Properties

Label 2624.2.d.o.2049.6
Level $2624$
Weight $2$
Character 2624.2049
Analytic conductor $20.953$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2624,2,Mod(2049,2624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2624.2049"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2624 = 2^{6} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2624.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,4,0,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,10,0,0,0,0, 0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.9527454904\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1229312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 10x^{4} + 24x^{2} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 328)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2049.6
Root \(0.629384i\) of defining polynomial
Character \(\chi\) \(=\) 2624.2049
Dual form 2624.2.d.o.2049.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.17771i q^{3} +0.890084 q^{5} -1.91894i q^{7} -7.09783 q^{9} -0.349282i q^{11} +2.26822i q^{13} +2.82843i q^{15} +5.65685i q^{17} +3.17771i q^{19} +6.09783 q^{21} +7.20775 q^{23} -4.20775 q^{25} -13.0217i q^{27} +7.92508i q^{29} -7.20775 q^{31} +1.10992 q^{33} -1.70802i q^{35} +0.890084 q^{37} -7.20775 q^{39} +(5.98792 - 2.26822i) q^{41} -3.20775 q^{43} -6.31767 q^{45} -7.96347i q^{47} +3.31767 q^{49} -17.9758 q^{51} +0.871095i q^{53} -0.310890i q^{55} -10.0978 q^{57} -6.76809 q^{59} -12.7681 q^{61} +13.6203i q^{63} +2.01891i q^{65} +4.18716i q^{67} +22.9041i q^{69} -6.56634i q^{71} -12.0978 q^{73} -13.3710i q^{75} -0.670251 q^{77} -7.96347i q^{79} +20.0858 q^{81} -13.9758 q^{83} +5.03507i q^{85} -25.1836 q^{87} +15.2284i q^{89} +4.35258 q^{91} -22.9041i q^{93} +2.82843i q^{95} +17.2473i q^{97} +2.47915i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{5} - 6 q^{9} + 8 q^{23} + 10 q^{25} - 8 q^{31} + 8 q^{33} + 4 q^{37} - 8 q^{39} - 2 q^{41} + 16 q^{43} - 4 q^{45} - 14 q^{49} - 32 q^{51} - 24 q^{57} - 36 q^{61} - 36 q^{73} + 46 q^{81} - 8 q^{83}+ \cdots + 56 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2624\mathbb{Z}\right)^\times\).

\(n\) \(129\) \(575\) \(1477\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.17771i 1.83465i 0.398138 + 0.917326i \(0.369657\pi\)
−0.398138 + 0.917326i \(0.630343\pi\)
\(4\) 0 0
\(5\) 0.890084 0.398058 0.199029 0.979994i \(-0.436221\pi\)
0.199029 + 0.979994i \(0.436221\pi\)
\(6\) 0 0
\(7\) 1.91894i 0.725291i −0.931927 0.362646i \(-0.881874\pi\)
0.931927 0.362646i \(-0.118126\pi\)
\(8\) 0 0
\(9\) −7.09783 −2.36594
\(10\) 0 0
\(11\) 0.349282i 0.105312i −0.998613 0.0526562i \(-0.983231\pi\)
0.998613 0.0526562i \(-0.0167688\pi\)
\(12\) 0 0
\(13\) 2.26822i 0.629092i 0.949242 + 0.314546i \(0.101852\pi\)
−0.949242 + 0.314546i \(0.898148\pi\)
\(14\) 0 0
\(15\) 2.82843i 0.730297i
\(16\) 0 0
\(17\) 5.65685i 1.37199i 0.727607 + 0.685994i \(0.240633\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 3.17771i 0.729016i 0.931200 + 0.364508i \(0.118763\pi\)
−0.931200 + 0.364508i \(0.881237\pi\)
\(20\) 0 0
\(21\) 6.09783 1.33066
\(22\) 0 0
\(23\) 7.20775 1.50292 0.751460 0.659779i \(-0.229350\pi\)
0.751460 + 0.659779i \(0.229350\pi\)
\(24\) 0 0
\(25\) −4.20775 −0.841550
\(26\) 0 0
\(27\) 13.0217i 2.50603i
\(28\) 0 0
\(29\) 7.92508i 1.47165i 0.677172 + 0.735825i \(0.263205\pi\)
−0.677172 + 0.735825i \(0.736795\pi\)
\(30\) 0 0
\(31\) −7.20775 −1.29455 −0.647275 0.762256i \(-0.724092\pi\)
−0.647275 + 0.762256i \(0.724092\pi\)
\(32\) 0 0
\(33\) 1.10992 0.193212
\(34\) 0 0
\(35\) 1.70802i 0.288708i
\(36\) 0 0
\(37\) 0.890084 0.146329 0.0731644 0.997320i \(-0.476690\pi\)
0.0731644 + 0.997320i \(0.476690\pi\)
\(38\) 0 0
\(39\) −7.20775 −1.15416
\(40\) 0 0
\(41\) 5.98792 2.26822i 0.935156 0.354237i
\(42\) 0 0
\(43\) −3.20775 −0.489177 −0.244589 0.969627i \(-0.578653\pi\)
−0.244589 + 0.969627i \(0.578653\pi\)
\(44\) 0 0
\(45\) −6.31767 −0.941782
\(46\) 0 0
\(47\) 7.96347i 1.16159i −0.814049 0.580796i \(-0.802742\pi\)
0.814049 0.580796i \(-0.197258\pi\)
\(48\) 0 0
\(49\) 3.31767 0.473952
\(50\) 0 0
\(51\) −17.9758 −2.51712
\(52\) 0 0
\(53\) 0.871095i 0.119654i 0.998209 + 0.0598270i \(0.0190549\pi\)
−0.998209 + 0.0598270i \(0.980945\pi\)
\(54\) 0 0
\(55\) 0.310890i 0.0419204i
\(56\) 0 0
\(57\) −10.0978 −1.33749
\(58\) 0 0
