Properties

Label 2952.2.j.c.2377.4
Level $2952$
Weight $2$
Character 2952.2377
Analytic conductor $23.572$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2952,2,Mod(2377,2952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2952.2377"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2952, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2952 = 2^{3} \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2952.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5718386767\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1229312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 10x^{4} + 24x^{2} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 328)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2377.4
Root \(0.629384i\) of defining polynomial
Character \(\chi\) \(=\) 2952.2377
Dual form 2952.2.j.c.2377.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.890084 q^{5} +1.91894i q^{7} +0.349282i q^{11} +2.26822i q^{13} +5.65685i q^{17} +3.17771i q^{19} -7.20775 q^{23} -4.20775 q^{25} -7.92508i q^{29} -7.20775 q^{31} +1.70802i q^{35} -0.890084 q^{37} +(-5.98792 - 2.26822i) q^{41} +3.20775 q^{43} -7.96347i q^{47} +3.31767 q^{49} -0.871095i q^{53} +0.310890i q^{55} -6.76809 q^{59} +12.7681 q^{61} +2.01891i q^{65} +4.18716i q^{67} -6.56634i q^{71} -12.0978 q^{73} -0.670251 q^{77} +7.96347i q^{79} -13.9758 q^{83} +5.03507i q^{85} +15.2284i q^{89} -4.35258 q^{91} +2.82843i q^{95} -17.2473i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{5} - 8 q^{23} + 10 q^{25} - 8 q^{31} - 4 q^{37} + 2 q^{41} - 16 q^{43} - 14 q^{49} + 36 q^{61} - 36 q^{73} - 8 q^{83} - 56 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2952\mathbb{Z}\right)^\times\).

\(n\) \(1441\) \(1477\) \(2215\) \(2297\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.890084 0.398058 0.199029 0.979994i \(-0.436221\pi\)
0.199029 + 0.979994i \(0.436221\pi\)
\(6\) 0 0
\(7\) 1.91894i 0.725291i 0.931927 + 0.362646i \(0.118126\pi\)
−0.931927 + 0.362646i \(0.881874\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.349282i 0.105312i 0.998613 + 0.0526562i \(0.0167688\pi\)
−0.998613 + 0.0526562i \(0.983231\pi\)
\(12\) 0 0
\(13\) 2.26822i 0.629092i 0.949242 + 0.314546i \(0.101852\pi\)
−0.949242 + 0.314546i \(0.898148\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.65685i 1.37199i 0.727607 + 0.685994i \(0.240633\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 3.17771i 0.729016i 0.931200 + 0.364508i \(0.118763\pi\)
−0.931200 + 0.364508i \(0.881237\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.20775 −1.50292 −0.751460 0.659779i \(-0.770650\pi\)
−0.751460 + 0.659779i \(0.770650\pi\)
\(24\) 0 0
\(25\) −4.20775 −0.841550
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.92508i 1.47165i −0.677172 0.735825i \(-0.736795\pi\)
0.677172 0.735825i \(-0.263205\pi\)
\(30\) 0 0
\(31\) −7.20775 −1.29455 −0.647275 0.762256i \(-0.724092\pi\)
−0.647275 + 0.762256i \(0.724092\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.70802i 0.288708i
\(36\) 0 0
\(37\) −0.890084 −0.146329 −0.0731644 0.997320i \(-0.523310\pi\)
−0.0731644 + 0.997320i \(0.523310\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.98792 2.26822i −0.935156 0.354237i
\(42\) 0 0
\(43\) 3.20775 0.489177 0.244589 0.969627i \(-0.421347\pi\)
0.244589 + 0.969627i \(0.421347\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.96347i 1.16159i −0.814049 0.580796i \(-0.802742\pi\)
0.814049 0.580796i \(-0.197258\pi\)
\(48\) 0 0
\(49\) 3.31767 0.473952
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.871095i 0.119654i −0.998209 0.0598270i \(-0.980945\pi\)
0.998209 0.0598270i \(-0.0190549\pi\)
\(54\) 0 0
\(55\) 0.310890i 0.0419204i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.76809 −0.881130 −0.440565 0.897721i \(-0.645222\pi\)
−0.440565 + 0.897721i \(0.645222\pi\)
\(60\) 0 0
\(61\) 12.7681 1.63479 0.817393 0.576081i \(-0.195419\pi\)
0.817393 + 0.576081i \(0.195419\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.01891i 0.250415i
\(66\) 0 0
