736i 0.0503501i
\(476\) 0 0
\(477\) −29.1086 −1.33279
\(478\) 0 0
\(479\) 23.3471i 1.06676i −0.845876 0.533379i \(-0.820922\pi\)
0.845876 0.533379i \(-0.179078\pi\)
\(480\) 0 0
\(481\) −7.07514 5.31520i −0.322599 0.242352i
\(482\) 0 0
\(483\) 84.5453i 3.84694i
\(484\) 0 0
\(485\) −32.5968 −1.48014
\(486\) 0 0
\(487\) 19.0050i 0.861199i 0.902543 + 0.430599i \(0.141698\pi\)
−0.902543 + 0.430599i \(0.858302\pi\)
\(488\) 0 0
\(489\) 51.0338i 2.30783i
\(490\) 0 0
\(491\) −35.1468 −1.58615 −0.793076 0.609123i \(-0.791522\pi\)
−0.793076 + 0.609123i \(0.791522\pi\)
\(492\) 0 0
\(493\) 12.6663 0.570463
\(494\) 0 0
\(495\) 31.0498i 1.39558i
\(496\) 0 0
\(497\) 31.2322 1.40096
\(498\) 0 0
\(499\) 28.9911i 1.29782i −0.760865 0.648910i \(-0.775225\pi\)
0.760865 0.648910i \(-0.224775\pi\)
\(500\) 0 0
\(501\) 7.61570i 0.340244i
\(502\) 0 0
\(503\) 29.1135i 1.29811i −0.760743 0.649053i \(-0.775165\pi\)
0.760743 0.649053i \(-0.224835\pi\)
\(504\) 0 0
\(505\) 47.2158i 2.10107i
\(506\) 0 0
\(507\) 32.0874 1.42505
\(508\) 0 0
\(509\) 5.60362 0.248376 0.124188 0.992259i \(-0.460367\pi\)
0.124188 + 0.992259i \(0.460367\pi\)
\(510\) 0 0
\(511\) −20.0397 −0.886506
\(512\) 0 0
\(513\) 1.66477i 0.0735013i
\(514\) 0 0
\(515\) −20.5498 −0.905533
\(516\) 0 0
\(517\) 21.6028 0.950092
\(518\) 0 0
\(519\) 21.5186 0.944563
\(520\) 0 0
\(521\) 11.8492 0.519125 0.259562 0.965726i \(-0.416422\pi\)
0.259562 + 0.965726i \(0.416422\pi\)
\(522\) 0 0
\(523\) 15.1101i 0.660718i 0.943855 + 0.330359i \(0.107170\pi\)
−0.943855 + 0.330359i \(0.892830\pi\)
\(524\) 0 0
\(525\) 50.6516 2.21062
\(526\) 0 0
\(527\) −45.2631 −1.97169
\(528\) 0 0
\(529\) −53.2642 −2.31584
\(530\) 0 0
\(531\) 9.43652i 0.409510i
\(532\) 0 0
\(533\) 16.5058i 0.714947i
\(534\) 0 0
\(535\) 33.2373i 1.43697i
\(536\) 0 0
\(537\) 64.0234i 2.76281i
\(538\) 0 0
\(539\) 6.45066 0.277850
\(540\) 0 0
\(541\) 34.5457i 1.48523i 0.669716 + 0.742617i \(0.266416\pi\)
−0.669716 + 0.742617i \(0.733584\pi\)
\(542\) 0 0
\(543\) −12.1227 −0.520234
\(544\) 0 0
\(545\) −22.2701 −0.953947
\(546\) 0 0
\(547\) 7.15018i 0.305720i 0.988248 + 0.152860i \(0.0488483\pi\)
−0.988248 + 0.152860i \(0.951152\pi\)
\(548\) 0 0
\(549\) 10.8690i 0.463880i
\(550\) 0 0
\(551\) 0.556116 0.0236913
\(552\) 0 0
\(553\) 11.9025i 0.506148i
\(554\) 0 0
\(555\) −45.8642 34.4555i −1.94683 1.46256i
\(556\) 0 0
\(557\) 29.6186i 1.25498i −0.778624 0.627491i \(-0.784082\pi\)
