Properties

Label 2664.2.h.c.73.10
Level $2664$
Weight $2$
Character 2664.73
Analytic conductor $21.272$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2664,2,Mod(73,2664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2664.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.2721470985\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.49179812660224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 6x^{7} + 53x^{6} - 46x^{5} + 18x^{4} + 12x^{3} + 196x^{2} - 112x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 73.10
Root \(0.279838 - 0.279838i\) of defining polynomial
Character \(\chi\) \(=\) 2664.73
Dual form 2664.2.h.c.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.19874i q^{5} -3.28371 q^{7} -1.70530 q^{11} -1.45481i q^{13} -4.77715i q^{17} +0.209741i q^{19} -8.73294i q^{23} -5.23196 q^{25} +2.65144i q^{29} +9.47491i q^{31} -10.5037i q^{35} +(3.65355 - 4.86329i) q^{37} +11.3457 q^{41} -8.67366i q^{43} -12.6681 q^{47} +3.78272 q^{49} +5.11378 q^{53} -5.45481i q^{55} +1.65780i q^{59} +1.90947i q^{61} +4.65355 q^{65} +1.90947 q^{67} +9.51127 q^{71} +6.10278 q^{73} +5.59969 q^{77} +3.62473i q^{79} +3.20221 q^{83} +15.2809 q^{85} +10.1727i q^{89} +4.77715i q^{91} -0.670907 q^{95} -10.1905i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 4 q^{7} - 2 q^{11} + 4 q^{25} - 6 q^{37} + 26 q^{41} - 8 q^{47} + 14 q^{49} + 20 q^{53} + 4 q^{65} - 2 q^{67} + 4 q^{71} - 14 q^{73} + 36 q^{83} + 8 q^{85} - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.19874i 1.43052i 0.698858 + 0.715261i \(0.253692\pi\)
−0.698858 + 0.715261i \(0.746308\pi\)
\(6\) 0 0
\(7\) −3.28371 −1.24112 −0.620562 0.784157i \(-0.713096\pi\)
−0.620562 + 0.784157i \(0.713096\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.70530 −0.514166 −0.257083 0.966389i \(-0.582761\pi\)
−0.257083 + 0.966389i \(0.582761\pi\)
\(12\) 0 0
\(13\) 1.45481i 0.403490i −0.979438 0.201745i \(-0.935339\pi\)
0.979438 0.201745i \(-0.0646613\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.77715i 1.15863i −0.815104 0.579315i \(-0.803320\pi\)
0.815104 0.579315i \(-0.196680\pi\)
\(18\) 0 0
\(19\) 0.209741i 0.0481179i 0.999711 + 0.0240589i \(0.00765894\pi\)
−0.999711 + 0.0240589i \(0.992341\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.73294i 1.82094i −0.413571 0.910472i \(-0.635719\pi\)
0.413571 0.910472i \(-0.364281\pi\)
\(24\) 0 0
\(25\) −5.23196 −1.04639
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.65144i 0.492360i 0.969224 + 0.246180i \(0.0791754\pi\)
−0.969224 + 0.246180i \(0.920825\pi\)
\(30\) 0 0
\(31\) 9.47491i 1.70174i 0.525373 + 0.850872i \(0.323926\pi\)
−0.525373 + 0.850872i \(0.676074\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 10.5037i 1.77545i
\(36\) 0 0
\(37\) 3.65355 4.86329i 0.600640 0.799520i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.3457 1.77191 0.885953 0.463774i \(-0.153505\pi\)
0.885953 + 0.463774i \(0.153505\pi\)
\(42\) 0 0
\(43\) 8.67366i 1.32272i −0.750069 0.661360i \(-0.769980\pi\)
0.750069 0.661360i \(-0.230020\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.6681 −1.84783 −0.923915 0.382598i \(-0.875030\pi\)
−0.923915 + 0.382598i \(0.875030\pi\)
\(48\) 0 0
\(49\) 3.78272 0.540389
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.11378 0.702432 0.351216 0.936295i \(-0.385768\pi\)
0.351216 + 0.936295i \(0.385768\pi\)
\(54\) 0 0
\(55\) 5.45481i 0.735526i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.65780i 0.215827i 0.994160 + 0.107914i \(0.0344170\pi\)
−0.994160 + 0.107914i \(0.965583\pi\)
\(60\) 0 0
\(61\) 1.90947i 0.244482i 0.992500 + 0.122241i \(0.0390081\pi\)
−0.992500 + 0.122241i \(0.960992\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.65355 0.577202
\(66\) 0 0
\(67\) 1.90947 0.233278 0.116639 0.993174i \(-0.462788\pi\)
0.116639 + 0.993174i \(0.462788\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.51127 1.12878 0.564390 0.825508i \(-0.309111\pi\)
0.564390 + 0.825508i \(0.309111\pi\)
\(72\) 0 0
\(73\) 6.10278 0.714277 0.357138 0.934051i \(-0.383752\pi\)
