Properties

Label 2-2952-41.40-c1-0-3
Degree $2$
Conductor $2952$
Sign $-0.935 - 0.354i$
Analytic cond. $23.5718$
Root an. cond. $4.85508$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.890·5-s + 1.91i·7-s + 0.349i·11-s + 2.26i·13-s + 5.65i·17-s + 3.17i·19-s − 7.20·23-s − 4.20·25-s − 7.92i·29-s − 7.20·31-s + 1.70i·35-s − 0.890·37-s + (−5.98 − 2.26i)41-s + 3.20·43-s − 7.96i·47-s + ⋯
L(s)  = 1  + 0.398·5-s + 0.725i·7-s + 0.105i·11-s + 0.629i·13-s + 1.37i·17-s + 0.729i·19-s − 1.50·23-s − 0.841·25-s − 1.47i·29-s − 1.29·31-s + 0.288i·35-s − 0.146·37-s + (−0.935 − 0.354i)41-s + 0.489·43-s − 1.16i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.935 - 0.354i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.935 - 0.354i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2952\)    =    \(2^{3} \cdot 3^{2} \cdot 41\)
Sign: $-0.935 - 0.354i$
Analytic conductor: \(23.5718\)
Root analytic conductor: \(4.85508\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2952} (2377, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2952,\ (\ :1/2),\ -0.935 - 0.354i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7854634316\)
\(L(\frac12)\) \(\approx\) \(0.7854634316\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
41 \( 1 + (5.98 + 2.26i)T \)
good5 \( 1 - 0.890T + 5T^{2} \)
7 \( 1 - 1.91iT - 7T^{2} \)
11 \( 1 - 0.349iT - 11T^{2} \)
13 \( 1 - 2.26iT - 13T^{2} \)
17 \( 1 - 5.65iT - 17T^{2} \)
19 \( 1 - 3.17iT - 19T^{2} \)
23 \( 1 + 7.20T + 23T^{2} \)
29 \( 1 + 7.92iT - 29T^{2} \)
31 \( 1 + 7.20T + 31T^{2} \)
37 \( 1 + 0.890T + 37T^{2} \)
43 \( 1 - 3.20T + 43T^{2} \)
47 \( 1 + 7.96iT - 47T^{2} \)
53 \( 1 + 0.871iT - 53T^{2} \)
59 \( 1 + 6.76T + 59T^{2} \)
61 \( 1 - 12.7T + 61T^{2} \)
67 \( 1 - 4.18iT - 67T^{2} \)
71 \( 1 + 6.56iT - 71T^{2} \)
73 \( 1 + 12.0T + 73T^{2} \)
79 \( 1 - 7.96iT - 79T^{2} \)
83 \( 1 + 13.9T + 83T^{2} \)
89 \( 1 - 15.2iT - 89T^{2} \)
97 \( 1 + 17.2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.018628342356152591065567183130, −8.360230863742309589234952538232, −7.71473183770833846216911557445, −6.68726931679487677071336597764, −5.84568090400824501686398782384, −5.59305949138896811668480204836, −4.20180086528257394120262454379, −3.70304200055388096047382611849, −2.21475311442167299123617915516, −1.78425118558934665123218212010, 0.22800433952503795983001679571, 1.54204429953375348672961925172, 2.69657860796741669079333152673, 3.58417996084018185879304346484, 4.52973174924530753480531140915, 5.36663213707048246970340656735, 6.05880272194766214941004324325, 7.12293951829014368176869008656, 7.46146973363950765501854814551, 8.438463012465333054676204362456

Graph of the $Z$-function along the critical line