0.778624 0.627491i \(-0.215918\pi\)
\(558\) 0 0
\(559\) −12.6185 −0.533705
\(560\) 0 0
\(561\) 24.0178i 1.01403i
\(562\) 0 0
\(563\) 13.3043i 0.560711i −0.959896 0.280356i \(-0.909548\pi\)
0.959896 0.280356i \(-0.0904524\pi\)
\(564\) 0 0
\(565\) 32.5968 1.37136
\(566\) 0 0
\(567\) −20.7677 −0.872159
\(568\) 0 0
\(569\) 4.88761i 0.204899i −0.994738 0.102450i \(-0.967332\pi\)
0.994738 0.102450i \(-0.0326681\pi\)
\(570\) 0 0
\(571\) −33.7638 −1.41297 −0.706485 0.707728i \(-0.749720\pi\)
−0.706485 + 0.707728i \(0.749720\pi\)
\(572\) 0 0
\(573\) 2.10971i 0.0881345i
\(574\) 0 0
\(575\) 45.6904i 1.90542i
\(576\) 0 0
\(577\) 30.4241i 1.26657i 0.773918 + 0.633286i \(0.218294\pi\)
−0.773918 + 0.633286i \(0.781706\pi\)
\(578\) 0 0
\(579\) 30.1990i 1.25503i
\(580\) 0 0
\(581\) 10.5151 0.436240
\(582\) 0 0
\(583\) −8.72051 −0.361167
\(584\) 0 0
\(585\) −26.4889 −1.09518
\(586\) 0 0
\(587\) 24.4005i 1.00712i −0.863961 0.503559i \(-0.832024\pi\)
0.863961 0.503559i \(-0.167976\pi\)
\(588\) 0 0
\(589\) −1.98728 −0.0818843
\(590\) 0 0
\(591\) −10.8531 −0.446436
\(592\) 0 0
\(593\) 22.3306 0.917009 0.458505 0.888692i \(-0.348385\pi\)
0.458505 + 0.888692i \(0.348385\pi\)
\(594\) 0 0
\(595\) −50.1779 −2.05709
\(596\) 0 0
\(597\) 17.9298i 0.733818i
\(598\) 0 0
\(599\) 10.0655 0.411264 0.205632 0.978629i \(-0.434075\pi\)
0.205632 + 0.978629i \(0.434075\pi\)
\(600\) 0 0
\(601\) −2.35644 −0.0961213 −0.0480606 0.998844i \(-0.515304\pi\)
−0.0480606 + 0.998844i \(0.515304\pi\)
\(602\) 0 0
\(603\) 10.8690 0.442622
\(604\) 0 0
\(605\) 25.8841i 1.05234i
\(606\) 0 0
\(607\) 1.94307i 0.0788666i 0.999222 + 0.0394333i \(0.0125553\pi\)
−0.999222 + 0.0394333i \(0.987445\pi\)
\(608\) 0 0
\(609\) 25.6691i 1.04016i
\(610\) 0 0
\(611\) 18.4296i 0.745582i
\(612\) 0 0
\(613\) 19.8400 0.801329 0.400665 0.916225i \(-0.368779\pi\)
0.400665 + 0.916225i \(0.368779\pi\)
\(614\) 0 0
\(615\) 106.998i 4.31459i
\(616\) 0 0
\(617\) 16.0166 0.644806 0.322403 0.946603i \(-0.395509\pi\)
0.322403 + 0.946603i \(0.395509\pi\)
\(618\) 0 0
\(619\) −36.0175 −1.44767 −0.723833 0.689975i \(-0.757621\pi\)
−0.723833 + 0.689975i \(0.757621\pi\)
\(620\) 0 0
\(621\) 69.3156i 2.78154i
\(622\) 0 0
\(623\) 33.4041i 1.33831i
\(624\) 0 0
\(625\) −23.7864 −0.951456
\(626\) 0 0
\(627\) 1.05450i 0.0421128i
\(628\) 0 0
\(629\) 23.2327 + 17.4536i 0.926347 + 0.695919i
\(630\) 0 0
\(631\) 16.4641i 0.655427i 0.944777 + 0.327713i \(0.106278\pi\)
