Properties

Label 2952.1.et.b
Level $2952$
Weight $1$
Character orbit 2952.et
Analytic conductor $1.473$
Analytic rank $0$
Dimension $32$
Projective image $D_{120}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2952,1,Mod(11,2952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2952.11"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2952, base_ring=CyclotomicField(120)) chi = DirichletCharacter(H, H._module([60, 60, 20, 9])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2952 = 2^{3} \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2952.et (of order \(120\), degree \(32\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47323991729\)
Analytic rank: \(0\)
Dimension: \(32\)
Coefficient field: \(\Q(\zeta_{120})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + x^{28} - x^{20} - x^{16} - x^{12} + x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{120}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{120} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{120}^{29} q^{2} - \zeta_{120}^{44} q^{3} + \zeta_{120}^{58} q^{4} + \zeta_{120}^{13} q^{6} - \zeta_{120}^{27} q^{8} - \zeta_{120}^{28} q^{9} + ( - \zeta_{120}^{34} + \zeta_{120}^{15}) q^{11} + \cdots + ( - \zeta_{120}^{43} - \zeta_{120}^{2}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} + 4 q^{9} - 4 q^{16} - 4 q^{17} - 4 q^{22} - 8 q^{27} - 8 q^{34} + 4 q^{44} + 16 q^{48} - 4 q^{51} - 4 q^{66} + 16 q^{67} + 8 q^{76} + 4 q^{81} - 4 q^{82} + 8 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2952\mathbb{Z}\right)^\times\).

\(n\) \(1441\) \(1477\) \(2215\) \(2297\)
\(\chi(n)\) \(\zeta_{120}^{3}\) \(-1\) \(-1\) \(-\zeta_{120}^{40}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
−0.358368 0.933580i
0.0523360 + 0.998630i
0.933580 + 0.358368i
0.777146 0.629320i
−0.838671 + 0.544639i
0.629320 0.777146i
−0.838671 0.544639i
−0.998630 + 0.0523360i
−0.933580 + 0.358368i
−0.629320 + 0.777146i
0.544639 0.838671i
−0.629320 0.777146i
0.838671 0.544639i
−0.933580 0.358368i
0.629320 + 0.777146i
−0.544639 + 0.838671i
−0.0523360 + 0.998630i
0.544639 + 0.838671i
0.933580 0.358368i
0.777146 + 0.629320i
0.933580 + 0.358368i 0.913545 0.406737i 0.743145 + 0.669131i 0 0.998630 0.0523360i 0 0.453990 + 0.891007i 0.669131 0.743145i 0
227.1 0.998630 + 0.0523360i 0.669131 + 0.743145i 0.994522 + 0.104528i 0 0.629320 + 0.777146i 0 0.987688 + 0.156434i −0.104528 + 0.994522i 0
275.1 −0.358368 0.933580i 0.913545 + 0.406737i −0.743145 + 0.669131i 0 0.0523360 0.998630i 0 0.891007 + 0.453990i 0.669131 + 0.743145i 0
299.1 0.629320 0.777146i −0.104528 0.994522i −0.207912 0.978148i 0 −0.838671 0.544639i 0 −0.891007 0.453990i −0.978148 + 0.207912i 0
347.1 0.544639 0.838671i −0.978148 + 0.207912i −0.406737 0.913545i 0 −0.358368 + 0.933580i 0 −0.987688 0.156434i 0.913545 0.406737i 0
563.1 0.777146 0.629320i −0.104528 + 0.994522i 0.207912 0.978148i 0 0.544639 + 0.838671i 0 −0.453990 0.891007i −0.978148 0.207912i 0
587.1 0.544639 + 0.838671i −0.978148 0.207912i −0.406737 + 0.913545i 0 −0.358368 0.933580i 0 −0.987688 + 0.156434i 0.913545 + 0.406737i 0
731.1 −0.0523360 + 0.998630i 0.669131 + 0.743145i −0.994522 0.104528i 0 −0.777146 + 0.629320i 0 0.156434 0.987688i −0.104528 + 0.994522i 0
803.1 0.358368 0.933580i 0.913545 0.406737i −0.743145 0.669131i 0 −0.0523360 0.998630i 0 −0.891007 + 0.453990i 0.669131 0.743145i 0
995.1 −0.777146 + 0.629320i −0.104528 + 0.994522i 0.207912 0.978148i 0 −0.544639 0.838671i 0 0.453990 + 0.891007i −0.978148 0.207912i 0
1019.1 −0.838671 + 0.544639i −0.978148 0.207912i 0.406737 0.913545i 0 0.933580 0.358368i 0 0.156434 + 0.987688i 0.913545 + 0.406737i 0
1163.1 −0.777146 0.629320i −0.104528 0.994522i 0.207912 + 0.978148i 0 −0.544639 + 0.838671i 0 0.453990 0.891007i −0.978148 + 0.207912i 0