\(59\) −6.76809 −0.881130 −0.440565 0.897721i \(-0.645222\pi\)
−0.440565 + 0.897721i \(0.645222\pi\)
\(60\) 0 0
\(61\) −12.7681 −1.63479 −0.817393 0.576081i \(-0.804581\pi\)
−0.817393 + 0.576081i \(0.804581\pi\)
\(62\) 0 0
\(63\) 13.6203i 1.71600i
\(64\) 0 0
\(65\) 2.01891i 0.250415i
\(66\) 0 0
\(67\) 4.18716i 0.511543i 0.966737 + 0.255772i \(0.0823295\pi\)
−0.966737 + 0.255772i \(0.917670\pi\)
\(68\) 0 0
\(69\) 22.9041i 2.75733i
\(70\) 0 0
\(71\) 6.56634i 0.779281i −0.920967 0.389641i \(-0.872599\pi\)
0.920967 0.389641i \(-0.127401\pi\)
\(72\) 0 0
\(73\) −12.0978 −1.41594 −0.707972 0.706240i \(-0.750390\pi\)
−0.707972 + 0.706240i \(0.750390\pi\)
\(74\) 0 0
\(75\) 13.3710i 1.54395i
\(76\) 0 0
\(77\) −0.670251 −0.0763822
\(78\) 0 0
\(79\) 7.96347i 0.895960i −0.894044 0.447980i \(-0.852144\pi\)
0.894044 0.447980i \(-0.147856\pi\)
\(80\) 0 0
\(81\) 20.0858 2.23175
\(82\) 0 0
\(83\) −13.9758 −1.53405 −0.767024 0.641619i \(-0.778263\pi\)
−0.767024 + 0.641619i \(0.778263\pi\)
\(84\) 0 0
\(85\) 5.03507i 0.546130i
\(86\) 0 0
\(87\) −25.1836 −2.69996
\(88\) 0 0
\(89\) 15.2284i 1.61420i 0.590412 + 0.807102i \(0.298965\pi\)
−0.590412 + 0.807102i \(0.701035\pi\)
\(90\) 0 0
\(91\) 4.35258 0.456275
\(92\) 0 0
\(93\) 22.9041i 2.37505i
\(94\) 0 0
\(95\) 2.82843i 0.290191i
\(96\) 0 0
\(97\) 17.2473i 1.75120i 0.483040 + 0.875598i \(0.339532\pi\)
−0.483040 + 0.875598i \(0.660468\pi\)
\(98\) 0 0
\(99\) 2.47915i 0.249163i
\(100\) 0 0
\(101\) 11.0644i 1.10095i −0.834852 0.550474i \(-0.814447\pi\)
0.834852 0.550474i \(-0.185553\pi\)
\(102\) 0 0
\(103\) 4.43967 0.437453 0.218727 0.975786i \(-0.429810\pi\)
0.218727 + 0.975786i \(0.429810\pi\)
\(104\) 0 0
\(105\) 5.42758 0.529678
\(106\) 0 0
\(107\) −7.56033 −0.730885 −0.365443 0.930834i \(-0.619082\pi\)
−0.365443 + 0.930834i \(0.619082\pi\)
\(108\) 0 0
\(109\) 7.92508i 0.759085i 0.925174 + 0.379542i \(0.123919\pi\)
−0.925174 + 0.379542i \(0.876081\pi\)
\(110\) 0 0
\(111\) 2.82843i 0.268462i
\(112\) 0 0
\(113\) −8.53750 −0.803140 −0.401570 0.915828i \(-0.631535\pi\)
−0.401570 + 0.915828i \(0.631535\pi\)
\(114\) 0 0
\(115\) 6.41550 0.598249
\(116\) 0 0
\(117\) 16.0995i 1.48840i
\(118\) 0 0
\(119\) 10.8552 0.995092
\(120\) 0 0
\(121\) 10.8780 0.988909
\(122\) 0 0
\(123\) 7.20775 + 19.0279i 0.649901 + 1.71568i
\(124\) 0 0
\(125\) −8.19567 −0.733043
\(126\) 0 0
\(127\) −9.18359 −0.814912 −0.407456 0.913225i \(-0.633584\pi\)
−0.407456 + 0.913225i \(0.633584\pi\)
\(128\) 0 0
\(129\) 10.1933i 0.897470i
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 6.09783 0.528749
\(134\) 0 0
\(135\) 11.5904i 0.997545i
\(136\) 0 0
\(137\) 7.05398i 0.602662i −0.953520 0.301331i \(-0.902569\pi\)
0.953520 0.301331i \(-0.0974310\pi\)
\(138\) 0 0
\(139\) 17.6233 1.49478 0.747392 0.664383i \(-0.231306\pi\)
0.747392 + 0.664383i \(0.231306\pi\)
\(140\) 0 0
\(141\) 25.3056 2.13111
\(142\) 0 0
\(143\) 0.792249 0.0662512
\(144\) 0 0
\(145\) 7.05398i 0.585801i
\(146\) 0 0
\(147\) 10.5426i 0.869537i
\(148\) 0 0
\(149\) 4.78576i 0.392065i −0.980597 0.196032i \(-0.937194\pi\)
0.980597 0.196032i \(-0.0628058\pi\)
\(150\) 0 0
\(151\) 15.6392i 1.27270i −0.771399 0.636351i \(-0.780443\pi\)
0.771399 0.636351i \(-0.219557\pi\)
\(152\) 0 0
\(153\) 40.1514i 3.24605i
\(154\) 0 0
\(155\) −6.41550 −0.515306
\(156\) 0 0
\(157\) 20.6359i 1.64693i −0.567371 0.823463i \(-0.692039\pi\)
0.567371 0.823463i \(-0.307961\pi\)
\(158\) 0 0
\(159\) −2.76809 −0.219523
\(160\) 0 0
\(161\) 13.8312i 1.09005i
\(162\) 0 0
\(163\) −0.439665 −0.0344372 −0.0172186 0.999852i \(-0.505481\pi\)
−0.0172186 + 0.999852i \(0.505481\pi\)
\(164\) 0 0
\(165\) 0.987918 0.0769093
\(166\) 0 0
\(167\) 9.39477i 0.726989i 0.931596 + 0.363494i \(0.118416\pi\)
−0.931596 + 0.363494i \(0.881584\pi\)
\(168\) 0 0
\(169\) 7.85517 0.604244
\(170\) 0 0
\(171\) 22.5549i 1.72481i
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 8.07442i 0.610369i
\(176\) 0 0
\(177\) 21.5070i 1.61657i
\(178\) 0 0
\(179\) 4.18716i 0.312963i 0.987681 + 0.156482i \(0.0500152\pi\)
−0.987681 + 0.156482i \(0.949985\pi\)
\(180\) 0 0
\(181\) 0.871095i 0.0647480i 0.999476 + 0.0323740i \(0.0103068\pi\)
−0.999476 + 0.0323740i \(0.989693\pi\)
\(182\) 0 0
\(183\) 40.5733i 2.99926i
\(184\) 0 0
\(185\) 0.792249 0.0582473
\(186\) 0 0
\(187\) 1.97584 0.144487
\(188\) 0 0
\(189\) −24.9879 −1.81760
\(190\) 0 0