\(67\) 4.18716i 0.511543i 0.966737 + 0.255772i \(0.0823295\pi\)
−0.966737 + 0.255772i \(0.917670\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.56634i 0.779281i −0.920967 0.389641i \(-0.872599\pi\)
0.920967 0.389641i \(-0.127401\pi\)
\(72\) 0 0
\(73\) −12.0978 −1.41594 −0.707972 0.706240i \(-0.750390\pi\)
−0.707972 + 0.706240i \(0.750390\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.670251 −0.0763822
\(78\) 0 0
\(79\) 7.96347i 0.895960i 0.894044 + 0.447980i \(0.147856\pi\)
−0.894044 + 0.447980i \(0.852144\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −13.9758 −1.53405 −0.767024 0.641619i \(-0.778263\pi\)
−0.767024 + 0.641619i \(0.778263\pi\)
\(84\) 0 0
\(85\) 5.03507i 0.546130i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2284i 1.61420i 0.590412 + 0.807102i \(0.298965\pi\)
−0.590412 + 0.807102i \(0.701035\pi\)
\(90\) 0 0
\(91\) −4.35258 −0.456275
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.82843i 0.290191i
\(96\) 0 0
\(97\) 17.2473i 1.75120i −0.483040 0.875598i \(-0.660468\pi\)
0.483040 0.875598i \(-0.339532\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.0644i 1.10095i 0.834852 + 0.550474i \(0.185553\pi\)
−0.834852 + 0.550474i \(0.814447\pi\)
\(102\) 0 0
\(103\) 4.43967 0.437453 0.218727 0.975786i \(-0.429810\pi\)
0.218727 + 0.975786i \(0.429810\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.56033 −0.730885 −0.365443 0.930834i \(-0.619082\pi\)
−0.365443 + 0.930834i \(0.619082\pi\)
\(108\) 0 0
\(109\) 7.92508i 0.759085i 0.925174 + 0.379542i \(0.123919\pi\)
−0.925174 + 0.379542i \(0.876081\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.53750 0.803140 0.401570 0.915828i \(-0.368465\pi\)
0.401570 + 0.915828i \(0.368465\pi\)
\(114\) 0 0
\(115\) −6.41550 −0.598249
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.8552 −0.995092
\(120\) 0 0
\(121\) 10.8780 0.988909
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.19567 −0.733043
\(126\) 0 0
\(127\) −9.18359 −0.814912 −0.407456 0.913225i \(-0.633584\pi\)
−0.407456 + 0.913225i \(0.633584\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −6.09783 −0.528749
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.05398i 0.602662i −0.953520 0.301331i \(-0.902569\pi\)
0.953520 0.301331i \(-0.0974310\pi\)
\(138\) 0 0
\(139\) −17.6233 −1.49478 −0.747392 0.664383i \(-0.768694\pi\)
−0.747392 + 0.664383i \(0.768694\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.792249 −0.0662512
\(144\) 0 0
\(145\) 7.05398i 0.585801i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.78576i 0.392065i 0.980597 + 0.196032i \(0.0628058\pi\)
−0.980597 + 0.196032i \(0.937194\pi\)
\(150\) 0 0
\(151\) 15.6392i 1.27270i 0.771399 + 0.636351i \(0.219557\pi\)
−0.771399 + 0.636351i \(0.780443\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.41550 −0.515306
\(156\) 0 0
\(157\) 20.6359i 1.64693i −0.567371 0.823463i \(-0.692039\pi\)
0.567371 0.823463i \(-0.307961\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.8312i 1.09005i
\(162\) 0 0
\(163\) 0.439665 0.0344372 0.0172186 0.999852i \(-0.494519\pi\)
0.0172186 + 0.999852i \(0.494519\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.39477i 0.726989i 0.931596 + 0.363494i \(0.118416\pi\)
−0.931596 + 0.363494i \(0.881584\pi\)
\(168\) 0 0
\(169\) 7.85517 0.604244
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 8.07442i 0.610369i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.18716i 0.312963i −0.987681 0.156482i \(-0.949985\pi\)
0.987681 0.156482i \(-0.0500152\pi\)
\(180\) 0 0
\(181\) 0.871095i 0.0647480i 0.999476 + 0.0323740i \(0.0103068\pi\)
−0.999476 + 0.0323740i \(0.989693\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.792249 −0.0582473
\(186\) 0 0
\(187\) −1.97584 −0.144487
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.8648i 1.43737i 0.695338 + 0.718683i \(0.255255\pi\)
−0.695338 + 0.718683i \(0.744745\pi\)
\(192\) 0 0
\(193\) 3.13932i 0.225973i −0.993597 0.112987i \(-0.963958\pi\)
0.993597 0.112987i \(-0.0360417\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.6474 −0.972338 −0.486169 0.873865i \(-0.661606\pi\)