0.357138 + 0.934051i \(0.383752\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.59969 0.638144
\(78\) 0 0
\(79\) 3.62473i 0.407814i 0.978990 + 0.203907i \(0.0653640\pi\)
−0.978990 + 0.203907i \(0.934636\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.20221 0.351488 0.175744 0.984436i \(-0.443767\pi\)
0.175744 + 0.984436i \(0.443767\pi\)
\(84\) 0 0
\(85\) 15.2809 1.65744
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.1727i 1.07830i 0.842209 + 0.539151i \(0.181255\pi\)
−0.842209 + 0.539151i \(0.818745\pi\)
\(90\) 0 0
\(91\) 4.77715i 0.500782i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.670907 −0.0688337
\(96\) 0 0
\(97\) 10.1905i 1.03469i −0.855778 0.517344i \(-0.826921\pi\)
0.855778 0.517344i \(-0.173079\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.7607 1.46875 0.734374 0.678745i \(-0.237476\pi\)
0.734374 + 0.678745i \(0.237476\pi\)
\(102\) 0 0
\(103\) 6.42434i 0.633009i −0.948591 0.316504i \(-0.897491\pi\)
0.948591 0.316504i \(-0.102509\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.3907 1.00451 0.502255 0.864719i \(-0.332504\pi\)
0.502255 + 0.864719i \(0.332504\pi\)
\(108\) 0 0
\(109\) 6.96215i 0.666853i −0.942776 0.333426i \(-0.891795\pi\)
0.942776 0.333426i \(-0.108205\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.1905i 0.958641i −0.877640 0.479321i \(-0.840883\pi\)
0.877640 0.479321i \(-0.159117\pi\)
\(114\) 0 0
\(115\) 27.9344 2.60490
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.6868i 1.43800i
\(120\) 0 0
\(121\) −8.09196 −0.735633
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.741973i 0.0663641i
\(126\) 0 0
\(127\) −11.1582 −0.990131 −0.495066 0.868856i \(-0.664856\pi\)
−0.495066 + 0.868856i \(0.664856\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0027i 1.04869i −0.851507 0.524343i \(-0.824311\pi\)
0.851507 0.524343i \(-0.175689\pi\)
\(132\) 0 0
\(133\) 0.688728i 0.0597203i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.7005 −0.914206 −0.457103 0.889414i \(-0.651113\pi\)
−0.457103 + 0.889414i \(0.651113\pi\)
\(138\) 0 0
\(139\) 2.74408 0.232750 0.116375 0.993205i \(-0.462873\pi\)
0.116375 + 0.993205i \(0.462873\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.48087i 0.207461i
\(144\) 0 0
\(145\) −8.48127 −0.704332
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.9415 −1.06021 −0.530105 0.847932i \(-0.677847\pi\)
−0.530105 + 0.847932i \(0.677847\pi\)
\(150\) 0 0
\(151\) 5.30288 0.431542 0.215771 0.976444i \(-0.430773\pi\)
0.215771 + 0.976444i \(0.430773\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −30.3078 −2.43438
\(156\) 0 0
\(157\) 20.2359 1.61500 0.807500 0.589868i \(-0.200820\pi\)
0.807500 + 0.589868i \(0.200820\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 28.6764i 2.26002i
\(162\) 0 0
\(163\) 17.3098i 1.35581i −0.735149 0.677906i \(-0.762888\pi\)
0.735149 0.677906i \(-0.237112\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.58312i 0.199888i 0.994993 + 0.0999440i \(0.0318664\pi\)
−0.994993 + 0.0999440i \(0.968134\pi\)
\(168\) 0 0
\(169\) 10.8835 0.837196
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.29878 −0.554916 −0.277458 0.960738i \(-0.589492\pi\)
−0.277458 + 0.960738i \(0.589492\pi\)
\(174\) 0 0
\(175\) 17.1802 1.29870
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.7157i 1.62311i −0.584276 0.811555i \(-0.698622\pi\)
0.584276 0.811555i \(-0.301378\pi\)
\(180\) 0 0
\(181\) −4.11182 −0.305629 −0.152814 0.988255i \(-0.548834\pi\)
−0.152814 + 0.988255i \(0.548834\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.5564 + 11.6868i 1.14373 + 0.859228i
\(186\) 0 0
\(187\) 8.14646i 0.595728i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.715581i 0.0517776i 0.999665 + 0.0258888i \(0.00824159\pi\)
−0.999665 + 0.0258888i \(0.991758\pi\)
\(192\) 0 0
\(193\) 10.2430i 0.737310i 0.929566 + 0.368655i \(0.120182\pi\)
−0.929566 + 0.368655i \(0.879818\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.68119 0.262274 0.131137 0.991364i \(-0.458137\pi\)
0.131137 + 0.991364i \(0.458137\pi\)
\(198\) 0 0
\(199\) 6.08150i 0.431106i −0.976492 0.215553i \(-0.930845\pi\)