\(191\) 19.8648i 1.43737i 0.695338 + 0.718683i \(0.255255\pi\)
−0.695338 + 0.718683i \(0.744745\pi\)
\(192\) 0 0
\(193\) 3.13932i 0.225973i 0.993597 + 0.112987i \(0.0360417\pi\)
−0.993597 + 0.112987i \(0.963958\pi\)
\(194\) 0 0
\(195\) −6.41550 −0.459424
\(196\) 0 0
\(197\) −13.6474 −0.972338 −0.486169 0.873865i \(-0.661606\pi\)
−0.486169 + 0.873865i \(0.661606\pi\)
\(198\) 0 0
\(199\) 12.5341i 0.888518i 0.895898 + 0.444259i \(0.146533\pi\)
−0.895898 + 0.444259i \(0.853467\pi\)
\(200\) 0 0
\(201\) −13.3056 −0.938504
\(202\) 0 0
\(203\) 15.2078 1.06737
\(204\) 0 0
\(205\) 5.32975 2.01891i 0.372246 0.141007i
\(206\) 0 0
\(207\) −51.1594 −3.55583
\(208\) 0 0
\(209\) 1.10992 0.0767745
\(210\) 0 0
\(211\) 17.3966i 1.19763i 0.800886 + 0.598817i \(0.204362\pi\)
−0.800886 + 0.598817i \(0.795638\pi\)
\(212\) 0 0
\(213\) 20.8659 1.42971
\(214\) 0 0
\(215\) −2.85517 −0.194721
\(216\) 0 0
\(217\) 13.8312i 0.938926i
\(218\) 0 0
\(219\) 38.4434i 2.59776i
\(220\) 0 0
\(221\) −12.8310 −0.863107
\(222\) 0 0
\(223\) 3.56033 0.238418 0.119209 0.992869i \(-0.461964\pi\)
0.119209 + 0.992869i \(0.461964\pi\)
\(224\) 0 0
\(225\) 29.8659 1.99106
\(226\) 0 0
\(227\) 19.1046i 1.26802i −0.773325 0.634010i \(-0.781408\pi\)
0.773325 0.634010i \(-0.218592\pi\)
\(228\) 0 0
\(229\) 26.5695i 1.75576i 0.478880 + 0.877881i \(0.341043\pi\)
−0.478880 + 0.877881i \(0.658957\pi\)
\(230\) 0 0
\(231\) 2.12986i 0.140135i
\(232\) 0 0
\(233\) 16.4719i 1.07911i 0.841950 + 0.539556i \(0.181408\pi\)
−0.841950 + 0.539556i \(0.818592\pi\)
\(234\) 0 0
\(235\) 7.08815i 0.462380i
\(236\) 0 0
\(237\) 25.3056 1.64377
\(238\) 0 0
\(239\) 14.3189i 0.926212i 0.886303 + 0.463106i \(0.153265\pi\)
−0.886303 + 0.463106i \(0.846735\pi\)
\(240\) 0 0
\(241\) 0.768086 0.0494768 0.0247384 0.999694i \(-0.492125\pi\)
0.0247384 + 0.999694i \(0.492125\pi\)
\(242\) 0 0
\(243\) 24.7615i 1.58845i
\(244\) 0 0
\(245\) 2.95300 0.188660
\(246\) 0 0
\(247\) −7.20775 −0.458618
\(248\) 0 0
\(249\) 44.4111i 2.81444i
\(250\) 0 0
\(251\) −23.9517 −1.51182 −0.755908 0.654678i \(-0.772804\pi\)
−0.755908 + 0.654678i \(0.772804\pi\)
\(252\) 0 0
\(253\) 2.51754i 0.158276i
\(254\) 0 0
\(255\) −16.0000 −1.00196
\(256\) 0 0
\(257\) 2.51754i 0.157040i −0.996913 0.0785198i \(-0.974981\pi\)
0.996913 0.0785198i \(-0.0250194\pi\)
\(258\) 0 0
\(259\) 1.70802i 0.106131i
\(260\) 0 0
\(261\) 56.2509i 3.48184i
\(262\) 0 0
\(263\) 21.9946i 1.35625i 0.734947 + 0.678124i \(0.237207\pi\)
−0.734947 + 0.678124i \(0.762793\pi\)
\(264\) 0 0
\(265\) 0.775347i 0.0476292i
\(266\) 0 0
\(267\) −48.3913 −2.96150
\(268\) 0 0
\(269\) 23.1836 1.41353 0.706764 0.707449i \(-0.250154\pi\)
0.706764 + 0.707449i \(0.250154\pi\)
\(270\) 0 0
\(271\) 7.20775 0.437840 0.218920 0.975743i \(-0.429747\pi\)
0.218920 + 0.975743i \(0.429747\pi\)
\(272\) 0 0
\(273\) 13.8312i 0.837105i
\(274\) 0 0
\(275\) 1.46969i 0.0886257i
\(276\) 0 0
\(277\) −9.08575 −0.545910 −0.272955 0.962027i \(-0.588001\pi\)
−0.272955 + 0.962027i \(0.588001\pi\)
\(278\) 0 0
\(279\) 51.1594 3.06283
\(280\) 0 0
\(281\) 17.7459i 1.05863i 0.848425 + 0.529316i \(0.177551\pi\)
−0.848425 + 0.529316i \(0.822449\pi\)
\(282\) 0 0
\(283\) 17.6233 1.04759 0.523797 0.851843i \(-0.324515\pi\)
0.523797 + 0.851843i \(0.324515\pi\)
\(284\) 0 0
\(285\) −8.98792 −0.532398
\(286\) 0 0
\(287\) −4.35258 11.4905i −0.256925 0.678260i
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) −54.8068 −3.21283
\(292\) 0 0
\(293\) 1.64644i 0.0961862i −0.998843 0.0480931i \(-0.984686\pi\)
0.998843 0.0480931i \(-0.0153144\pi\)
\(294\) 0 0
\(295\) −6.02416 −0.350740
\(296\) 0 0
\(297\) −4.54825 −0.263916
\(298\) 0 0
\(299\) 16.3488i 0.945475i
\(300\) 0 0
\(301\) 6.15548i 0.354796i
\(302\) 0 0
\(303\) 35.1594 2.01986
\(304\) 0 0
\(305\) −11.3647 −0.650739
\(306\) 0 0
\(307\) 31.9517 1.82358 0.911789 0.410659i \(-0.134701\pi\)
0.911789 + 0.410659i \(0.134701\pi\)
\(308\) 0 0
\(309\) 14.1080i 0.802574i
\(310\) 0 0
\(311\) 30.4799i 1.72836i −0.503184 0.864179i \(-0.667838\pi\)
0.503184 0.864179i \(-0.332162\pi\)
\(312\) 0 0
\(313\) 10.8151i 0.611304i 0.952143 + 0.305652i \(0.0988745\pi\)
−0.952143 + 0.305652i \(0.901126\pi\)
\(314\) 0 0
\(315\) 12.1232i 0.683066i
\(316\) 0 0
\(317\) 18.6170i 1.04564i 0.852445 + 0.522818i \(0.175119\pi\)
−0.852445 + 0.522818i \(0.824881\pi\)
\(318\) 0 0
\(319\) 2.76809 0.154983
