sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2952, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([60,60,20,99]))
pari:[g,chi] = znchar(Mod(1739,2952))
Modulus: | \(2952\) | |
Conductor: | \(2952\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(120\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2952}(11,\cdot)\)
\(\chi_{2952}(227,\cdot)\)
\(\chi_{2952}(275,\cdot)\)
\(\chi_{2952}(299,\cdot)\)
\(\chi_{2952}(347,\cdot)\)
\(\chi_{2952}(563,\cdot)\)
\(\chi_{2952}(587,\cdot)\)
\(\chi_{2952}(731,\cdot)\)
\(\chi_{2952}(803,\cdot)\)
\(\chi_{2952}(995,\cdot)\)
\(\chi_{2952}(1019,\cdot)\)
\(\chi_{2952}(1163,\cdot)\)
\(\chi_{2952}(1211,\cdot)\)
\(\chi_{2952}(1283,\cdot)\)
\(\chi_{2952}(1379,\cdot)\)
\(\chi_{2952}(1523,\cdot)\)
\(\chi_{2952}(1571,\cdot)\)
\(\chi_{2952}(1715,\cdot)\)
\(\chi_{2952}(1739,\cdot)\)
\(\chi_{2952}(1787,\cdot)\)
\(\chi_{2952}(1811,\cdot)\)
\(\chi_{2952}(1955,\cdot)\)
\(\chi_{2952}(2003,\cdot)\)
\(\chi_{2952}(2147,\cdot)\)
\(\chi_{2952}(2243,\cdot)\)
\(\chi_{2952}(2315,\cdot)\)
\(\chi_{2952}(2363,\cdot)\)
\(\chi_{2952}(2507,\cdot)\)
\(\chi_{2952}(2531,\cdot)\)
\(\chi_{2952}(2723,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2215,1477,2297,1441)\) → \((-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{33}{40}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 2952 }(1739, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{41}{120}\right)\) | \(e\left(\frac{77}{120}\right)\) | \(e\left(\frac{49}{120}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{53}{120}\right)\) | \(e\left(\frac{14}{15}\right)\) |
sage:chi.jacobi_sum(n)