0.976492 0.215553i \(-0.0691554\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.70655i 0.611080i
\(204\) 0 0
\(205\) 36.2921i 2.53475i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.357671i 0.0247406i
\(210\) 0 0
\(211\) 4.47970 0.308395 0.154198 0.988040i \(-0.450721\pi\)
0.154198 + 0.988040i \(0.450721\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 27.7448 1.89218
\(216\) 0 0
\(217\) 31.1128i 2.11208i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.94983 −0.467496
\(222\) 0 0
\(223\) −11.2837 −0.755613 −0.377806 0.925885i \(-0.623322\pi\)
−0.377806 + 0.925885i \(0.623322\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.54542i 0.434435i 0.976123 + 0.217217i \(0.0696980\pi\)
−0.976123 + 0.217217i \(0.930302\pi\)
\(228\) 0 0
\(229\) −12.9883 −0.858290 −0.429145 0.903236i \(-0.641185\pi\)
−0.429145 + 0.903236i \(0.641185\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.6978 −1.15942 −0.579712 0.814821i \(-0.696835\pi\)
−0.579712 + 0.814821i \(0.696835\pi\)
\(234\) 0 0
\(235\) 40.5220i 2.64336i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.13928i 0.332432i −0.986089 0.166216i \(-0.946845\pi\)
0.986089 0.166216i \(-0.0531550\pi\)
\(240\) 0 0
\(241\) 23.2327i 1.49655i −0.663390 0.748274i \(-0.730883\pi\)
0.663390 0.748274i \(-0.269117\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.1000i 0.773038i
\(246\) 0 0
\(247\) 0.305132 0.0194151
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.9383i 0.942896i −0.881894 0.471448i \(-0.843731\pi\)
0.881894 0.471448i \(-0.156269\pi\)
\(252\) 0 0
\(253\) 14.8923i 0.936268i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.1109i 0.880211i −0.897946 0.440106i \(-0.854941\pi\)
0.897946 0.440106i \(-0.145059\pi\)
\(258\) 0 0
\(259\) −11.9972 + 15.9696i −0.745468 + 0.992303i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.20613 0.0743734 0.0371867 0.999308i \(-0.488160\pi\)
0.0371867 + 0.999308i \(0.488160\pi\)
\(264\) 0 0
\(265\) 16.3577i 1.00484i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.6427 −0.709870 −0.354935 0.934891i \(-0.615497\pi\)
−0.354935 + 0.934891i \(0.615497\pi\)
\(270\) 0 0
\(271\) 2.25946 0.137252 0.0686261 0.997642i \(-0.478138\pi\)
0.0686261 + 0.997642i \(0.478138\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.92204 0.538019
\(276\) 0 0
\(277\) 7.35320i 0.441811i −0.975295 0.220905i \(-0.929099\pi\)
0.975295 0.220905i \(-0.0709012\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.3735i 1.39435i −0.716902 0.697174i \(-0.754441\pi\)
0.716902 0.697174i \(-0.245559\pi\)
\(282\) 0 0
\(283\) 28.8503i 1.71497i −0.514509 0.857485i \(-0.672026\pi\)
0.514509 0.857485i \(-0.327974\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −37.2561 −2.19916
\(288\) 0 0
\(289\) −5.82119 −0.342423
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.47937 0.436950 0.218475 0.975843i \(-0.429892\pi\)
0.218475 + 0.975843i \(0.429892\pi\)
\(294\) 0 0
\(295\) −5.30288 −0.308746
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.7047 −0.734733
\(300\) 0 0
\(301\) 28.4817i 1.64166i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.10789 −0.349737
\(306\) 0 0
\(307\) −7.74322 −0.441929 −0.220965 0.975282i \(-0.570921\pi\)
−0.220965 + 0.975282i \(0.570921\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.25867i 0.298192i 0.988823 + 0.149096i \(0.0476363\pi\)
−0.988823 + 0.149096i \(0.952364\pi\)
\(312\) 0 0
\(313\) 12.5165i 0.707472i −0.935345 0.353736i \(-0.884911\pi\)
0.935345 0.353736i \(-0.115089\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.80377 0.382138 0.191069 0.981577i \(-0.438805\pi\)
0.191069 + 0.981577i \(0.438805\pi\)
\(318\) 0 0
\(319\) 4.52149i 0.253155i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.00196 0.0557508
\(324\) 0 0
\(325\) 7.61148i 0.422209i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 41.5983 2.29339
\(330\) 0 0
\(331\) 7.10153i 0.390335i −0.980770 0.195168i \(-0.937475\pi\)
0.980770 0.195168i \(-0.0625251\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.10789i 0.333710i
\(336\) 0 0
\(337\) 5.41838 0.295158 0.147579 0.989050i \(-0.452852\pi\)
