Properties

Label 2664.2.h
Level $2664$
Weight $2$
Character orbit 2664.h
Rep. character $\chi_{2664}(73,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $5$
Sturm bound $912$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(912\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2664, [\chi])\).

Total New Old
Modular forms 472 48 424
Cusp forms 440 48 392
Eisenstein series 32 0 32

Trace form

\( 48 q + 4 q^{7} - 10 q^{11} - 54 q^{25} - 4 q^{37} - 10 q^{41} + 8 q^{47} + 28 q^{49} - 8 q^{53} + 12 q^{65} + 6 q^{67} + 28 q^{71} - 2 q^{73} - 16 q^{77} + 20 q^{83} - 16 q^{85} - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2664, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2664.2.h.a 2664.h 37.b $2$ $21.272$ \(\Q(\sqrt{-1}) \) None 888.2.h.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 q^{11}+2\beta q^{13}+2\beta q^{17}-\beta q^{19}+\cdots\)
2664.2.h.b 2664.h 37.b $6$ $21.272$ 6.0.27206656.1 None 888.2.h.b \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{5}+(1-\beta _{1})q^{7}+(1+\beta _{1})q^{11}+\cdots\)
2664.2.h.c 2664.h 37.b $10$ $21.272$ 10.0.\(\cdots\).1 None 296.2.g.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{7}q^{5}-\beta _{3}q^{7}-\beta _{5}q^{11}+\beta _{4}q^{13}+\cdots\)
2664.2.h.d 2664.h 37.b $10$ $21.272$ 10.0.\(\cdots\).1 None 888.2.h.c \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{5}-\beta _{3}q^{7}+(-1+\beta _{1})q^{11}+\cdots\)
2664.2.h.e 2664.h 37.b $20$ $21.272$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 2664.2.h.e \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{7}q^{5}+\beta _{1}q^{7}+\beta _{10}q^{11}-\beta _{12}q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2664, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(333, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(444, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(666, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(888, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1332, [\chi])\)\(^{\oplus 2}\)