−0.486169 + 0.873865i \(0.661606\pi\)
\(198\) 0 0
\(199\) 12.5341i 0.888518i −0.895898 0.444259i \(-0.853467\pi\)
0.895898 0.444259i \(-0.146533\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.2078 1.06737
\(204\) 0 0
\(205\) −5.32975 2.01891i −0.372246 0.141007i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.10992 −0.0767745
\(210\) 0 0
\(211\) 17.3966i 1.19763i 0.800886 + 0.598817i \(0.204362\pi\)
−0.800886 + 0.598817i \(0.795638\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.85517 0.194721
\(216\) 0 0
\(217\) 13.8312i 0.938926i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.8310 −0.863107
\(222\) 0 0
\(223\) 3.56033 0.238418 0.119209 0.992869i \(-0.461964\pi\)
0.119209 + 0.992869i \(0.461964\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.1046i 1.26802i 0.773325 + 0.634010i \(0.218592\pi\)
−0.773325 + 0.634010i \(0.781408\pi\)
\(228\) 0 0
\(229\) 26.5695i 1.75576i 0.478880 + 0.877881i \(0.341043\pi\)
−0.478880 + 0.877881i \(0.658957\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.4719i 1.07911i 0.841950 + 0.539556i \(0.181408\pi\)
−0.841950 + 0.539556i \(0.818592\pi\)
\(234\) 0 0
\(235\) 7.08815i 0.462380i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.3189i 0.926212i 0.886303 + 0.463106i \(0.153265\pi\)
−0.886303 + 0.463106i \(0.846735\pi\)
\(240\) 0 0
\(241\) 0.768086 0.0494768 0.0247384 0.999694i \(-0.492125\pi\)
0.0247384 + 0.999694i \(0.492125\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.95300 0.188660
\(246\) 0 0
\(247\) −7.20775 −0.458618
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −23.9517 −1.51182 −0.755908 0.654678i \(-0.772804\pi\)
−0.755908 + 0.654678i \(0.772804\pi\)
\(252\) 0 0
\(253\) 2.51754i 0.158276i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.51754i 0.157040i −0.996913 0.0785198i \(-0.974981\pi\)
0.996913 0.0785198i \(-0.0250194\pi\)
\(258\) 0 0
\(259\) 1.70802i 0.106131i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.9946i 1.35625i 0.734947 + 0.678124i \(0.237207\pi\)
−0.734947 + 0.678124i \(0.762793\pi\)
\(264\) 0 0
\(265\) 0.775347i 0.0476292i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 23.1836 1.41353 0.706764 0.707449i \(-0.250154\pi\)
0.706764 + 0.707449i \(0.250154\pi\)
\(270\) 0 0
\(271\) 7.20775 0.437840 0.218920 0.975743i \(-0.429747\pi\)
0.218920 + 0.975743i \(0.429747\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.46969i 0.0886257i
\(276\) 0 0
\(277\) 9.08575 0.545910 0.272955 0.962027i \(-0.411999\pi\)
0.272955 + 0.962027i \(0.411999\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.7459i 1.05863i 0.848425 + 0.529316i \(0.177551\pi\)
−0.848425 + 0.529316i \(0.822449\pi\)
\(282\) 0 0
\(283\) −17.6233 −1.04759 −0.523797 0.851843i \(-0.675485\pi\)
−0.523797 + 0.851843i \(0.675485\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.35258 11.4905i 0.256925 0.678260i
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.64644i 0.0961862i 0.998843 + 0.0480931i \(0.0153144\pi\)
−0.998843 + 0.0480931i \(0.984686\pi\)
\(294\) 0 0
\(295\) −6.02416 −0.350740
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 16.3488i 0.945475i
\(300\) 0 0
\(301\) 6.15548i 0.354796i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.3647 0.650739
\(306\) 0 0
\(307\) −31.9517 −1.82358 −0.911789 0.410659i \(-0.865299\pi\)
−0.911789 + 0.410659i \(0.865299\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 30.4799i 1.72836i −0.503184 0.864179i \(-0.667838\pi\)
0.503184 0.864179i \(-0.332162\pi\)
\(312\) 0 0
\(313\) 10.8151i 0.611304i −0.952143 0.305652i \(-0.901126\pi\)
0.952143 0.305652i \(-0.0988745\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.6170i 1.04564i −0.852445 0.522818i \(-0.824881\pi\)
0.852445 0.522818i \(-0.175119\pi\)
\(318\) 0 0
\(319\) 2.76809 0.154983
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −17.9758 −1.00020
\(324\) 0 0
\(325\) 9.54412i 0.529412i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 15.2814 0.842492
\(330\) 0 0
\(331\) 3.14354i 0.172784i −0.996261 0.0863922i \(-0.972466\pi\)