0.147579 + 0.989050i \(0.452852\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.1575i 0.874980i
\(342\) 0 0
\(343\) 10.5646 0.570434
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.3844i 0.611146i −0.952169 0.305573i \(-0.901152\pi\)
0.952169 0.305573i \(-0.0988479\pi\)
\(348\) 0 0
\(349\) −3.02425 −0.161884 −0.0809422 0.996719i \(-0.525793\pi\)
−0.0809422 + 0.996719i \(0.525793\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.6984i 1.74036i 0.492732 + 0.870181i \(0.335998\pi\)
−0.492732 + 0.870181i \(0.664002\pi\)
\(354\) 0 0
\(355\) 30.4241i 1.61474i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.3351 0.598242 0.299121 0.954215i \(-0.403307\pi\)
0.299121 + 0.954215i \(0.403307\pi\)
\(360\) 0 0
\(361\) 18.9560 0.997685
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.5212i 1.02179i
\(366\) 0 0
\(367\) 14.1503 0.738639 0.369319 0.929303i \(-0.379591\pi\)
0.369319 + 0.929303i \(0.379591\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.7922 −0.871805
\(372\) 0 0
\(373\) 23.2506 1.20387 0.601934 0.798546i \(-0.294397\pi\)
0.601934 + 0.798546i \(0.294397\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.85733 0.198663
\(378\) 0 0
\(379\) −23.6659 −1.21564 −0.607819 0.794076i \(-0.707955\pi\)
−0.607819 + 0.794076i \(0.707955\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.8483i 0.605420i −0.953083 0.302710i \(-0.902109\pi\)
0.953083 0.302710i \(-0.0978913\pi\)
\(384\) 0 0
\(385\) 17.9120i 0.912879i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 23.5738i 1.19524i −0.801780 0.597619i \(-0.796114\pi\)
0.801780 0.597619i \(-0.203886\pi\)
\(390\) 0 0
\(391\) −41.7186 −2.10980
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11.5946 −0.583387
\(396\) 0 0
\(397\) −22.9153 −1.15009 −0.575043 0.818123i \(-0.695015\pi\)
−0.575043 + 0.818123i \(0.695015\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.7107i 0.734618i −0.930099 0.367309i \(-0.880279\pi\)
0.930099 0.367309i \(-0.119721\pi\)
\(402\) 0 0
\(403\) 13.7842 0.686638
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.23038 + 8.29335i −0.308829 + 0.411086i
\(408\) 0 0
\(409\) 17.9298i 0.886571i 0.896380 + 0.443286i \(0.146187\pi\)
−0.896380 + 0.443286i \(0.853813\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.44373i 0.267868i
\(414\) 0 0
\(415\) 10.2430i 0.502811i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.3546 0.505857 0.252928 0.967485i \(-0.418606\pi\)
0.252928 + 0.967485i \(0.418606\pi\)
\(420\) 0 0
\(421\) 24.9829i 1.21759i −0.793327 0.608796i \(-0.791653\pi\)
0.793327 0.608796i \(-0.208347\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 24.9939i 1.21238i
\(426\) 0 0
\(427\) 6.27013i 0.303433i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 34.5108i 1.66233i −0.556028 0.831164i \(-0.687675\pi\)
0.556028 0.831164i \(-0.312325\pi\)
\(432\) 0 0
\(433\) 8.87225 0.426373 0.213187 0.977012i \(-0.431616\pi\)
0.213187 + 0.977012i \(0.431616\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.83166 0.0876200
\(438\) 0 0
\(439\) 17.4395i 0.832341i 0.909287 + 0.416171i \(0.136628\pi\)
−0.909287 + 0.416171i \(0.863372\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.49973 −0.451346 −0.225673 0.974203i \(-0.572458\pi\)
−0.225673 + 0.974203i \(0.572458\pi\)
\(444\) 0 0
\(445\) −32.5398 −1.54253
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.99582i 0.471732i 0.971786 + 0.235866i \(0.0757927\pi\)
−0.971786 + 0.235866i \(0.924207\pi\)
\(450\) 0 0
\(451\) −19.3478 −0.911055
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −15.2809 −0.716379
\(456\) 0 0
\(457\) 6.49951i 0.304034i 0.988378 + 0.152017i \(0.0485769\pi\)
−0.988378 + 0.152017i \(0.951423\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.20085i 0.428526i 0.976776 + 0.214263i \(0.0687350\pi\)
−0.976776 + 0.214263i \(0.931265\pi\)
\(462\) 0 0
\(463\) 9.19686i 0.427414i −0.976898 0.213707i \(-0.931446\pi\)
0.976898 0.213707i \(-0.0685538\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.62505i 0.121473i 0.998154 + 0.0607364i \(0.0193449\pi\)
