Properties

Label 2952.1739
Modulus $2952$
Conductor $2952$
Order $120$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2952, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([60,60,20,99]))
 
Copy content pari:[g,chi] = znchar(Mod(1739,2952))
 

Basic properties

Modulus: \(2952\)
Conductor: \(2952\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(120\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2952.et

\(\chi_{2952}(11,\cdot)\) \(\chi_{2952}(227,\cdot)\) \(\chi_{2952}(275,\cdot)\) \(\chi_{2952}(299,\cdot)\) \(\chi_{2952}(347,\cdot)\) \(\chi_{2952}(563,\cdot)\) \(\chi_{2952}(587,\cdot)\) \(\chi_{2952}(731,\cdot)\) \(\chi_{2952}(803,\cdot)\) \(\chi_{2952}(995,\cdot)\) \(\chi_{2952}(1019,\cdot)\) \(\chi_{2952}(1163,\cdot)\) \(\chi_{2952}(1211,\cdot)\) \(\chi_{2952}(1283,\cdot)\) \(\chi_{2952}(1379,\cdot)\) \(\chi_{2952}(1523,\cdot)\) \(\chi_{2952}(1571,\cdot)\) \(\chi_{2952}(1715,\cdot)\) \(\chi_{2952}(1739,\cdot)\) \(\chi_{2952}(1787,\cdot)\) \(\chi_{2952}(1811,\cdot)\) \(\chi_{2952}(1955,\cdot)\) \(\chi_{2952}(2003,\cdot)\) \(\chi_{2952}(2147,\cdot)\) \(\chi_{2952}(2243,\cdot)\) \(\chi_{2952}(2315,\cdot)\) \(\chi_{2952}(2363,\cdot)\) \(\chi_{2952}(2507,\cdot)\) \(\chi_{2952}(2531,\cdot)\) \(\chi_{2952}(2723,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

\((2215,1477,2297,1441)\) → \((-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{33}{40}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 2952 }(1739, a) \) \(-1\)\(1\)\(e\left(\frac{29}{60}\right)\)\(e\left(\frac{41}{120}\right)\)\(e\left(\frac{77}{120}\right)\)\(e\left(\frac{49}{120}\right)\)\(e\left(\frac{29}{40}\right)\)\(e\left(\frac{17}{40}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{53}{120}\right)\)\(e\left(\frac{14}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2952 }(1739,a) \;\) at \(\;a = \) e.g. 2