1211.1 −0.544639 + 0.838671i −0.978148 + 0.207912i −0.406737 0.913545i 0 0.358368 0.933580i 0 0.987688 + 0.156434i 0.913545 0.406737i 0
1283.1 0.358368 + 0.933580i 0.913545 + 0.406737i −0.743145 + 0.669131i 0 −0.0523360 + 0.998630i 0 −0.891007 0.453990i 0.669131 + 0.743145i 0
1379.1 0.777146 + 0.629320i −0.104528 0.994522i 0.207912 + 0.978148i 0 0.544639 0.838671i 0 −0.453990 + 0.891007i −0.978148 + 0.207912i 0
1523.1 0.838671 0.544639i −0.978148 0.207912i 0.406737 0.913545i 0 −0.933580 + 0.358368i 0 −0.156434 0.987688i 0.913545 + 0.406737i 0
1571.1 −0.998630 + 0.0523360i 0.669131 0.743145i 0.994522 0.104528i 0 −0.629320 + 0.777146i 0 −0.987688 + 0.156434i −0.104528 0.994522i 0
1715.1 −0.838671 0.544639i −0.978148 + 0.207912i 0.406737 + 0.913545i 0 0.933580 + 0.358368i 0 0.156434 0.987688i 0.913545 0.406737i 0
1739.1 −0.358368 + 0.933580i 0.913545 0.406737i −0.743145 0.669131i 0 0.0523360 + 0.998630i 0 0.891007 0.453990i 0.669131 0.743145i 0
1787.1 0.629320 + 0.777146i −0.104528 + 0.994522i −0.207912 + 0.978148i 0 −0.838671 + 0.544639i 0 −0.891007 + 0.453990i −0.978148 0.207912i 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
369.bf even 120 1 inner
2952.et odd 120 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2952.1.et.b yes 32
8.d odd 2 1 CM 2952.1.et.b yes 32
9.d odd 6 1 2952.1.et.a 32
41.h odd 40 1 2952.1.et.a 32
72.l even 6 1 2952.1.et.a 32
328.bd even 40 1 2952.1.et.a 32
369.bf even 120 1 inner 2952.1.et.b yes 32
2952.et odd 120 1 inner 2952.1.et.b yes 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2952.1.et.a 32 9.d odd 6 1
2952.1.et.a 32 41.h odd 40 1
2952.1.et.a 32 72.l even 6 1
2952.1.et.a 32 328.bd even 40 1
2952.1.et.b yes 32 1.a even 1 1 trivial
2952.1.et.b yes 32 8.d odd 2 1 CM
2952.1.et.b yes 32 369.bf even 120 1 inner
2952.1.et.b yes 32 2952.et odd 120 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{32} + 2 T_{11}^{30} + 4 T_{11}^{29} + 9 T_{11}^{28} + 24 T_{11}^{27} + 12 T_{11}^{26} + 16 T_{11}^{25} + \cdots + 1 \) acting on \(S_{1}^{\mathrm{new}}(2952, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{32} + T^{28} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{8} - T^{7} + T^{5} + \cdots + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{32} \) Copy content Toggle raw display
$7$ \( T^{32} \) Copy content Toggle raw display
$11$ \( T^{32} + 2 T^{30} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{32} \) Copy content Toggle raw display
$17$ \( T^{32} + 4 T^{31} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{32} - 8 T^{30} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{32} \) Copy content Toggle raw display
$29$ \( T^{32} \) Copy content Toggle raw display
$31$ \( T^{32} \) Copy content Toggle raw display
$37$ \( T^{32} \) Copy content Toggle raw display
$41$ \( T^{32} + T^{28} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{32} + 4 T^{28} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{32} \) Copy content Toggle raw display
$53$ \( T^{32} \) Copy content Toggle raw display
$59$ \( T^{32} + 4 T^{30} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{32} \) Copy content Toggle raw display
$67$ \( T^{32} - 16 T^{31} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{32} \) Copy content Toggle raw display
$73$ \( (T^{16} + 29 T^{12} + \cdots + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{32} \) Copy content Toggle raw display
$83$ \( (T^{8} - 3 T^{6} + 8 T^{4} + \cdots + 1)^{4} \) Copy content Toggle raw display
$89$ \( (T^{16} - 4 T^{15} + \cdots + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{32} + 2 T^{30} + \cdots + 1 \) Copy content Toggle raw display
show more
show less