−0.998154 + 0.0607364i \(0.980655\pi\)
\(468\) 0 0
\(469\) −6.27013 −0.289528
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.7912i 0.680098i
\(474\) 0 0
\(475\) 1.09736i 0.0503501i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 23.3471i 1.06676i 0.845876 + 0.533379i \(0.179078\pi\)
−0.845876 + 0.533379i \(0.820922\pi\)
\(480\) 0 0
\(481\) −7.07514 5.31520i −0.322599 0.242352i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 32.5968 1.48014
\(486\) 0 0
\(487\) 19.0050i 0.861199i 0.902543 + 0.430599i \(0.141698\pi\)
−0.902543 + 0.430599i \(0.858302\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 35.1468 1.58615 0.793076 0.609123i \(-0.208478\pi\)
0.793076 + 0.609123i \(0.208478\pi\)
\(492\) 0 0
\(493\) 12.6663 0.570463
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −31.2322 −1.40096
\(498\) 0 0
\(499\) 28.9911i 1.29782i −0.760865 0.648910i \(-0.775225\pi\)
0.760865 0.648910i \(-0.224775\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 29.1135i 1.29811i 0.760743 + 0.649053i \(0.224835\pi\)
−0.760743 + 0.649053i \(0.775165\pi\)
\(504\) 0 0
\(505\) 47.2158i 2.10107i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.60362 −0.248376 −0.124188 0.992259i \(-0.539633\pi\)
−0.124188 + 0.992259i \(0.539633\pi\)
\(510\) 0 0
\(511\) −20.0397 −0.886506
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 20.5498 0.905533
\(516\) 0 0
\(517\) 21.6028 0.950092
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −11.8492 −0.519125 −0.259562 0.965726i \(-0.583578\pi\)
−0.259562 + 0.965726i \(0.583578\pi\)
\(522\) 0 0
\(523\) 15.1101i 0.660718i 0.943855 + 0.330359i \(0.107170\pi\)
−0.943855 + 0.330359i \(0.892830\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 45.2631 1.97169
\(528\) 0 0
\(529\) −53.2642 −2.31584
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.5058i 0.714947i
\(534\) 0 0
\(535\) 33.2373i 1.43697i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.45066 −0.277850
\(540\) 0 0
\(541\) 34.5457i 1.48523i 0.669716 + 0.742617i \(0.266416\pi\)
−0.669716 + 0.742617i \(0.733584\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 22.2701 0.953947
\(546\) 0 0
\(547\) 7.15018i 0.305720i 0.988248 + 0.152860i \(0.0488483\pi\)
−0.988248 + 0.152860i \(0.951152\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.556116 −0.0236913
\(552\) 0 0
\(553\) 11.9025i 0.506148i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.6186i 1.25498i 0.778624 + 0.627491i \(0.215918\pi\)
−0.778624 + 0.627491i \(0.784082\pi\)
\(558\) 0 0
\(559\) −12.6185 −0.533705
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.3043i 0.560711i 0.959896 + 0.280356i \(0.0904524\pi\)
−0.959896 + 0.280356i \(0.909548\pi\)
\(564\) 0 0
\(565\) 32.5968 1.37136
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.88761i 0.204899i 0.994738 + 0.102450i \(0.0326681\pi\)
−0.994738 + 0.102450i \(0.967332\pi\)
\(570\) 0 0
\(571\) −33.7638 −1.41297 −0.706485 0.707728i \(-0.749720\pi\)
−0.706485 + 0.707728i \(0.749720\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 45.6904i 1.90542i
\(576\) 0 0
\(577\) 30.4241i 1.26657i 0.773918 + 0.633286i \(0.218294\pi\)
−0.773918 + 0.633286i \(0.781706\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.5151 −0.436240
\(582\) 0 0
\(583\) −8.72051 −0.361167
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.4005i 1.00712i 0.863961 + 0.503559i \(0.167976\pi\)
−0.863961 + 0.503559i \(0.832024\pi\)
\(588\) 0 0
\(589\) −1.98728 −0.0818843
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −22.3306 −0.917009 −0.458505 0.888692i \(-0.651615\pi\)
−0.458505 + 0.888692i \(0.651615\pi\)
\(594\) 0 0
\(595\) −50.1779 −2.05709
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.0655 −0.411264 −0.205632 0.978629i \(-0.565925\pi\)
−0.205632 + 0.978629i \(0.565925\pi\)
\(600\) 0 0
\(601\) −2.35644 −0.0961213 −0.0480606 0.998844i \(-0.515304\pi\)
−0.0480606 + 0.998844i \(0.515304\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25.8841i 1.05234i
\(606\) 0 0
\(607\) 1.94307i 0.0788666i 0.999222 + 0.0394333i \(0.0125553\pi\)
