Defining parameters
Level: | \( N \) | \(=\) | \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2664.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(912\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2664, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 472 | 48 | 424 |
Cusp forms | 440 | 48 | 392 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2664, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2664.2.h.a | $2$ | $21.272$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-4 q^{11}+2\beta q^{13}+2\beta q^{17}-\beta q^{19}+\cdots\) |
2664.2.h.b | $6$ | $21.272$ | 6.0.27206656.1 | None | \(0\) | \(0\) | \(0\) | \(6\) | \(q-\beta _{2}q^{5}+(1-\beta _{1})q^{7}+(1+\beta _{1})q^{11}+\cdots\) |
2664.2.h.c | $10$ | $21.272$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q-\beta _{7}q^{5}-\beta _{3}q^{7}-\beta _{5}q^{11}+\beta _{4}q^{13}+\cdots\) |
2664.2.h.d | $10$ | $21.272$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\beta _{2}q^{5}-\beta _{3}q^{7}+(-1+\beta _{1})q^{11}+\cdots\) |
2664.2.h.e | $20$ | $21.272$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q-\beta _{7}q^{5}+\beta _{1}q^{7}+\beta _{10}q^{11}-\beta _{12}q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(2664, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(333, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(444, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(666, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(888, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1332, [\chi])\)\(^{\oplus 2}\)