0.996261 0.0863922i \(-0.0275338\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.72693i 0.203624i
\(336\) 0 0
\(337\) 9.43834 0.514139 0.257069 0.966393i \(-0.417243\pi\)
0.257069 + 0.966393i \(0.417243\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.51754i 0.136332i
\(342\) 0 0
\(343\) 19.7990i 1.06904i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.73887i 0.361762i 0.983505 + 0.180881i \(0.0578948\pi\)
−0.983505 + 0.180881i \(0.942105\pi\)
\(348\) 0 0
\(349\) 28.6461 1.53339 0.766695 0.642012i \(-0.221900\pi\)
0.766695 + 0.642012i \(0.221900\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −34.3177 −1.82655 −0.913273 0.407349i \(-0.866453\pi\)
−0.913273 + 0.407349i \(0.866453\pi\)
\(354\) 0 0
\(355\) 5.84459i 0.310199i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.97584 −0.104281 −0.0521403 0.998640i \(-0.516604\pi\)
−0.0521403 + 0.998640i \(0.516604\pi\)
\(360\) 0 0
\(361\) 8.90217 0.468535
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.7681 −0.563627
\(366\) 0 0
\(367\) 28.0388 1.46361 0.731806 0.681513i \(-0.238678\pi\)
0.731806 + 0.681513i \(0.238678\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.67158 0.0867841
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.9758 0.925803
\(378\) 0 0
\(379\) 1.23191 0.0632792 0.0316396 0.999499i \(-0.489927\pi\)
0.0316396 + 0.999499i \(0.489927\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.45539i 0.329855i −0.986306 0.164927i \(-0.947261\pi\)
0.986306 0.164927i \(-0.0527390\pi\)
\(384\) 0 0
\(385\) −0.596580 −0.0304045
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.9517 0.707378 0.353689 0.935363i \(-0.384927\pi\)
0.353689 + 0.935363i \(0.384927\pi\)
\(390\) 0 0
\(391\) 40.7732i 2.06199i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.08815i 0.356644i
\(396\) 0 0
\(397\) 28.0350i 1.40703i 0.710678 + 0.703517i \(0.248388\pi\)
−0.710678 + 0.703517i \(0.751612\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.29350 −0.214407 −0.107204 0.994237i \(-0.534190\pi\)
−0.107204 + 0.994237i \(0.534190\pi\)
\(402\) 0 0
\(403\) 16.3488i 0.814391i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.310890i 0.0154103i
\(408\) 0 0
\(409\) 1.92633 0.0952508 0.0476254 0.998865i \(-0.484835\pi\)
0.0476254 + 0.998865i \(0.484835\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.9876i 0.639076i
\(414\) 0 0
\(415\) −12.4397 −0.610639
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 30.7681 1.50312 0.751560 0.659665i \(-0.229302\pi\)
0.751560 + 0.659665i \(0.229302\pi\)
\(420\) 0 0
\(421\) 13.0833i 0.637641i 0.947815 + 0.318821i \(0.103287\pi\)
−0.947815 + 0.318821i \(0.896713\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 23.8026i 1.15460i
\(426\) 0 0
\(427\) 24.5012i 1.18570i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.23191 −0.252012 −0.126006 0.992029i \(-0.540216\pi\)
−0.126006 + 0.992029i \(0.540216\pi\)
\(432\) 0 0
\(433\) −8.85517 −0.425552 −0.212776 0.977101i \(-0.568250\pi\)
−0.212776 + 0.977101i \(0.568250\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.9041i 1.09565i
\(438\) 0 0
\(439\) 18.4677i 0.881413i −0.897651 0.440707i \(-0.854728\pi\)
0.897651 0.440707i \(-0.145272\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.3913 0.968822 0.484411 0.874841i \(-0.339034\pi\)
0.484411 + 0.874841i \(0.339034\pi\)
\(444\) 0 0
\(445\) 13.5545i 0.642546i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.32842 0.393042 0.196521 0.980500i \(-0.437036\pi\)
0.196521 + 0.980500i \(0.437036\pi\)
\(450\) 0 0
\(451\) 0.792249 2.09147i 0.0373056 0.0984835i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.87416 −0.181624
\(456\) 0 0
\(457\) 12.0891i 0.565502i 0.959193 + 0.282751i \(0.0912470\pi\)
−0.959193 + 0.282751i \(0.908753\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.45042 0.207277 0.103638 0.994615i \(-0.466952\pi\)
0.103638 + 0.994615i \(0.466952\pi\)
\(462\) 0 0
\(463\) 13.3436i 0.620130i 0.950715 + 0.310065i \(0.100351\pi\)