−0.944777 + 0.327713i \(0.893722\pi\)
\(632\) 0 0
\(633\) 13.2073 0.524942
\(634\) 0 0
\(635\) 35.6923i 1.41640i
\(636\) 0 0
\(637\) 5.50313i 0.218042i
\(638\) 0 0
\(639\) −54.1399 −2.14174
\(640\) 0 0
\(641\) −24.3810 −0.962991 −0.481496 0.876448i \(-0.659906\pi\)
−0.481496 + 0.876448i \(0.659906\pi\)
\(642\) 0 0
\(643\) 24.9785i 0.985058i 0.870296 + 0.492529i \(0.163927\pi\)
−0.870296 + 0.492529i \(0.836073\pi\)
\(644\) 0 0
\(645\) −81.7987 −3.22082
\(646\) 0 0
\(647\) 25.3827i 0.997898i −0.866631 0.498949i \(-0.833719\pi\)
0.866631 0.498949i \(-0.166281\pi\)
\(648\) 0 0
\(649\) 2.82704i 0.110971i
\(650\) 0 0
\(651\) 91.7285i 3.59512i
\(652\) 0 0
\(653\) 37.6994i 1.47529i 0.675188 + 0.737646i \(0.264063\pi\)
−0.675188 + 0.737646i \(0.735937\pi\)
\(654\) 0 0
\(655\) 38.3937 1.50017
\(656\) 0 0
\(657\) 34.7382 1.35527
\(658\) 0 0
\(659\) 20.5470 0.800397 0.400199 0.916428i \(-0.368941\pi\)
0.400199 + 0.916428i \(0.368941\pi\)
\(660\) 0 0
\(661\) 42.2553i 1.64354i −0.569820 0.821770i \(-0.692987\pi\)
0.569820 0.821770i \(-0.307013\pi\)
\(662\) 0 0
\(663\) 20.4898 0.795759
\(664\) 0 0
\(665\) −2.20306 −0.0854311
\(666\) 0 0
\(667\) 23.1549 0.896560
\(668\) 0 0
\(669\) −33.2672 −1.28618
\(670\) 0 0
\(671\) 3.25621i 0.125704i
\(672\) 0 0
\(673\) −27.8564 −1.07379 −0.536893 0.843650i \(-0.680402\pi\)
−0.536893 + 0.843650i \(0.680402\pi\)
\(674\) 0 0
\(675\) −41.5274 −1.59839
\(676\) 0 0
\(677\) 44.1395 1.69642 0.848209 0.529662i \(-0.177681\pi\)
0.848209 + 0.529662i \(0.177681\pi\)
\(678\) 0 0
\(679\) 33.4626i 1.28418i
\(680\) 0 0
\(681\) 19.2975i 0.739483i
\(682\) 0 0
\(683\) 22.2020i 0.849537i 0.905302 + 0.424769i \(0.139645\pi\)
−0.905302 + 0.424769i \(0.860355\pi\)
\(684\) 0 0
\(685\) 34.2282i 1.30779i
\(686\) 0 0
\(687\) −38.2927 −1.46096
\(688\) 0 0
\(689\) 7.43955i 0.283424i
\(690\) 0 0
\(691\) 5.76679 0.219379 0.109690 0.993966i \(-0.465014\pi\)
0.109690 + 0.993966i \(0.465014\pi\)
\(692\) 0 0
\(693\) −31.8745 −1.21081
\(694\) 0 0
\(695\) 8.77761i 0.332954i
\(696\) 0 0
\(697\) 54.2003i 2.05298i
\(698\) 0 0
\(699\) 52.1777 1.97354
\(700\) 0 0
\(701\) 13.4677i 0.508668i 0.967116 + 0.254334i \(0.0818563\pi\)
−0.967116 + 0.254334i \(0.918144\pi\)
\(702\) 0 0
\(703\) 1.02003 + 0.766299i 0.0384712 + 0.0289015i
\(704\) 0 0
\(705\) 119.469i 4.49946i
\(706\) 0 0
\(707\) 48.4699 1.82290
\(708\) 0 0
\(709\) 40.1321i 1.50719i 0.657338 + 0.753596i \(0.271682\pi\)
