Defining parameters
Level: | \( N \) | \(=\) | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 296.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(76\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 10 | 32 |
Cusp forms | 34 | 10 | 24 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
296.2.g.a | $10$ | $2.364$ | 10.0.\(\cdots\).1 | None | \(0\) | \(2\) | \(0\) | \(-4\) | \(q-\beta _{2}q^{3}-\beta _{7}q^{5}-\beta _{3}q^{7}+(1+\beta _{1}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(296, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(296, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 2}\)