−0.950715 + 0.310065i \(0.899649\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.67158 −0.262449 −0.131225 0.991353i \(-0.541891\pi\)
−0.131225 + 0.991353i \(0.541891\pi\)
\(468\) 0 0
\(469\) −8.03492 −0.371018
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.12041i 0.0515165i
\(474\) 0 0
\(475\) 13.3710i 0.613504i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.31607i 0.151515i −0.997126 0.0757575i \(-0.975863\pi\)
0.997126 0.0757575i \(-0.0241375\pi\)
\(480\) 0 0
\(481\) 2.01891i 0.0920543i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15.3515i 0.697077i
\(486\) 0 0
\(487\) −9.09651 −0.412202 −0.206101 0.978531i \(-0.566078\pi\)
−0.206101 + 0.978531i \(0.566078\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −25.6233 −1.15636 −0.578181 0.815909i \(-0.696237\pi\)
−0.578181 + 0.815909i \(0.696237\pi\)
\(492\) 0 0
\(493\) 44.8310 2.01909
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.6004 0.565206
\(498\) 0 0
\(499\) 34.5330i 1.54591i 0.634462 + 0.772954i \(0.281222\pi\)
−0.634462 + 0.772954i \(0.718778\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.0989i 0.896165i 0.893992 + 0.448083i \(0.147893\pi\)
−0.893992 + 0.448083i \(0.852107\pi\)
\(504\) 0 0
\(505\) 9.84824i 0.438241i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.76685i 0.122639i 0.998118 + 0.0613193i \(0.0195308\pi\)
−0.998118 + 0.0613193i \(0.980469\pi\)
\(510\) 0 0
\(511\) 23.2150i 1.02697i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.95167 0.174132
\(516\) 0 0
\(517\) 2.78150 0.122330
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.0559i 0.571989i −0.958231 0.285995i \(-0.907676\pi\)
0.958231 0.285995i \(-0.0923240\pi\)
\(522\) 0 0
\(523\) −6.68100 −0.292140 −0.146070 0.989274i \(-0.546662\pi\)
−0.146070 + 0.989274i \(0.546662\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 40.7732i 1.77611i
\(528\) 0 0
\(529\) 28.9517 1.25877
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.14483 13.5819i 0.222847 0.588299i
\(534\) 0 0
\(535\) −6.72933 −0.290934
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.15880i 0.0499131i
\(540\) 0 0
\(541\) 22.6219 0.972593 0.486296 0.873794i \(-0.338348\pi\)
0.486296 + 0.873794i \(0.338348\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.05398i 0.302159i
\(546\) 0 0
\(547\) 6.31703i 0.270097i 0.990839 + 0.135048i \(0.0431190\pi\)
−0.990839 + 0.135048i \(0.956881\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.1836 1.07286
\(552\) 0 0
\(553\) −15.2814 −0.649832
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.6548i 0.959916i −0.877292 0.479958i \(-0.840652\pi\)
0.877292 0.479958i \(-0.159348\pi\)
\(558\) 0 0
\(559\) 7.27589i 0.307737i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.9559i 0.630315i 0.949039 + 0.315157i \(0.102057\pi\)
−0.949039 + 0.315157i \(0.897943\pi\)
\(564\) 0 0
\(565\) 7.59909 0.319696
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.0978 0.507168 0.253584 0.967313i \(-0.418391\pi\)
0.253584 + 0.967313i \(0.418391\pi\)
\(570\) 0 0
\(571\) 18.1416i 0.759201i 0.925151 + 0.379600i \(0.123938\pi\)
−0.925151 + 0.379600i \(0.876062\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 30.3284 1.26478
\(576\) 0 0
\(577\) 2.51754i 0.104806i −0.998626 0.0524032i \(-0.983312\pi\)
0.998626 0.0524032i \(-0.0166881\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 26.8188i 1.11263i
\(582\) 0 0
\(583\) 0.304258 0.0126011
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.8629i 0.489635i −0.969569 0.244818i \(-0.921272\pi\)
0.969569 0.244818i \(-0.0787281\pi\)
\(588\) 0 0
\(589\) 22.9041i 0.943748i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 32.9743i 1.35409i 0.735941 + 0.677046i \(0.236740\pi\)
−0.735941 + 0.677046i \(0.763260\pi\)
\(594\) 0 0
\(595\) −9.66201 −0.396104
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 38.7198 1.58205 0.791023 0.611786i \(-0.209549\pi\)
0.791023 + 0.611786i \(0.209549\pi\)
\(600\) 0 0
\(601\) 37.8558i 1.54417i 0.635519 + 0.772085i \(0.280786\pi\)
−0.635519 + 0.772085i \(0.719214\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.68233 0.393643