\(320\) 0 0
\(321\) 24.0245i 1.34092i
\(322\) 0 0
\(323\) −17.9758 −1.00020
\(324\) 0 0
\(325\) 9.54412i 0.529412i
\(326\) 0 0
\(327\) −25.1836 −1.39266
\(328\) 0 0
\(329\) −15.2814 −0.842492
\(330\) 0 0
\(331\) 3.14354i 0.172784i −0.996261 0.0863922i \(-0.972466\pi\)
0.996261 0.0863922i \(-0.0275338\pi\)
\(332\) 0 0
\(333\) −6.31767 −0.346206
\(334\) 0 0
\(335\) 3.72693i 0.203624i
\(336\) 0 0
\(337\) 9.43834 0.514139 0.257069 0.966393i \(-0.417243\pi\)
0.257069 + 0.966393i \(0.417243\pi\)
\(338\) 0 0
\(339\) 27.1297i 1.47348i
\(340\) 0 0
\(341\) 2.51754i 0.136332i
\(342\) 0 0
\(343\) 19.7990i 1.06904i
\(344\) 0 0
\(345\) 20.3866i 1.09758i
\(346\) 0 0
\(347\) 6.73887i 0.361762i −0.983505 0.180881i \(-0.942105\pi\)
0.983505 0.180881i \(-0.0578948\pi\)
\(348\) 0 0
\(349\) −28.6461 −1.53339 −0.766695 0.642012i \(-0.778100\pi\)
−0.766695 + 0.642012i \(0.778100\pi\)
\(350\) 0 0
\(351\) 29.5362 1.57652
\(352\) 0 0
\(353\) 34.3177 1.82655 0.913273 0.407349i \(-0.133547\pi\)
0.913273 + 0.407349i \(0.133547\pi\)
\(354\) 0 0
\(355\) 5.84459i 0.310199i
\(356\) 0 0
\(357\) 34.4946i 1.82565i
\(358\) 0 0
\(359\) 1.97584 0.104281 0.0521403 0.998640i \(-0.483396\pi\)
0.0521403 + 0.998640i \(0.483396\pi\)
\(360\) 0 0
\(361\) 8.90217 0.468535
\(362\) 0 0
\(363\) 34.5671i 1.81430i
\(364\) 0 0
\(365\) −10.7681 −0.563627
\(366\) 0 0
\(367\) 28.0388 1.46361 0.731806 0.681513i \(-0.238678\pi\)
0.731806 + 0.681513i \(0.238678\pi\)
\(368\) 0 0
\(369\) −42.5013 + 16.0995i −2.21253 + 0.838105i
\(370\) 0 0
\(371\) 1.67158 0.0867841
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 26.0435i 1.34488i
\(376\) 0 0
\(377\) −17.9758 −0.925803
\(378\) 0 0
\(379\) −1.23191 −0.0632792 −0.0316396 0.999499i \(-0.510073\pi\)
−0.0316396 + 0.999499i \(0.510073\pi\)
\(380\) 0 0
\(381\) 29.1828i 1.49508i
\(382\) 0 0
\(383\) 6.45539i 0.329855i −0.986306 0.164927i \(-0.947261\pi\)
0.986306 0.164927i \(-0.0527390\pi\)
\(384\) 0 0
\(385\) −0.596580 −0.0304045
\(386\) 0 0
\(387\) 22.7681 1.15737
\(388\) 0 0
\(389\) 13.9517 0.707378 0.353689 0.935363i \(-0.384927\pi\)
0.353689 + 0.935363i \(0.384927\pi\)
\(390\) 0 0
\(391\) 40.7732i 2.06199i
\(392\) 0 0
\(393\) 38.1325i 1.92353i
\(394\) 0 0
\(395\) 7.08815i 0.356644i
\(396\) 0 0
\(397\) 28.0350i 1.40703i 0.710678 + 0.703517i \(0.248388\pi\)
−0.710678 + 0.703517i \(0.751612\pi\)
\(398\) 0 0
\(399\) 19.3771i 0.970071i
\(400\) 0 0
\(401\) 4.29350 0.214407 0.107204 0.994237i \(-0.465810\pi\)
0.107204 + 0.994237i \(0.465810\pi\)
\(402\) 0 0
\(403\) 16.3488i 0.814391i
\(404\) 0 0
\(405\) 17.8780 0.888365
\(406\) 0 0
\(407\) 0.310890i 0.0154103i
\(408\) 0 0
\(409\) 1.92633 0.0952508 0.0476254 0.998865i \(-0.484835\pi\)
0.0476254 + 0.998865i \(0.484835\pi\)
\(410\) 0 0
\(411\) 22.4155 1.10568
\(412\) 0 0
\(413\) 12.9876i 0.639076i
\(414\) 0 0
\(415\) −12.4397 −0.610639
\(416\) 0 0
\(417\) 56.0016i 2.74241i
\(418\) 0 0
\(419\) 30.7681 1.50312 0.751560 0.659665i \(-0.229302\pi\)
0.751560 + 0.659665i \(0.229302\pi\)
\(420\) 0 0
\(421\) 13.0833i 0.637641i 0.947815 + 0.318821i \(0.103287\pi\)
−0.947815 + 0.318821i \(0.896713\pi\)
\(422\) 0 0
\(423\) 56.5234i 2.74826i
\(424\) 0 0
\(425\) 23.8026i 1.15460i
\(426\) 0 0
\(427\) 24.5012i 1.18570i
\(428\) 0 0
\(429\) 2.51754i 0.121548i
\(430\) 0 0
\(431\) 5.23191 0.252012 0.126006 0.992029i \(-0.459784\pi\)
0.126006 + 0.992029i \(0.459784\pi\)
\(432\) 0 0
\(433\) −8.85517 −0.425552 −0.212776 0.977101i \(-0.568250\pi\)
−0.212776 + 0.977101i \(0.568250\pi\)
\(434\) 0 0
\(435\) −22.4155 −1.07474
\(436\) 0 0
\(437\) 22.9041i 1.09565i
\(438\) 0 0
\(439\) 18.4677i 0.881413i 0.897651 + 0.440707i \(0.145272\pi\)
−0.897651 + 0.440707i \(0.854728\pi\)
\(440\) 0 0
\(441\) −23.5483 −1.12135
\(442\) 0 0
\(443\) 20.3913 0.968822 0.484411 0.874841i \(-0.339034\pi\)
0.484411 + 0.874841i \(0.339034\pi\)
\(444\) 0 0
\(445\) 13.5545i 0.642546i
\(446\) 0 0
\(447\) 15.2078 0.719302
\(448\) 0 0
\(449\) −8.32842 −0.393042 −0.196521 0.980500i \(-0.562964\pi\)
−0.196521 + 0.980500i \(0.562964\pi\)
\(450\) 0 0
\(451\) −0.792249 2.09147i −0.0373056 0.0984835i
\(452\) 0 0
\(453\) 49.6969 2.33497
\(454\) 0 0
\(455\) 3.87416 0.181624
\(456\) 0 0
\(457\) 12.0891i 0.565502i −0.959193 0.282751i \(-0.908753\pi\)
0.959193 0.282751i \(-0.0912470\pi\)
\(458\) 0 0
\(459\) 73.6620 3.43825
\(460\) 0 0