−0.657338 + 0.753596i \(0.728318\pi\)
\(710\) 0 0
\(711\) 20.6327i 0.773785i
\(712\) 0 0
\(713\) −82.7439 −3.09878
\(714\) 0 0
\(715\) −7.93568 −0.296778
\(716\) 0 0
\(717\) 15.1519i 0.565858i
\(718\) 0 0
\(719\) 46.6461 1.73961 0.869803 0.493400i \(-0.164246\pi\)
0.869803 + 0.493400i \(0.164246\pi\)
\(720\) 0 0
\(721\) 21.0956i 0.785643i
\(722\) 0 0
\(723\) 68.4958i 2.54739i
\(724\) 0 0
\(725\) 13.8722i 0.515201i
\(726\) 0 0
\(727\) 24.8473i 0.921534i −0.887521 0.460767i \(-0.847574\pi\)
0.887521 0.460767i \(-0.152426\pi\)
\(728\) 0 0
\(729\) −34.2031 −1.26678
\(730\) 0 0
\(731\) 41.4354 1.53254
\(732\) 0 0
\(733\) 36.5701 1.35075 0.675374 0.737476i \(-0.263982\pi\)
0.675374 + 0.737476i \(0.263982\pi\)
\(734\) 0 0
\(735\) 35.6737i 1.31585i
\(736\) 0 0
\(737\) 3.25621 0.119944
\(738\) 0 0
\(739\) 26.7073 0.982442 0.491221 0.871035i \(-0.336551\pi\)
0.491221 + 0.871035i \(0.336551\pi\)
\(740\) 0 0
\(741\) 0.899607 0.0330479
\(742\) 0 0
\(743\) −33.4081 −1.22562 −0.612811 0.790229i \(-0.709961\pi\)
−0.612811 + 0.790229i \(0.709961\pi\)
\(744\) 0 0
\(745\) 41.3966i 1.51665i
\(746\) 0 0
\(747\) −18.2276 −0.666912
\(748\) 0 0
\(749\) 34.1201 1.24672
\(750\) 0 0
\(751\) 4.33703 0.158260 0.0791302 0.996864i \(-0.474786\pi\)
0.0791302 + 0.996864i \(0.474786\pi\)
\(752\) 0 0
\(753\) 44.0418i 1.60497i
\(754\) 0 0
\(755\) 16.9625i 0.617330i
\(756\) 0 0
\(757\) 25.2830i 0.918926i 0.888197 + 0.459463i \(0.151958\pi\)
−0.888197 + 0.459463i \(0.848042\pi\)
\(758\) 0 0
\(759\) 43.9061i 1.59369i
\(760\) 0 0
\(761\) 43.0646 1.56109 0.780545 0.625099i \(-0.214941\pi\)
0.780545 + 0.625099i \(0.214941\pi\)
\(762\) 0 0
\(763\) 22.8616i 0.827647i
\(764\) 0 0
\(765\) 86.9817 3.14483
\(766\) 0 0
\(767\) −2.41178 −0.0870842
\(768\) 0 0
\(769\) 0.0394155i 0.00142136i −1.00000 0.000710679i \(-0.999774\pi\)
1.00000 0.000710679i \(-0.000226216\pi\)
\(770\) 0 0
\(771\) 41.6024i 1.49827i
\(772\) 0 0
\(773\) −0.727148 −0.0261537 −0.0130768 0.999914i \(-0.504163\pi\)
−0.0130768 + 0.999914i \(0.504163\pi\)
\(774\) 0 0
\(775\) 49.5723i 1.78069i
\(776\) 0 0
\(777\) −35.3707 + 47.0824i −1.26892 + 1.68907i
\(778\) 0 0
\(779\) 2.37967i 0.0852604i
\(780\) 0 0
\(781\) −16.2195 −0.580380
\(782\) 0 0
\(783\) 21.0452i 0.752092i
\(784\) 0 0
\(785\) 64.7294i 2.31029i
\(786\) 0 0
\(787\) −6.13961 −0.218853 −0.109427 0.993995i \(-0.534901\pi\)
−0.109427 + 0.993995i \(0.534901\pi\)
\(788\) 0 0
\(789\) −3.55599 −0.126597