\(606\) 0 0
\(607\) 34.7681 1.41119 0.705597 0.708614i \(-0.250679\pi\)
0.705597 + 0.708614i \(0.250679\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.0629 0.730747
\(612\) 0 0
\(613\) −13.7211 −0.554190 −0.277095 0.960843i \(-0.589372\pi\)
−0.277095 + 0.960843i \(0.589372\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.12067 −0.0451165 −0.0225582 0.999746i \(-0.507181\pi\)
−0.0225582 + 0.999746i \(0.507181\pi\)
\(618\) 0 0
\(619\) 23.6474 0.950470 0.475235 0.879859i \(-0.342363\pi\)
0.475235 + 0.879859i \(0.342363\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −29.2223 −1.17077
\(624\) 0 0
\(625\) 13.7439 0.549757
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.03507i 0.200762i
\(630\) 0 0
\(631\) 5.53617 0.220392 0.110196 0.993910i \(-0.464852\pi\)
0.110196 + 0.993910i \(0.464852\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.17416 −0.324382
\(636\) 0 0
\(637\) 7.52521i 0.298160i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.9686i 0.433235i −0.976256 0.216618i \(-0.930497\pi\)
0.976256 0.216618i \(-0.0695025\pi\)
\(642\) 0 0
\(643\) 47.0012i 1.85355i −0.375619 0.926774i \(-0.622570\pi\)
0.375619 0.926774i \(-0.377430\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.8310 0.504439 0.252219 0.967670i \(-0.418840\pi\)
0.252219 + 0.967670i \(0.418840\pi\)
\(648\) 0 0
\(649\) 2.36397i 0.0927939i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.6424i 1.39479i 0.716685 + 0.697397i \(0.245659\pi\)
−0.716685 + 0.697397i \(0.754341\pi\)
\(654\) 0 0
\(655\) 10.6810 0.417341
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.4497i 0.757653i 0.925468 + 0.378827i \(0.123672\pi\)
−0.925468 + 0.378827i \(0.876328\pi\)
\(660\) 0 0
\(661\) −29.7211 −1.15602 −0.578008 0.816031i \(-0.696170\pi\)
−0.578008 + 0.816031i \(0.696170\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.42758 −0.210473
\(666\) 0 0
\(667\) 57.1220i 2.21177i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.45966i 0.172163i
\(672\) 0 0
\(673\) 35.1163i 1.35364i −0.736151 0.676818i \(-0.763359\pi\)
0.736151 0.676818i \(-0.236641\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.8659 0.417611 0.208806 0.977957i \(-0.433042\pi\)
0.208806 + 0.977957i \(0.433042\pi\)
\(678\) 0 0
\(679\) 33.0965 1.27013
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.7492i 0.487836i −0.969796 0.243918i \(-0.921567\pi\)
0.969796 0.243918i \(-0.0784327\pi\)
\(684\) 0 0
\(685\) 6.27863i 0.239894i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.97584 0.0752734
\(690\) 0 0
\(691\) 31.6619i 1.20448i −0.798317 0.602238i \(-0.794276\pi\)
0.798317 0.602238i \(-0.205724\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.6862 −0.595010
\(696\) 0 0
\(697\) 12.8310 33.8728i 0.486009 1.28302i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 16.1849 0.611296 0.305648 0.952145i \(-0.401127\pi\)
0.305648 + 0.952145i \(0.401127\pi\)
\(702\) 0 0
\(703\) 2.82843i 0.106676i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −21.2319 −0.798508
\(708\) 0 0
\(709\) 50.5940i 1.90010i −0.312100 0.950049i \(-0.601032\pi\)
0.312100 0.950049i \(-0.398968\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 51.9517 1.94561
\(714\) 0 0
\(715\) −0.705168 −0.0263718
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 26.4543i 0.986579i −0.869865 0.493290i \(-0.835794\pi\)
0.869865 0.493290i \(-0.164206\pi\)
\(720\) 0 0
\(721\) 8.51945i 0.317281i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 33.3467i 1.23847i
\(726\) 0 0
\(727\) 13.4752i 0.499767i −0.968276 0.249884i \(-0.919608\pi\)
0.968276 0.249884i \(-0.0803924\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.1458i 0.671146i
\(732\) 0 0
\(733\) −26.3526 −0.973355 −0.486677 0.873582i \(-0.661791\pi\)
−0.486677 + 0.873582i \(0.661791\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.46250 −0.0538719
\(738\) 0 0
\(739\) −10.4155 −0.383140 −0.191570 0.981479i \(-0.561358\pi\)
−0.191570 + 0.981479i \(0.561358\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.4155 1.11584 0.557918 0.829896i \(-0.311600\pi\)