\(461\) 4.45042 0.207277 0.103638 0.994615i \(-0.466952\pi\)
0.103638 + 0.994615i \(0.466952\pi\)
\(462\) 0 0
\(463\) 13.3436i 0.620130i −0.950715 0.310065i \(-0.899649\pi\)
0.950715 0.310065i \(-0.100351\pi\)
\(464\) 0 0
\(465\) 20.3866i 0.945406i
\(466\) 0 0
\(467\) −5.67158 −0.262449 −0.131225 0.991353i \(-0.541891\pi\)
−0.131225 + 0.991353i \(0.541891\pi\)
\(468\) 0 0
\(469\) 8.03492 0.371018
\(470\) 0 0
\(471\) 65.5749 3.02153
\(472\) 0 0
\(473\) 1.12041i 0.0515165i
\(474\) 0 0
\(475\) 13.3710i 0.613504i
\(476\) 0 0
\(477\) 6.18289i 0.283095i
\(478\) 0 0
\(479\) 3.31607i 0.151515i −0.997126 0.0757575i \(-0.975863\pi\)
0.997126 0.0757575i \(-0.0241375\pi\)
\(480\) 0 0
\(481\) 2.01891i 0.0920543i
\(482\) 0 0
\(483\) 43.9517 1.99987
\(484\) 0 0
\(485\) 15.3515i 0.697077i
\(486\) 0 0
\(487\) −9.09651 −0.412202 −0.206101 0.978531i \(-0.566078\pi\)
−0.206101 + 0.978531i \(0.566078\pi\)
\(488\) 0 0
\(489\) 1.39713i 0.0631803i
\(490\) 0 0
\(491\) −25.6233 −1.15636 −0.578181 0.815909i \(-0.696237\pi\)
−0.578181 + 0.815909i \(0.696237\pi\)
\(492\) 0 0
\(493\) −44.8310 −2.01909
\(494\) 0 0
\(495\) 2.20665i 0.0991814i
\(496\) 0 0
\(497\) −12.6004 −0.565206
\(498\) 0 0
\(499\) 34.5330i 1.54591i 0.634462 + 0.772954i \(0.281222\pi\)
−0.634462 + 0.772954i \(0.718778\pi\)
\(500\) 0 0
\(501\) −29.8538 −1.33377
\(502\) 0 0
\(503\) 20.0989i 0.896165i 0.893992 + 0.448083i \(0.147893\pi\)
−0.893992 + 0.448083i \(0.852107\pi\)
\(504\) 0 0
\(505\) 9.84824i 0.438241i
\(506\) 0 0
\(507\) 24.9614i 1.10858i
\(508\) 0 0
\(509\) 2.76685i 0.122639i −0.998118 0.0613193i \(-0.980469\pi\)
0.998118 0.0613193i \(-0.0195308\pi\)
\(510\) 0 0
\(511\) 23.2150i 1.02697i
\(512\) 0 0
\(513\) 41.3793 1.82694
\(514\) 0 0
\(515\) 3.95167 0.174132
\(516\) 0 0
\(517\) −2.78150 −0.122330
\(518\) 0 0
\(519\) 6.35542i 0.278972i
\(520\) 0 0
\(521\) 13.0559i 0.571989i −0.958231 0.285995i \(-0.907676\pi\)
0.958231 0.285995i \(-0.0923240\pi\)
\(522\) 0 0
\(523\) 6.68100 0.292140 0.146070 0.989274i \(-0.453338\pi\)
0.146070 + 0.989274i \(0.453338\pi\)
\(524\) 0 0
\(525\) −25.6582 −1.11981
\(526\) 0 0
\(527\) 40.7732i 1.77611i
\(528\) 0 0
\(529\) 28.9517 1.25877
\(530\) 0 0
\(531\) 48.0388 2.08470
\(532\) 0 0
\(533\) 5.14483 + 13.5819i 0.222847 + 0.588299i
\(534\) 0 0
\(535\) −6.72933 −0.290934
\(536\) 0 0
\(537\) −13.3056 −0.574178
\(538\) 0 0
\(539\) 1.15880i 0.0499131i
\(540\) 0 0
\(541\) −22.6219 −0.972593 −0.486296 0.873794i \(-0.661652\pi\)
−0.486296 + 0.873794i \(0.661652\pi\)
\(542\) 0 0
\(543\) −2.76809 −0.118790
\(544\) 0 0
\(545\) 7.05398i 0.302159i
\(546\) 0 0
\(547\) 6.31703i 0.270097i 0.990839 + 0.135048i \(0.0431190\pi\)
−0.990839 + 0.135048i \(0.956881\pi\)
\(548\) 0 0
\(549\) 90.6258 3.86781
\(550\) 0 0
\(551\) −25.1836 −1.07286
\(552\) 0 0
\(553\) −15.2814 −0.649832
\(554\) 0 0
\(555\) 2.51754i 0.106863i
\(556\) 0 0
\(557\) 22.6548i 0.959916i 0.877292 + 0.479958i \(0.159348\pi\)
−0.877292 + 0.479958i \(0.840652\pi\)
\(558\) 0 0
\(559\) 7.27589i 0.307737i
\(560\) 0 0
\(561\) 6.27863i 0.265084i
\(562\) 0 0
\(563\) 14.9559i 0.630315i −0.949039 0.315157i \(-0.897943\pi\)
0.949039 0.315157i \(-0.102057\pi\)
\(564\) 0 0
\(565\) −7.59909 −0.319696
\(566\) 0 0
\(567\) 38.5434i 1.61867i
\(568\) 0 0
\(569\) −12.0978 −0.507168 −0.253584 0.967313i \(-0.581609\pi\)
−0.253584 + 0.967313i \(0.581609\pi\)
\(570\) 0 0
\(571\) 18.1416i 0.759201i 0.925151 + 0.379600i \(0.123938\pi\)
−0.925151 + 0.379600i \(0.876062\pi\)
\(572\) 0 0
\(573\) −63.1245 −2.63706
\(574\) 0 0
\(575\) −30.3284 −1.26478
\(576\) 0 0
\(577\) 2.51754i 0.104806i 0.998626 + 0.0524032i \(0.0166881\pi\)
−0.998626 + 0.0524032i \(0.983312\pi\)
\(578\) 0 0
\(579\) −9.97584 −0.414582
\(580\) 0 0
\(581\) 26.8188i 1.11263i
\(582\) 0 0
\(583\) 0.304258 0.0126011
\(584\) 0 0
\(585\) 14.3299i 0.592467i
\(586\) 0 0
\(587\) 11.8629i 0.489635i 0.969569 + 0.244818i \(0.0787281\pi\)
−0.969569 + 0.244818i \(0.921272\pi\)
\(588\) 0 0
\(589\) 22.9041i 0.943748i
\(590\) 0 0
\(591\) 43.3675i 1.78390i
\(592\) 0 0
\(593\) 32.9743i 1.35409i 0.735941 + 0.677046i \(0.236740\pi\)
−0.735941 + 0.677046i \(0.763260\pi\)
\(594\) 0 0
\(595\) 9.66201 0.396104
\(596\) 0 0
\(597\) −39.8297 −1.63012
\(598\) 0 0
\(599\) −38.7198 −1.58205 −0.791023 0.611786i \(-0.790451\pi\)
−0.791023 + 0.611786i \(0.790451\pi\)
\(600\) 0 0