\(790\) 0 0
\(791\) 33.4626i 1.18979i
\(792\) 0 0
\(793\) 2.77790 0.0986462
\(794\) 0 0
\(795\) 48.2265i 1.71042i
\(796\) 0 0
\(797\) 31.3278i 1.10969i −0.831954 0.554845i \(-0.812778\pi\)
0.831954 0.554845i \(-0.187222\pi\)
\(798\) 0 0
\(799\) 60.5174i 2.14095i
\(800\) 0 0
\(801\) 57.9048i 2.04597i
\(802\) 0 0
\(803\) 10.4071 0.367257
\(804\) 0 0
\(805\) −91.7285 −3.23300
\(806\) 0 0
\(807\) 34.3257 1.20832
\(808\) 0 0
\(809\) 24.7019i 0.868471i 0.900799 + 0.434235i \(0.142981\pi\)
−0.900799 + 0.434235i \(0.857019\pi\)
\(810\) 0 0
\(811\) 27.0155 0.948644 0.474322 0.880351i \(-0.342693\pi\)
0.474322 + 0.880351i \(0.342693\pi\)
\(812\) 0 0
\(813\) 6.66145 0.233627
\(814\) 0 0
\(815\) −55.3698 −1.93952
\(816\) 0 0
\(817\) 1.81922 0.0636465
\(818\) 0 0
\(819\) 27.1925i 0.950181i
\(820\) 0 0
\(821\) 14.0477 0.490269 0.245135 0.969489i \(-0.421168\pi\)
0.245135 + 0.969489i \(0.421168\pi\)
\(822\) 0 0
\(823\) 37.2061 1.29692 0.648462 0.761247i \(-0.275413\pi\)
0.648462 + 0.761247i \(0.275413\pi\)
\(824\) 0 0
\(825\) −26.3044 −0.915802
\(826\) 0 0
\(827\) 25.4952i 0.886556i 0.896384 + 0.443278i \(0.146185\pi\)
−0.896384 + 0.443278i \(0.853815\pi\)
\(828\) 0 0
\(829\) 28.3600i 0.984982i −0.870318 0.492491i \(-0.836086\pi\)
0.870318 0.492491i \(-0.163914\pi\)
\(830\) 0 0
\(831\) 21.6791i 0.752039i
\(832\) 0 0
\(833\) 18.0706i 0.626111i
\(834\) 0 0
\(835\) −8.26275 −0.285944
\(836\) 0 0
\(837\) 75.2048i 2.59946i
\(838\) 0 0
\(839\) −25.8099 −0.891058 −0.445529 0.895267i \(-0.646984\pi\)
−0.445529 + 0.895267i \(0.646984\pi\)
\(840\) 0 0
\(841\) 21.9699 0.757582
\(842\) 0 0
\(843\) 68.9110i 2.37342i
\(844\) 0 0
\(845\) 34.8137i 1.19763i
\(846\) 0 0
\(847\) 26.5716 0.913012
\(848\) 0 0
\(849\) 85.0578i 2.91918i
\(850\) 0 0
\(851\) 42.4708 + 31.9062i 1.45588 + 1.09373i
\(852\) 0 0
\(853\) 13.2081i 0.452235i −0.974100 0.226118i \(-0.927397\pi\)
0.974100 0.226118i \(-0.0726034\pi\)
\(854\) 0 0
\(855\) 3.81893 0.130605
\(856\) 0 0
\(857\) 30.8046i 1.05227i 0.850402 + 0.526133i \(0.176359\pi\)
−0.850402 + 0.526133i \(0.823641\pi\)
\(858\) 0 0
\(859\) 26.0511i 0.888852i −0.895815 0.444426i \(-0.853408\pi\)
0.895815 0.444426i \(-0.146592\pi\)
\(860\) 0 0
\(861\) 109.840 3.74335
\(862\) 0 0
\(863\) −12.6663 −0.431167 −0.215583 0.976485i \(-0.569165\pi\)
−0.215583 + 0.976485i \(0.569165\pi\)
\(864\) 0 0
\(865\) 23.3469i 0.793819i
\(866\) 0 0
\(867\) −17.1623 −0.582863
\(868\) 0 0