−0.999222 + 0.0394333i \(0.987445\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.4296i 0.745582i
\(612\) 0 0
\(613\) 19.8400 0.801329 0.400665 0.916225i \(-0.368779\pi\)
0.400665 + 0.916225i \(0.368779\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16.0166 −0.644806 −0.322403 0.946603i \(-0.604491\pi\)
−0.322403 + 0.946603i \(0.604491\pi\)
\(618\) 0 0
\(619\) −36.0175 −1.44767 −0.723833 0.689975i \(-0.757621\pi\)
−0.723833 + 0.689975i \(0.757621\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 33.4041i 1.33831i
\(624\) 0 0
\(625\) −23.7864 −0.951456
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23.2327 17.4536i −0.926347 0.695919i
\(630\) 0 0
\(631\) 16.4641i 0.655427i 0.944777 + 0.327713i \(0.106278\pi\)
−0.944777 + 0.327713i \(0.893722\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 35.6923i 1.41640i
\(636\) 0 0
\(637\) 5.50313i 0.218042i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.3810 0.962991 0.481496 0.876448i \(-0.340094\pi\)
0.481496 + 0.876448i \(0.340094\pi\)
\(642\) 0 0
\(643\) 24.9785i 0.985058i 0.870296 + 0.492529i \(0.163927\pi\)
−0.870296 + 0.492529i \(0.836073\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 25.3827i 0.997898i 0.866631 + 0.498949i \(0.166281\pi\)
−0.866631 + 0.498949i \(0.833719\pi\)
\(648\) 0 0
\(649\) 2.82704i 0.110971i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 37.6994i 1.47529i −0.675188 0.737646i \(-0.735937\pi\)
0.675188 0.737646i \(-0.264063\pi\)
\(654\) 0 0
\(655\) 38.3937 1.50017
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20.5470 −0.800397 −0.400199 0.916428i \(-0.631059\pi\)
−0.400199 + 0.916428i \(0.631059\pi\)
\(660\) 0 0
\(661\) 42.2553i 1.64354i −0.569820 0.821770i \(-0.692987\pi\)
0.569820 0.821770i \(-0.307013\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.20306 0.0854311
\(666\) 0 0
\(667\) 23.1549 0.896560
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.25621i 0.125704i
\(672\) 0 0
\(673\) −27.8564 −1.07379 −0.536893 0.843650i \(-0.680402\pi\)
−0.536893 + 0.843650i \(0.680402\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −44.1395 −1.69642 −0.848209 0.529662i \(-0.822319\pi\)
−0.848209 + 0.529662i \(0.822319\pi\)
\(678\) 0 0
\(679\) 33.4626i 1.28418i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.2020i 0.849537i −0.905302 0.424769i \(-0.860355\pi\)
0.905302 0.424769i \(-0.139645\pi\)
\(684\) 0 0
\(685\) 34.2282i 1.30779i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.43955i 0.283424i
\(690\) 0 0
\(691\) 5.76679 0.219379 0.109690 0.993966i \(-0.465014\pi\)
0.109690 + 0.993966i \(0.465014\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.77761i 0.332954i
\(696\) 0 0
\(697\) 54.2003i 2.05298i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.4677i 0.508668i −0.967116 0.254334i \(-0.918144\pi\)
0.967116 0.254334i \(-0.0818563\pi\)
\(702\) 0 0
\(703\) 1.02003 + 0.766299i 0.0384712 + 0.0289015i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −48.4699 −1.82290
\(708\) 0 0
\(709\) 40.1321i 1.50719i 0.657338 + 0.753596i \(0.271682\pi\)
−0.657338 + 0.753596i \(0.728318\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 82.7439 3.09878
\(714\) 0 0
\(715\) −7.93568 −0.296778
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −46.6461 −1.73961 −0.869803 0.493400i \(-0.835754\pi\)
−0.869803 + 0.493400i \(0.835754\pi\)
\(720\) 0 0
\(721\) 21.0956i 0.785643i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.8722i 0.515201i
\(726\) 0 0
\(727\) 24.8473i 0.921534i −0.887521 0.460767i \(-0.847574\pi\)
0.887521 0.460767i \(-0.152426\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −41.4354 −1.53254
\(732\) 0 0
\(733\) 36.5701 1.35075 0.675374 0.737476i \(-0.263982\pi\)
0.675374 + 0.737476i \(0.263982\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.25621 −0.119944
\(738\) 0 0
\(739\) 26.7073 0.982442 0.491221 0.871035i \(-0.336551\pi\)
0.491221 + 0.871035i \(0.336551\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.4081 1.22562 0.612811 0.790229i \(-0.290039\pi\)
0.612811 + 0.790229i \(0.290039\pi\)
\(744\) 0 0