\(601\) 37.8558i 1.54417i −0.635519 0.772085i \(-0.719214\pi\)
0.635519 0.772085i \(-0.280786\pi\)
\(602\) 0 0
\(603\) 29.7198i 1.21028i
\(604\) 0 0
\(605\) 9.68233 0.393643
\(606\) 0 0
\(607\) 34.7681 1.41119 0.705597 0.708614i \(-0.250679\pi\)
0.705597 + 0.708614i \(0.250679\pi\)
\(608\) 0 0
\(609\) 48.3258i 1.95826i
\(610\) 0 0
\(611\) 18.0629 0.730747
\(612\) 0 0
\(613\) 13.7211 0.554190 0.277095 0.960843i \(-0.410628\pi\)
0.277095 + 0.960843i \(0.410628\pi\)
\(614\) 0 0
\(615\) 6.41550 + 16.9364i 0.258698 + 0.682941i
\(616\) 0 0
\(617\) 1.12067 0.0451165 0.0225582 0.999746i \(-0.492819\pi\)
0.0225582 + 0.999746i \(0.492819\pi\)
\(618\) 0 0
\(619\) −23.6474 −0.950470 −0.475235 0.879859i \(-0.657637\pi\)
−0.475235 + 0.879859i \(0.657637\pi\)
\(620\) 0 0
\(621\) 93.8574i 3.76637i
\(622\) 0 0
\(623\) 29.2223 1.17077
\(624\) 0 0
\(625\) 13.7439 0.549757
\(626\) 0 0
\(627\) 3.52699i 0.140854i
\(628\) 0 0
\(629\) 5.03507i 0.200762i
\(630\) 0 0
\(631\) 5.53617 0.220392 0.110196 0.993910i \(-0.464852\pi\)
0.110196 + 0.993910i \(0.464852\pi\)
\(632\) 0 0
\(633\) −55.2814 −2.19724
\(634\) 0 0
\(635\) −8.17416 −0.324382
\(636\) 0 0
\(637\) 7.52521i 0.298160i
\(638\) 0 0
\(639\) 46.6068i 1.84374i
\(640\) 0 0
\(641\) 10.9686i 0.433235i −0.976256 0.216618i \(-0.930497\pi\)
0.976256 0.216618i \(-0.0695025\pi\)
\(642\) 0 0
\(643\) 47.0012i 1.85355i −0.375619 0.926774i \(-0.622570\pi\)
0.375619 0.926774i \(-0.377430\pi\)
\(644\) 0 0
\(645\) 9.07289i 0.357245i
\(646\) 0 0
\(647\) −12.8310 −0.504439 −0.252219 0.967670i \(-0.581160\pi\)
−0.252219 + 0.967670i \(0.581160\pi\)
\(648\) 0 0
\(649\) 2.36397i 0.0927939i
\(650\) 0 0
\(651\) −43.9517 −1.72260
\(652\) 0 0
\(653\) 35.6424i 1.39479i −0.716685 0.697397i \(-0.754341\pi\)
0.716685 0.697397i \(-0.245659\pi\)
\(654\) 0 0
\(655\) 10.6810 0.417341
\(656\) 0 0
\(657\) 85.8684 3.35005
\(658\) 0 0
\(659\) 19.4497i 0.757653i −0.925468 0.378827i \(-0.876328\pi\)
0.925468 0.378827i \(-0.123672\pi\)
\(660\) 0 0
\(661\) 29.7211 1.15602 0.578008 0.816031i \(-0.303830\pi\)
0.578008 + 0.816031i \(0.303830\pi\)
\(662\) 0 0
\(663\) 40.7732i 1.58350i
\(664\) 0 0
\(665\) 5.42758 0.210473
\(666\) 0 0
\(667\) 57.1220i 2.21177i
\(668\) 0 0
\(669\) 11.3137i 0.437413i
\(670\) 0 0
\(671\) 4.45966i 0.172163i
\(672\) 0 0
\(673\) 35.1163i 1.35364i 0.736151 + 0.676818i \(0.236641\pi\)
−0.736151 + 0.676818i \(0.763359\pi\)
\(674\) 0 0
\(675\) 54.7922i 2.10895i
\(676\) 0 0
\(677\) 10.8659 0.417611 0.208806 0.977957i \(-0.433042\pi\)
0.208806 + 0.977957i \(0.433042\pi\)
\(678\) 0 0
\(679\) 33.0965 1.27013
\(680\) 0 0
\(681\) 60.7090 2.32637
\(682\) 0 0
\(683\) 12.7492i 0.487836i 0.969796 + 0.243918i \(0.0784327\pi\)
−0.969796 + 0.243918i \(0.921567\pi\)
\(684\) 0 0
\(685\) 6.27863i 0.239894i
\(686\) 0 0
\(687\) −84.4301 −3.22121
\(688\) 0 0
\(689\) −1.97584 −0.0752734
\(690\) 0 0
\(691\) 31.6619i 1.20448i −0.798317 0.602238i \(-0.794276\pi\)
0.798317 0.602238i \(-0.205724\pi\)
\(692\) 0 0
\(693\) 4.75733 0.180716
\(694\) 0 0
\(695\) 15.6862 0.595010
\(696\) 0 0
\(697\) 12.8310 + 33.8728i 0.486009 + 1.28302i
\(698\) 0 0
\(699\) −52.3430 −1.97979
\(700\) 0 0
\(701\) 16.1849 0.611296 0.305648 0.952145i \(-0.401127\pi\)
0.305648 + 0.952145i \(0.401127\pi\)
\(702\) 0 0
\(703\) 2.82843i 0.106676i
\(704\) 0 0
\(705\) 22.5241 0.848306
\(706\) 0 0
\(707\) −21.2319 −0.798508
\(708\) 0 0
\(709\) 50.5940i 1.90010i −0.312100 0.950049i \(-0.601032\pi\)
0.312100 0.950049i \(-0.398968\pi\)
\(710\) 0 0
\(711\) 56.5234i 2.11979i
\(712\) 0 0
\(713\) −51.9517 −1.94561
\(714\) 0 0
\(715\) 0.705168 0.0263718
\(716\) 0 0
\(717\) −45.5013 −1.69928
\(718\) 0 0
\(719\) 26.4543i 0.986579i −0.869865 0.493290i \(-0.835794\pi\)
0.869865 0.493290i \(-0.164206\pi\)
\(720\) 0 0
\(721\) 8.51945i 0.317281i
\(722\) 0 0
\(723\) 2.44075i 0.0907726i
\(724\) 0 0
\(725\) 33.3467i 1.23847i
\(726\) 0 0
\(727\) 13.4752i 0.499767i 0.968276 + 0.249884i \(0.0803924\pi\)
−0.968276 + 0.249884i \(0.919608\pi\)
\(728\) 0 0
\(729\) −18.4276 −0.682503
\(730\) 0 0
\(731\) 18.1458i 0.671146i
\(732\) 0 0
\(733\) 26.3526 0.973355 0.486677 0.873582i \(-0.338209\pi\)
0.486677 + 0.873582i \(0.338209\pi\)
\(734\) 0 0
\(735\) 9.38378i 0.346126i
\(736\) 0 0
\(737\) 1.46250 0.0538719
\(738\) 0 0
\(739\) 10.4155 0.383140 0.191570 0.981479i \(-0.438642\pi\)