0.557918 + 0.829896i \(0.311600\pi\)
\(744\) 0 0
\(745\) 4.25973i 0.156064i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 14.5078i 0.530105i
\(750\) 0 0
\(751\) 52.6087i 1.91972i 0.280481 + 0.959860i \(0.409506\pi\)
−0.280481 + 0.959860i \(0.590494\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.9202i 0.506609i
\(756\) 0 0
\(757\) 26.5695i 0.965684i 0.875707 + 0.482842i \(0.160396\pi\)
−0.875707 + 0.482842i \(0.839604\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.7090 −0.968201 −0.484100 0.875012i \(-0.660853\pi\)
−0.484100 + 0.875012i \(0.660853\pi\)
\(762\) 0 0
\(763\) −15.2078 −0.550558
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.3515i 0.554311i
\(768\) 0 0
\(769\) 30.8310 1.11179 0.555897 0.831251i \(-0.312375\pi\)
0.555897 + 0.831251i \(0.312375\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.7355i 0.494032i −0.969011 0.247016i \(-0.920550\pi\)
0.969011 0.247016i \(-0.0794499\pi\)
\(774\) 0 0
\(775\) 30.3284 1.08943
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.20775 19.0279i 0.258244 0.681744i
\(780\) 0 0
\(781\) 2.29350 0.0820680
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 18.3677i 0.655571i
\(786\) 0 0
\(787\) −13.5845 −0.484235 −0.242118 0.970247i \(-0.577842\pi\)
−0.242118 + 0.970247i \(0.577842\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 16.3830i 0.582511i
\(792\) 0 0
\(793\) 28.9609i 1.02843i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.7198 −0.592244 −0.296122 0.955150i \(-0.595694\pi\)
−0.296122 + 0.955150i \(0.595694\pi\)
\(798\) 0 0
\(799\) 45.0482 1.59369
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.22555i 0.149117i
\(804\) 0 0
\(805\) 12.3110i 0.433905i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.7165i 1.22057i 0.792183 + 0.610283i \(0.208944\pi\)
−0.792183 + 0.610283i \(0.791056\pi\)
\(810\) 0 0
\(811\) −37.9758 −1.33351 −0.666756 0.745276i \(-0.732318\pi\)
−0.666756 + 0.745276i \(0.732318\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.391339 0.0137080
\(816\) 0 0
\(817\) 10.1933i 0.356618i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.2306 −0.775853 −0.387926 0.921690i \(-0.626809\pi\)
−0.387926 + 0.921690i \(0.626809\pi\)
\(822\) 0 0
\(823\) 48.6599i 1.69618i −0.529855 0.848088i \(-0.677754\pi\)
0.529855 0.848088i \(-0.322246\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.2781i 0.774687i −0.921936 0.387343i \(-0.873393\pi\)
0.921936 0.387343i \(-0.126607\pi\)
\(828\) 0 0
\(829\) −46.1124 −1.60155 −0.800775 0.598965i \(-0.795579\pi\)
−0.800775 + 0.598965i \(0.795579\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18.7676i 0.650257i
\(834\) 0 0
\(835\) 8.36213i 0.289383i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.91894i 0.0662492i −0.999451 0.0331246i \(-0.989454\pi\)
0.999451 0.0331246i \(-0.0105458\pi\)
\(840\) 0 0
\(841\) −33.8068 −1.16575
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.99176 0.240524
\(846\) 0 0
\(847\) 20.8742i 0.717247i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.41550 0.219921
\(852\) 0 0
\(853\) −6.83100 −0.233889 −0.116945 0.993138i \(-0.537310\pi\)
−0.116945 + 0.993138i \(0.537310\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.2185 0.383217 0.191608 0.981471i \(-0.438630\pi\)
0.191608 + 0.981471i \(0.438630\pi\)
\(858\) 0 0
\(859\) −14.8552 −0.506852 −0.253426 0.967355i \(-0.581557\pi\)
−0.253426 + 0.967355i \(0.581557\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.6474 0.941129 0.470564 0.882366i \(-0.344050\pi\)
0.470564 + 0.882366i \(0.344050\pi\)
\(864\) 0 0
\(865\) 1.78017 0.0605275
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.78150 −0.0943558
\(870\) 0 0
\(871\) −9.49742 −0.321808
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 15.7270i 0.531670i
\(876\) 0 0
\(877\) 9.59909 0.324138 0.162069 0.986779i \(-0.448183\pi\)
0.162069 + 0.986779i \(0.448183\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.09651 0.239087 0.119544 0.992829i \(-0.461857\pi\)
0.119544 + 0.992829i \(0.461857\pi\)
\(882\) 0 0
