Properties

Label 296.2.g
Level $296$
Weight $2$
Character orbit 296.g
Rep. character $\chi_{296}(73,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $1$
Sturm bound $76$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(76\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).

Total New Old
Modular forms 42 10 32
Cusp forms 34 10 24
Eisenstein series 8 0 8

Trace form

\( 10 q + 2 q^{3} - 4 q^{7} + 12 q^{9} + 2 q^{11} - 8 q^{21} + 4 q^{25} + 8 q^{27} + 4 q^{33} - 6 q^{37} - 26 q^{41} + 8 q^{47} + 14 q^{49} - 20 q^{53} - 12 q^{63} - 4 q^{65} - 2 q^{67} - 4 q^{71} - 14 q^{73}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
296.2.g.a 296.g 37.b $10$ $2.364$ 10.0.\(\cdots\).1 None 296.2.g.a \(0\) \(2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}-\beta _{7}q^{5}-\beta _{3}q^{7}+(1+\beta _{1}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(296, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(296, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 2}\)