\(869\) 6.18124i 0.209684i
\(870\) 0 0
\(871\) 2.77790i 0.0941256i
\(872\) 0 0
\(873\) 58.0062i 1.96321i
\(874\) 0 0
\(875\) 2.43642i 0.0823661i
\(876\) 0 0
\(877\) −45.7101 −1.54352 −0.771760 0.635914i \(-0.780623\pi\)
−0.771760 + 0.635914i \(0.780623\pi\)
\(878\) 0 0
\(879\) −22.0511 −0.743764
\(880\) 0 0
\(881\) −29.6503 −0.998945 −0.499473 0.866330i \(-0.666473\pi\)
−0.499473 + 0.866330i \(0.666473\pi\)
\(882\) 0 0
\(883\) 4.97340i 0.167368i 0.996492 + 0.0836842i \(0.0266687\pi\)
−0.996492 + 0.0836842i \(0.973331\pi\)
\(884\) 0 0
\(885\) −15.6342 −0.525539
\(886\) 0 0
\(887\) −26.5299 −0.890786 −0.445393 0.895335i \(-0.646936\pi\)
−0.445393 + 0.895335i \(0.646936\pi\)
\(888\) 0 0
\(889\) 36.6403 1.22888
\(890\) 0 0
\(891\) 10.7851 0.361314
\(892\) 0 0
\(893\) 2.65702i 0.0889137i
\(894\) 0 0
\(895\) 69.4630 2.32189
\(896\) 0 0
\(897\) 37.4567 1.25064
\(898\) 0 0
\(899\) 25.1222 0.837871
\(900\) 0 0
\(901\) 24.4293i 0.813858i
\(902\) 0 0
\(903\) 83.9713i 2.79439i
\(904\) 0 0
\(905\) 13.1526i 0.437209i
\(906\) 0 0
\(907\) 35.7385i 1.18668i −0.804953 0.593339i \(-0.797809\pi\)
0.804953 0.593339i \(-0.202191\pi\)
\(908\) 0 0
\(909\) −84.0209 −2.78680
\(910\) 0 0
\(911\) 3.10164i 0.102762i 0.998679 + 0.0513810i \(0.0163623\pi\)
−0.998679 + 0.0513810i \(0.983638\pi\)
\(912\) 0 0
\(913\) −5.46071 −0.180723
\(914\) 0 0
\(915\) 18.0076 0.595313
\(916\) 0 0
\(917\) 39.4135i 1.30155i
\(918\) 0 0
\(919\) 29.1690i 0.962196i −0.876667 0.481098i \(-0.840238\pi\)
0.876667 0.481098i \(-0.159762\pi\)
\(920\) 0 0
\(921\) −22.8290 −0.752240
\(922\) 0 0
\(923\) 13.8370i 0.455452i
\(924\) 0 0
\(925\) −19.1152 + 25.4445i −0.628504 + 0.836611i
\(926\) 0 0
\(927\) 36.5686i 1.20107i
\(928\) 0 0
\(929\) −8.75265 −0.287165 −0.143583 0.989638i \(-0.545862\pi\)
−0.143583 + 0.989638i \(0.545862\pi\)
\(930\) 0 0
\(931\) 0.793392i 0.0260024i
\(932\) 0 0
\(933\) 15.5039i 0.507574i
\(934\) 0 0
\(935\) 26.0584 0.852202
\(936\) 0 0
\(937\) 43.8869 1.43372 0.716862 0.697215i \(-0.245578\pi\)
0.716862 + 0.697215i \(0.245578\pi\)
\(938\) 0 0
\(939\) 36.9017i 1.20424i
\(940\) 0 0
\(941\) −4.50820 −0.146963 −0.0734815 0.997297i \(-0.523411\pi\)
−0.0734815 + 0.997297i \(0.523411\pi\)
\(942\) 0 0
\(943\) 99.0817i 3.22654i
\(944\) 0 0
\(945\) 83.3708i 2.71205i
\(946\) 0 0
\(947\) 12.5898i 0.409114i 0.978855 + 0.204557i \(0.0655753\pi\)
−0.978855 + 0.204557i \(0.934425\pi\)
\(948\) 0 0