\(745\) 41.3966i 1.51665i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −34.1201 −1.24672
\(750\) 0 0
\(751\) 4.33703 0.158260 0.0791302 0.996864i \(-0.474786\pi\)
0.0791302 + 0.996864i \(0.474786\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.9625i 0.617330i
\(756\) 0 0
\(757\) 25.2830i 0.918926i 0.888197 + 0.459463i \(0.151958\pi\)
−0.888197 + 0.459463i \(0.848042\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −43.0646 −1.56109 −0.780545 0.625099i \(-0.785059\pi\)
−0.780545 + 0.625099i \(0.785059\pi\)
\(762\) 0 0
\(763\) 22.8616i 0.827647i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.41178 0.0870842
\(768\) 0 0
\(769\) 0.0394155i 0.00142136i −1.00000 0.000710679i \(-0.999774\pi\)
1.00000 0.000710679i \(-0.000226216\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.727148 0.0261537 0.0130768 0.999914i \(-0.495837\pi\)
0.0130768 + 0.999914i \(0.495837\pi\)
\(774\) 0 0
\(775\) 49.5723i 1.78069i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.37967i 0.0852604i
\(780\) 0 0
\(781\) −16.2195 −0.580380
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 64.7294i 2.31029i
\(786\) 0 0
\(787\) −6.13961 −0.218853 −0.109427 0.993995i \(-0.534901\pi\)
−0.109427 + 0.993995i \(0.534901\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 33.4626i 1.18979i
\(792\) 0 0
\(793\) 2.77790 0.0986462
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 31.3278i 1.10969i 0.831954 + 0.554845i \(0.187222\pi\)
−0.831954 + 0.554845i \(0.812778\pi\)
\(798\) 0 0
\(799\) 60.5174i 2.14095i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.4071 −0.367257
\(804\) 0 0
\(805\) −91.7285 −3.23300
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24.7019i 0.868471i −0.900799 0.434235i \(-0.857019\pi\)
0.900799 0.434235i \(-0.142981\pi\)
\(810\) 0 0
\(811\) 27.0155 0.948644 0.474322 0.880351i \(-0.342693\pi\)
0.474322 + 0.880351i \(0.342693\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 55.3698 1.93952
\(816\) 0 0
\(817\) 1.81922 0.0636465
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.0477 −0.490269 −0.245135 0.969489i \(-0.578832\pi\)
−0.245135 + 0.969489i \(0.578832\pi\)
\(822\) 0 0
\(823\) 37.2061 1.29692 0.648462 0.761247i \(-0.275413\pi\)
0.648462 + 0.761247i \(0.275413\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.4952i 0.886556i −0.896384 0.443278i \(-0.853815\pi\)
0.896384 0.443278i \(-0.146185\pi\)
\(828\) 0 0
\(829\) 28.3600i 0.984982i −0.870318 0.492491i \(-0.836086\pi\)
0.870318 0.492491i \(-0.163914\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18.0706i 0.626111i
\(834\) 0 0
\(835\) −8.26275 −0.285944
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 25.8099 0.891058 0.445529 0.895267i \(-0.353016\pi\)
0.445529 + 0.895267i \(0.353016\pi\)
\(840\) 0 0
\(841\) 21.9699 0.757582
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 34.8137i 1.19763i
\(846\) 0 0
\(847\) 26.5716 0.913012
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −42.4708 31.9062i −1.45588 1.09373i
\(852\) 0 0
\(853\) 13.2081i 0.452235i −0.974100 0.226118i \(-0.927397\pi\)
0.974100 0.226118i \(-0.0726034\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.8046i 1.05227i −0.850402 0.526133i \(-0.823641\pi\)
0.850402 0.526133i \(-0.176359\pi\)
\(858\) 0 0
\(859\) 26.0511i 0.888852i −0.895815 0.444426i \(-0.853408\pi\)
0.895815 0.444426i \(-0.146592\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.6663 0.431167 0.215583 0.976485i \(-0.430835\pi\)
0.215583 + 0.976485i \(0.430835\pi\)
\(864\) 0 0
\(865\) 23.3469i 0.793819i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.18124i 0.209684i
\(870\) 0 0
\(871\) 2.77790i 0.0941256i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.43642i 0.0823661i
\(876\) 0 0
\(877\) −45.7101 −1.54352 −0.771760 0.635914i \(-0.780623\pi\)
−0.771760 + 0.635914i \(0.780623\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 29.6503 0.998945 0.499473 0.866330i \(-0.333527\pi\)
0.499473 + 0.866330i \(0.333527\pi\)
\(882\) 0 0
\(883\) 4.97340i 0.167368i 0.996492 + 0.0836842i \(0.0266687\pi\)
