L(s) = 1 | + (−0.358 + 0.933i)2-s + (0.913 − 0.406i)3-s + (−0.743 − 0.669i)4-s + (0.0523 + 0.998i)6-s + (0.891 − 0.453i)8-s + (0.669 − 0.743i)9-s + (−0.287 + 0.602i)11-s + (−0.951 − 0.309i)12-s + (0.104 + 0.994i)16-s + (0.169 − 0.198i)17-s + (0.453 + 0.891i)18-s + (0.321 + 1.33i)19-s + (−0.459 − 0.484i)22-s + (0.629 − 0.777i)24-s + (0.994 − 0.104i)25-s + ⋯ |
L(s) = 1 | + (−0.358 + 0.933i)2-s + (0.913 − 0.406i)3-s + (−0.743 − 0.669i)4-s + (0.0523 + 0.998i)6-s + (0.891 − 0.453i)8-s + (0.669 − 0.743i)9-s + (−0.287 + 0.602i)11-s + (−0.951 − 0.309i)12-s + (0.104 + 0.994i)16-s + (0.169 − 0.198i)17-s + (0.453 + 0.891i)18-s + (0.321 + 1.33i)19-s + (−0.459 − 0.484i)22-s + (0.629 − 0.777i)24-s + (0.994 − 0.104i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.773 - 0.633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.773 - 0.633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.375653937\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.375653937\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.358 - 0.933i)T \) |
| 3 | \( 1 + (-0.913 + 0.406i)T \) |
| 41 | \( 1 + (0.544 + 0.838i)T \) |
good | 5 | \( 1 + (-0.994 + 0.104i)T^{2} \) |
| 7 | \( 1 + (-0.544 + 0.838i)T^{2} \) |
| 11 | \( 1 + (0.287 - 0.602i)T + (-0.629 - 0.777i)T^{2} \) |
| 13 | \( 1 + (-0.838 + 0.544i)T^{2} \) |
| 17 | \( 1 + (-0.169 + 0.198i)T + (-0.156 - 0.987i)T^{2} \) |
| 19 | \( 1 + (-0.321 - 1.33i)T + (-0.891 + 0.453i)T^{2} \) |
| 23 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 29 | \( 1 + (-0.933 + 0.358i)T^{2} \) |
| 31 | \( 1 + (0.913 - 0.406i)T^{2} \) |
| 37 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + (-1.85 - 0.712i)T + (0.743 + 0.669i)T^{2} \) |
| 47 | \( 1 + (-0.998 + 0.0523i)T^{2} \) |
| 53 | \( 1 + (-0.156 + 0.987i)T^{2} \) |
| 59 | \( 1 + (-0.514 - 0.0541i)T + (0.978 + 0.207i)T^{2} \) |
| 61 | \( 1 + (0.207 + 0.978i)T^{2} \) |
| 67 | \( 1 + (0.487 + 1.02i)T + (-0.629 + 0.777i)T^{2} \) |
| 71 | \( 1 + (0.987 - 0.156i)T^{2} \) |
| 73 | \( 1 + (-0.147 - 0.147i)T + iT^{2} \) |
| 79 | \( 1 + (0.965 + 0.258i)T^{2} \) |
| 83 | \( 1 + (-0.535 - 0.309i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.0819 - 0.133i)T + (-0.453 - 0.891i)T^{2} \) |
| 97 | \( 1 + (1.19 + 0.821i)T + (0.358 + 0.933i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.840624025917929755866224850699, −8.164978728799631333872111285756, −7.53794894269517318169303359305, −7.00509712962532263742576863694, −6.16636194592206084237286764398, −5.30947391779002779041820256770, −4.36002795963090670337238113863, −3.52157413900317571331483272714, −2.29343878453337915113991364269, −1.18871372161720198984248935301,
1.14248791490428311065977906012, 2.48791409547179112261188044645, 2.97547504093640505292026304608, 3.90358073294986043720358556285, 4.68117474028701034402898684335, 5.48144813287258455282357173876, 6.89317881165319913420295345799, 7.64565898343604810873273555243, 8.353801214045532404193873132285, 9.025801876783799141758338253927