\(883\) 5.97196i 0.200973i 0.994938 + 0.100486i \(0.0320399\pi\)
−0.994938 + 0.100486i \(0.967960\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.81744i 0.0946003i −0.998881 0.0473002i \(-0.984938\pi\)
0.998881 0.0473002i \(-0.0150617\pi\)
\(888\) 0 0
\(889\) 17.6228i 0.591048i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 25.3056 0.846819
\(894\) 0 0
\(895\) 3.72693i 0.124577i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 57.1220i 1.90512i
\(900\) 0 0
\(901\) 4.92766 0.164164
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.775347i 0.0257734i
\(906\) 0 0
\(907\) 6.85517 0.227622 0.113811 0.993502i \(-0.463694\pi\)
0.113811 + 0.993502i \(0.463694\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.88876 −0.327629 −0.163815 0.986491i \(-0.552380\pi\)
−0.163815 + 0.986491i \(0.552380\pi\)
\(912\) 0 0
\(913\) 4.88151i 0.161554i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23.0273i 0.760428i
\(918\) 0 0
\(919\) 38.5092i 1.27030i −0.772388 0.635151i \(-0.780938\pi\)
0.772388 0.635151i \(-0.219062\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14.8939 0.490239
\(924\) 0 0
\(925\) 3.74525 0.123143
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 45.1865i 1.48252i −0.671218 0.741260i \(-0.734228\pi\)
0.671218 0.741260i \(-0.265772\pi\)
\(930\) 0 0
\(931\) 10.5426i 0.345519i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.75866 −0.0575143
\(936\) 0 0
\(937\) 7.12233i 0.232676i −0.993210 0.116338i \(-0.962884\pi\)
0.993210 0.116338i \(-0.0371156\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29.0723 0.947731 0.473866 0.880597i \(-0.342858\pi\)
0.473866 + 0.880597i \(0.342858\pi\)
\(942\) 0 0
\(943\) 43.1594 + 16.3488i 1.40546 + 0.532390i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.2078 −0.624168 −0.312084 0.950055i \(-0.601027\pi\)
−0.312084 + 0.950055i \(0.601027\pi\)
\(948\) 0 0
\(949\) 27.4406i 0.890759i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.8780 −0.708698 −0.354349 0.935113i \(-0.615298\pi\)
−0.354349 + 0.935113i \(0.615298\pi\)
\(954\) 0 0
\(955\) 17.6813i 0.572154i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 13.5362 0.437106
\(960\) 0 0
\(961\) 20.9517 0.675860
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.79426i 0.0899503i
\(966\) 0 0
\(967\) 18.8127i 0.604976i −0.953153 0.302488i \(-0.902183\pi\)
0.953153 0.302488i \(-0.0978173\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.4458i 0.912870i −0.889757 0.456435i \(-0.849126\pi\)
0.889757 0.456435i \(-0.150874\pi\)
\(972\) 0 0
\(973\) 33.8180i 1.08415i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 15.9733i 0.511031i 0.966805 + 0.255516i \(0.0822452\pi\)
−0.966805 + 0.255516i \(0.917755\pi\)
\(978\) 0 0
\(979\) −5.31900 −0.169996
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.9422 0.604164 0.302082 0.953282i \(-0.402318\pi\)
0.302082 + 0.953282i \(0.402318\pi\)
\(984\) 0 0
\(985\) −12.1473 −0.387047
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −23.1207 −0.735195
\(990\) 0 0
\(991\) 16.9048i 0.536998i −0.963280 0.268499i \(-0.913472\pi\)
0.963280 0.268499i \(-0.0865275\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.1564i 0.353681i
\(996\) 0 0
\(997\) 26.7914i 0.848492i −0.905547 0.424246i \(-0.860539\pi\)
0.905547 0.424246i \(-0.139461\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2952.2.j.c.2377.4 6
3.2 odd 2 328.2.d.b.81.6 yes 6
12.11 even 2 656.2.d.f.81.1 6
24.5 odd 2 2624.2.d.o.2049.1 6
24.11 even 2 2624.2.d.n.2049.6 6
41.40 even 2 inner 2952.2.j.c.2377.3 6
123.122 odd 2 328.2.d.b.81.1 6
492.491 even 2 656.2.d.f.81.6 6
984.245 odd 2 2624.2.d.o.2049.6 6
984.491 even 2 2624.2.d.n.2049.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
328.2.d.b.81.1 6 123.122 odd 2
328.2.d.b.81.6 yes 6 3.2 odd 2
656.2.d.f.81.1 6 12.11 even 2
656.2.d.f.81.6 6 492.491 even 2
2624.2.d.n.2049.1 6 984.491 even 2
2624.2.d.n.2049.6 6 24.11 even 2
2624.2.d.o.2049.1 6 24.5 odd 2
2624.2.d.o.2049.6 6 984.245 odd 2
2952.2.j.c.2377.3 6 41.40 even 2 inner
2952.2.j.c.2377.4 6 1.1 even 1 trivial