−0.996492 + 0.0836842i \(0.973331\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26.5299 0.890786 0.445393 0.895335i \(-0.353064\pi\)
0.445393 + 0.895335i \(0.353064\pi\)
\(888\) 0 0
\(889\) 36.6403 1.22888
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.65702i 0.0889137i
\(894\) 0 0
\(895\) 69.4630 2.32189
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −25.1222 −0.837871
\(900\) 0 0
\(901\) 24.4293i 0.813858i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.1526i 0.437209i
\(906\) 0 0
\(907\) 35.7385i 1.18668i −0.804953 0.593339i \(-0.797809\pi\)
0.804953 0.593339i \(-0.202191\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.10164i 0.102762i −0.998679 0.0513810i \(-0.983638\pi\)
0.998679 0.0513810i \(-0.0163623\pi\)
\(912\) 0 0
\(913\) −5.46071 −0.180723
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 39.4135i 1.30155i
\(918\) 0 0
\(919\) 29.1690i 0.962196i −0.876667 0.481098i \(-0.840238\pi\)
0.876667 0.481098i \(-0.159762\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.8370i 0.455452i
\(924\) 0 0
\(925\) −19.1152 + 25.4445i −0.628504 + 0.836611i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.75265 0.287165 0.143583 0.989638i \(-0.454138\pi\)
0.143583 + 0.989638i \(0.454138\pi\)
\(930\) 0 0
\(931\) 0.793392i 0.0260024i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −26.0584 −0.852202
\(936\) 0 0
\(937\) 43.8869 1.43372 0.716862 0.697215i \(-0.245578\pi\)
0.716862 + 0.697215i \(0.245578\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.50820 0.146963 0.0734815 0.997297i \(-0.476589\pi\)
0.0734815 + 0.997297i \(0.476589\pi\)
\(942\) 0 0
\(943\) 99.0817i 3.22654i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.5898i 0.409114i −0.978855 0.204557i \(-0.934425\pi\)
0.978855 0.204557i \(-0.0655753\pi\)
\(948\) 0 0
\(949\) 8.87836i 0.288204i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15.4612 −0.500839 −0.250419 0.968137i \(-0.580568\pi\)
−0.250419 + 0.968137i \(0.580568\pi\)
\(954\) 0 0
\(955\) −2.28896 −0.0740690
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 35.1373 1.13464
\(960\) 0 0
\(961\) −58.7740 −1.89593
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −32.7648 −1.05474
\(966\) 0 0
\(967\) 50.6768i 1.62966i 0.579703 + 0.814828i \(0.303169\pi\)
−0.579703 + 0.814828i \(0.696831\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.6413 0.405679 0.202839 0.979212i \(-0.434983\pi\)
0.202839 + 0.979212i \(0.434983\pi\)
\(972\) 0 0
\(973\) −9.01076 −0.288872
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.7560i 0.792016i −0.918247 0.396008i \(-0.870395\pi\)
0.918247 0.396008i \(-0.129605\pi\)
\(978\) 0 0
\(979\) 17.3474i 0.554426i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.5440 −0.527672 −0.263836 0.964568i \(-0.584988\pi\)
−0.263836 + 0.964568i \(0.584988\pi\)
\(984\) 0 0
\(985\) 11.7752i 0.375189i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −75.7465 −2.40860
\(990\) 0 0
\(991\) 19.0343i 0.604643i 0.953206 + 0.302322i \(0.0977616\pi\)
−0.953206 + 0.302322i \(0.902238\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 19.4532 0.616707
\(996\) 0 0
\(997\) 41.2547i 1.30655i −0.757121 0.653274i \(-0.773395\pi\)
0.757121 0.653274i \(-0.226605\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.2.h.c.73.10 10
3.2 odd 2 296.2.g.a.73.9 10
4.3 odd 2 5328.2.h.q.2737.10 10
12.11 even 2 592.2.g.d.369.1 10
24.5 odd 2 2368.2.g.o.961.2 10
24.11 even 2 2368.2.g.p.961.10 10
37.36 even 2 inner 2664.2.h.c.73.1 10
111.110 odd 2 296.2.g.a.73.10 yes 10
148.147 odd 2 5328.2.h.q.2737.1 10
444.443 even 2 592.2.g.d.369.2 10
888.221 odd 2 2368.2.g.o.961.1 10
888.443 even 2 2368.2.g.p.961.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.g.a.73.9 10 3.2 odd 2
296.2.g.a.73.10 yes 10 111.110 odd 2
592.2.g.d.369.1 10 12.11 even 2
592.2.g.d.369.2 10 444.443 even 2
2368.2.g.o.961.1 10 888.221 odd 2
2368.2.g.o.961.2 10 24.5 odd 2
2368.2.g.p.961.9 10 888.443 even 2
2368.2.g.p.961.10 10 24.11 even 2
2664.2.h.c.73.1 10 37.36 even 2 inner
2664.2.h.c.73.10 10 1.1 even 1 trivial
5328.2.h.q.2737.1 10 148.147 odd 2
5328.2.h.q.2737.10 10 4.3 odd 2