0.191570 + 0.981479i \(0.438642\pi\)
\(740\) 0 0
\(741\) 22.9041i 0.841404i
\(742\) 0 0
\(743\) −30.4155 −1.11584 −0.557918 0.829896i \(-0.688400\pi\)
−0.557918 + 0.829896i \(0.688400\pi\)
\(744\) 0 0
\(745\) 4.25973i 0.156064i
\(746\) 0 0
\(747\) 99.1982 3.62947
\(748\) 0 0
\(749\) 14.5078i 0.530105i
\(750\) 0 0
\(751\) 52.6087i 1.91972i −0.280481 0.959860i \(-0.590494\pi\)
0.280481 0.959860i \(-0.409506\pi\)
\(752\) 0 0
\(753\) 76.1114i 2.77366i
\(754\) 0 0
\(755\) 13.9202i 0.506609i
\(756\) 0 0
\(757\) 26.5695i 0.965684i 0.875707 + 0.482842i \(0.160396\pi\)
−0.875707 + 0.482842i \(0.839604\pi\)
\(758\) 0 0
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) 26.7090 0.968201 0.484100 0.875012i \(-0.339147\pi\)
0.484100 + 0.875012i \(0.339147\pi\)
\(762\) 0 0
\(763\) 15.2078 0.550558
\(764\) 0 0
\(765\) 35.7381i 1.29211i
\(766\) 0 0
\(767\) 15.3515i 0.554311i
\(768\) 0 0
\(769\) 30.8310 1.11179 0.555897 0.831251i \(-0.312375\pi\)
0.555897 + 0.831251i \(0.312375\pi\)
\(770\) 0 0
\(771\) 8.00000 0.288113
\(772\) 0 0
\(773\) 13.7355i 0.494032i 0.969011 + 0.247016i \(0.0794499\pi\)
−0.969011 + 0.247016i \(0.920550\pi\)
\(774\) 0 0
\(775\) 30.3284 1.08943
\(776\) 0 0
\(777\) 5.42758 0.194713
\(778\) 0 0
\(779\) 7.20775 + 19.0279i 0.258244 + 0.681744i
\(780\) 0 0
\(781\) −2.29350 −0.0820680
\(782\) 0 0
\(783\) 103.198 3.68800
\(784\) 0 0
\(785\) 18.3677i 0.655571i
\(786\) 0 0
\(787\) 13.5845 0.484235 0.242118 0.970247i \(-0.422158\pi\)
0.242118 + 0.970247i \(0.422158\pi\)
\(788\) 0 0
\(789\) −69.8926 −2.48824
\(790\) 0 0
\(791\) 16.3830i 0.582511i
\(792\) 0 0
\(793\) 28.9609i 1.02843i
\(794\) 0 0
\(795\) −2.46383 −0.0873830
\(796\) 0 0
\(797\) −16.7198 −0.592244 −0.296122 0.955150i \(-0.595694\pi\)
−0.296122 + 0.955150i \(0.595694\pi\)
\(798\) 0 0
\(799\) 45.0482 1.59369
\(800\) 0 0
\(801\) 108.088i 3.81912i
\(802\) 0 0
\(803\) 4.22555i 0.149117i
\(804\) 0 0
\(805\) 12.3110i 0.433905i
\(806\) 0 0
\(807\) 73.6707i 2.59333i
\(808\) 0 0
\(809\) 34.7165i 1.22057i 0.792183 + 0.610283i \(0.208944\pi\)
−0.792183 + 0.610283i \(0.791056\pi\)
\(810\) 0 0
\(811\) 37.9758 1.33351 0.666756 0.745276i \(-0.267682\pi\)
0.666756 + 0.745276i \(0.267682\pi\)
\(812\) 0 0
\(813\) 22.9041i 0.803283i
\(814\) 0 0
\(815\) −0.391339 −0.0137080
\(816\) 0 0
\(817\) 10.1933i 0.356618i
\(818\) 0 0
\(819\) −30.8939 −1.07952
\(820\) 0 0
\(821\) −22.2306 −0.775853 −0.387926 0.921690i \(-0.626809\pi\)
−0.387926 + 0.921690i \(0.626809\pi\)
\(822\) 0 0
\(823\) 48.6599i 1.69618i 0.529855 + 0.848088i \(0.322246\pi\)
−0.529855 + 0.848088i \(0.677754\pi\)
\(824\) 0 0
\(825\) −4.67025 −0.162597
\(826\) 0 0
\(827\) 22.2781i 0.774687i 0.921936 + 0.387343i \(0.126607\pi\)
−0.921936 + 0.387343i \(0.873393\pi\)
\(828\) 0 0
\(829\) 46.1124 1.60155 0.800775 0.598965i \(-0.204421\pi\)
0.800775 + 0.598965i \(0.204421\pi\)
\(830\) 0 0
\(831\) 28.8719i 1.00155i
\(832\) 0 0
\(833\) 18.7676i 0.650257i
\(834\) 0 0
\(835\) 8.36213i 0.289383i
\(836\) 0 0
\(837\) 93.8574i 3.24418i
\(838\) 0 0
\(839\) 1.91894i 0.0662492i −0.999451 0.0331246i \(-0.989454\pi\)
0.999451 0.0331246i \(-0.0105458\pi\)
\(840\) 0 0
\(841\) −33.8068 −1.16575
\(842\) 0 0
\(843\) −56.3913 −1.94222
\(844\) 0 0
\(845\) 6.99176 0.240524
\(846\) 0 0
\(847\) 20.8742i 0.717247i
\(848\) 0 0
\(849\) 56.0016i 1.92197i
\(850\) 0 0
\(851\) 6.41550 0.219921
\(852\) 0 0
\(853\) 6.83100 0.233889 0.116945 0.993138i \(-0.462690\pi\)
0.116945 + 0.993138i \(0.462690\pi\)
\(854\) 0 0
\(855\) 20.0757i 0.686575i
\(856\) 0 0
\(857\) −11.2185 −0.383217 −0.191608 0.981471i \(-0.561370\pi\)
−0.191608 + 0.981471i \(0.561370\pi\)
\(858\) 0 0
\(859\) 14.8552 0.506852 0.253426 0.967355i \(-0.418443\pi\)
0.253426 + 0.967355i \(0.418443\pi\)
\(860\) 0 0
\(861\) 36.5133 13.8312i 1.24437 0.471368i
\(862\) 0 0
\(863\) −27.6474 −0.941129 −0.470564 0.882366i \(-0.655950\pi\)
−0.470564 + 0.882366i \(0.655950\pi\)
\(864\) 0 0
\(865\) 1.78017 0.0605275
\(866\) 0 0
\(867\) 47.6656i 1.61881i
\(868\) 0 0
\(869\) −2.78150 −0.0943558
\(870\) 0 0
\(871\) −9.49742 −0.321808
\(872\) 0 0
\(873\) 122.418i 4.14323i
\(874\) 0 0
\(875\) 15.7270i 0.531670i
\(876\) 0 0
\(877\) −9.59909 −0.324138 −0.162069 0.986779i \(-0.551817\pi\)
−0.162069 + 0.986779i \(0.551817\pi\)
\(878\) 0 0
\(879\) 5.23191 0.176468
\(880\) 0 0
\(881\) −7.09651 −0.239087 −0.119544 0.992829i \(-0.538143\pi\)