\(949\) 8.87836i 0.288204i
\(950\) 0 0
\(951\) −20.0592 −0.650465
\(952\) 0 0
\(953\) 15.4612 0.500839 0.250419 0.968137i \(-0.419432\pi\)
0.250419 + 0.968137i \(0.419432\pi\)
\(954\) 0 0
\(955\) −2.28896 −0.0740690
\(956\) 0 0
\(957\) 13.3305i 0.430914i
\(958\) 0 0
\(959\) −35.1373 −1.13464
\(960\) 0 0
\(961\) −58.7740 −1.89593
\(962\) 0 0
\(963\) −59.1461 −1.90596
\(964\) 0 0
\(965\) 32.7648 1.05474
\(966\) 0 0
\(967\) 50.6768i 1.62966i 0.579703 + 0.814828i \(0.303169\pi\)
−0.579703 + 0.814828i \(0.696831\pi\)
\(968\) 0 0
\(969\) −2.95404 −0.0948976
\(970\) 0 0
\(971\) −12.6413 −0.405679 −0.202839 0.979212i \(-0.565017\pi\)
−0.202839 + 0.979212i \(0.565017\pi\)
\(972\) 0 0
\(973\) −9.01076 −0.288872
\(974\) 0 0
\(975\) 22.4406i 0.718673i
\(976\) 0 0
\(977\) 24.7560i 0.792016i 0.918247 + 0.396008i \(0.129605\pi\)
−0.918247 + 0.396008i \(0.870395\pi\)
\(978\) 0 0
\(979\) 17.3474i 0.554426i
\(980\) 0 0
\(981\) 39.6299i 1.26528i
\(982\) 0 0
\(983\) 16.5440 0.527672 0.263836 0.964568i \(-0.415012\pi\)
0.263836 + 0.964568i \(0.415012\pi\)
\(984\) 0 0
\(985\) 11.7752i 0.375189i
\(986\) 0 0
\(987\) −122.642 −3.90374
\(988\) 0 0
\(989\) 75.7465 2.40860
\(990\) 0 0
\(991\) 19.0343i 0.604643i 0.953206 + 0.302322i \(0.0977616\pi\)
−0.953206 + 0.302322i \(0.902238\pi\)
\(992\) 0 0
\(993\) 20.9371i 0.664419i
\(994\) 0 0
\(995\) −19.4532 −0.616707
\(996\) 0 0
\(997\) 41.2547i 1.30655i −0.757121 0.653274i \(-0.773395\pi\)
0.757121 0.653274i \(-0.226605\pi\)
\(998\) 0 0
\(999\) 28.9991 38.6012i 0.917492 1.22129i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 296.2.g.a.73.9 10
3.2 odd 2 2664.2.h.c.73.10 10
4.3 odd 2 592.2.g.d.369.1 10
8.3 odd 2 2368.2.g.p.961.10 10
8.5 even 2 2368.2.g.o.961.2 10
12.11 even 2 5328.2.h.q.2737.10 10
37.36 even 2 inner 296.2.g.a.73.10 yes 10
111.110 odd 2 2664.2.h.c.73.1 10
148.147 odd 2 592.2.g.d.369.2 10
296.147 odd 2 2368.2.g.p.961.9 10
296.221 even 2 2368.2.g.o.961.1 10
444.443 even 2 5328.2.h.q.2737.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.g.a.73.9 10 1.1 even 1 trivial
296.2.g.a.73.10 yes 10 37.36 even 2 inner
592.2.g.d.369.1 10 4.3 odd 2
592.2.g.d.369.2 10 148.147 odd 2
2368.2.g.o.961.1 10 296.221 even 2
2368.2.g.o.961.2 10 8.5 even 2
2368.2.g.p.961.9 10 296.147 odd 2
2368.2.g.p.961.10 10 8.3 odd 2
2664.2.h.c.73.1 10 111.110 odd 2
2664.2.h.c.73.10 10 3.2 odd 2
5328.2.h.q.2737.1 10 444.443 even 2
5328.2.h.q.2737.10 10 12.11 even 2