−0.119544 + 0.992829i \(0.538143\pi\)
\(882\) 0 0
\(883\) 5.97196i 0.200973i 0.994938 + 0.100486i \(0.0320399\pi\)
−0.994938 + 0.100486i \(0.967960\pi\)
\(884\) 0 0
\(885\) 19.1430i 0.643486i
\(886\) 0 0
\(887\) 2.81744i 0.0946003i −0.998881 0.0473002i \(-0.984938\pi\)
0.998881 0.0473002i \(-0.0150617\pi\)
\(888\) 0 0
\(889\) 17.6228i 0.591048i
\(890\) 0 0
\(891\) 7.01559i 0.235031i
\(892\) 0 0
\(893\) 25.3056 0.846819
\(894\) 0 0
\(895\) 3.72693i 0.124577i
\(896\) 0 0
\(897\) −51.9517 −1.73462
\(898\) 0 0
\(899\) 57.1220i 1.90512i
\(900\) 0 0
\(901\) −4.92766 −0.164164
\(902\) 0 0
\(903\) −19.5603 −0.650927
\(904\) 0 0
\(905\) 0.775347i 0.0257734i
\(906\) 0 0
\(907\) −6.85517 −0.227622 −0.113811 0.993502i \(-0.536306\pi\)
−0.113811 + 0.993502i \(0.536306\pi\)
\(908\) 0 0
\(909\) 78.5332i 2.60478i
\(910\) 0 0
\(911\) 9.88876 0.327629 0.163815 0.986491i \(-0.447620\pi\)
0.163815 + 0.986491i \(0.447620\pi\)
\(912\) 0 0
\(913\) 4.88151i 0.161554i
\(914\) 0 0
\(915\) 36.1136i 1.19388i
\(916\) 0 0
\(917\) 23.0273i 0.760428i
\(918\) 0 0
\(919\) 38.5092i 1.27030i 0.772388 + 0.635151i \(0.219062\pi\)
−0.772388 + 0.635151i \(0.780938\pi\)
\(920\) 0 0
\(921\) 101.533i 3.34563i
\(922\) 0 0
\(923\) 14.8939 0.490239
\(924\) 0 0
\(925\) −3.74525 −0.123143
\(926\) 0 0
\(927\) −31.5120 −1.03499
\(928\) 0 0
\(929\) 45.1865i 1.48252i −0.671218 0.741260i \(-0.734228\pi\)
0.671218 0.741260i \(-0.265772\pi\)
\(930\) 0 0
\(931\) 10.5426i 0.345519i
\(932\) 0 0
\(933\) 96.8563 3.17093
\(934\) 0 0
\(935\) 1.75866 0.0575143
\(936\) 0 0
\(937\) 7.12233i 0.232676i 0.993210 + 0.116338i \(0.0371156\pi\)
−0.993210 + 0.116338i \(0.962884\pi\)
\(938\) 0 0
\(939\) −34.3672 −1.12153
\(940\) 0 0
\(941\) 29.0723 0.947731 0.473866 0.880597i \(-0.342858\pi\)
0.473866 + 0.880597i \(0.342858\pi\)
\(942\) 0 0
\(943\) 43.1594 16.3488i 1.40546 0.532390i
\(944\) 0 0
\(945\) −22.2413 −0.723511
\(946\) 0 0
\(947\) −19.2078 −0.624168 −0.312084 0.950055i \(-0.601027\pi\)
−0.312084 + 0.950055i \(0.601027\pi\)
\(948\) 0 0
\(949\) 27.4406i 0.890759i
\(950\) 0 0
\(951\) −59.1594 −1.91838
\(952\) 0 0
\(953\) 21.8780 0.708698 0.354349 0.935113i \(-0.384702\pi\)
0.354349 + 0.935113i \(0.384702\pi\)
\(954\) 0 0
\(955\) 17.6813i 0.572154i
\(956\) 0 0
\(957\) 8.79617i 0.284340i
\(958\) 0 0
\(959\) −13.5362 −0.437106
\(960\) 0 0
\(961\) 20.9517 0.675860
\(962\) 0 0
\(963\) 53.6620 1.72923
\(964\) 0 0
\(965\) 2.79426i 0.0899503i
\(966\) 0 0
\(967\) 18.8127i 0.604976i 0.953153 + 0.302488i \(0.0978173\pi\)
−0.953153 + 0.302488i \(0.902183\pi\)
\(968\) 0 0
\(969\) 57.1220i 1.83502i
\(970\) 0 0
\(971\) 28.4458i 0.912870i 0.889757 + 0.456435i \(0.150874\pi\)
−0.889757 + 0.456435i \(0.849126\pi\)
\(972\) 0 0
\(973\) 33.8180i 1.08415i
\(974\) 0 0
\(975\) 30.3284 0.971287
\(976\) 0 0
\(977\) 15.9733i 0.511031i 0.966805 + 0.255516i \(0.0822452\pi\)
−0.966805 + 0.255516i \(0.917755\pi\)
\(978\) 0 0
\(979\) 5.31900 0.169996
\(980\) 0 0
\(981\) 56.2509i 1.79595i
\(982\) 0 0
\(983\) −18.9422 −0.604164 −0.302082 0.953282i \(-0.597682\pi\)
−0.302082 + 0.953282i \(0.597682\pi\)
\(984\) 0 0
\(985\) −12.1473 −0.387047
\(986\) 0 0
\(987\) 48.5599i 1.54568i
\(988\) 0 0
\(989\) −23.1207 −0.735195
\(990\) 0 0
\(991\) 16.9048i 0.536998i 0.963280 + 0.268499i \(0.0865275\pi\)
−0.963280 + 0.268499i \(0.913472\pi\)
\(992\) 0 0
\(993\) 9.98925 0.316999
\(994\) 0 0
\(995\) 11.1564i 0.353681i
\(996\) 0 0
\(997\) 26.7914i 0.848492i −0.905547 0.424246i \(-0.860539\pi\)
0.905547 0.424246i \(-0.139461\pi\)
\(998\) 0 0
\(999\) 11.5904i 0.366705i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2624.2.d.o.2049.6 6
4.3 odd 2 2624.2.d.n.2049.1 6
8.3 odd 2 656.2.d.f.81.6 6
8.5 even 2 328.2.d.b.81.1 6
24.5 odd 2 2952.2.j.c.2377.3 6
41.40 even 2 inner 2624.2.d.o.2049.1 6
164.163 odd 2 2624.2.d.n.2049.6 6
328.163 odd 2 656.2.d.f.81.1 6
328.245 even 2 328.2.d.b.81.6 yes 6
984.245 odd 2 2952.2.j.c.2377.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
328.2.d.b.81.1 6 8.5 even 2
328.2.d.b.81.6 yes 6 328.245 even 2
656.2.d.f.81.1 6 328.163 odd 2
656.2.d.f.81.6 6 8.3 odd 2
2624.2.d.n.2049.1 6 4.3 odd 2
2624.2.d.n.2049.6 6 164.163 odd 2
2624.2.d.o.2049.1 6 41.40 even 2 inner
2624.2.d.o.2049.6 6 1.1 even 1 trivial
2952.2.j.c.2377.3 6 24.5 odd 2
2952.2.j.c.2377.4 6 984.245 odd 2