L(s) = 1 | + (0.933 − 0.358i)2-s + (0.913 + 0.406i)3-s + (0.743 − 0.669i)4-s + (0.998 + 0.0523i)6-s + (0.453 − 0.891i)8-s + (0.669 + 0.743i)9-s + (0.287 − 0.811i)11-s + (0.951 − 0.309i)12-s + (0.104 − 0.994i)16-s + (−1.21 − 0.0955i)17-s + (0.891 + 0.453i)18-s + (−0.0273 − 0.0446i)19-s + (−0.0225 − 0.860i)22-s + (0.777 − 0.629i)24-s + (−0.994 − 0.104i)25-s + ⋯ |
L(s) = 1 | + (0.933 − 0.358i)2-s + (0.913 + 0.406i)3-s + (0.743 − 0.669i)4-s + (0.998 + 0.0523i)6-s + (0.453 − 0.891i)8-s + (0.669 + 0.743i)9-s + (0.287 − 0.811i)11-s + (0.951 − 0.309i)12-s + (0.104 − 0.994i)16-s + (−1.21 − 0.0955i)17-s + (0.891 + 0.453i)18-s + (−0.0273 − 0.0446i)19-s + (−0.0225 − 0.860i)22-s + (0.777 − 0.629i)24-s + (−0.994 − 0.104i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 + 0.474i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 + 0.474i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.986114499\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.986114499\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.933 + 0.358i)T \) |
| 3 | \( 1 + (-0.913 - 0.406i)T \) |
| 41 | \( 1 + (-0.838 - 0.544i)T \) |
good | 5 | \( 1 + (0.994 + 0.104i)T^{2} \) |
| 7 | \( 1 + (0.838 - 0.544i)T^{2} \) |
| 11 | \( 1 + (-0.287 + 0.811i)T + (-0.777 - 0.629i)T^{2} \) |
| 13 | \( 1 + (0.544 - 0.838i)T^{2} \) |
| 17 | \( 1 + (1.21 + 0.0955i)T + (0.987 + 0.156i)T^{2} \) |
| 19 | \( 1 + (0.0273 + 0.0446i)T + (-0.453 + 0.891i)T^{2} \) |
| 23 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 29 | \( 1 + (0.358 - 0.933i)T^{2} \) |
| 31 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 37 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + (-0.712 - 1.85i)T + (-0.743 + 0.669i)T^{2} \) |
| 47 | \( 1 + (-0.0523 + 0.998i)T^{2} \) |
| 53 | \( 1 + (0.987 - 0.156i)T^{2} \) |
| 59 | \( 1 + (1.92 - 0.201i)T + (0.978 - 0.207i)T^{2} \) |
| 61 | \( 1 + (-0.207 + 0.978i)T^{2} \) |
| 67 | \( 1 + (-0.656 - 1.85i)T + (-0.777 + 0.629i)T^{2} \) |
| 71 | \( 1 + (-0.156 + 0.987i)T^{2} \) |
| 73 | \( 1 + (0.147 + 0.147i)T + iT^{2} \) |
| 79 | \( 1 + (0.258 + 0.965i)T^{2} \) |
| 83 | \( 1 + (0.535 - 0.309i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.355 + 1.47i)T + (-0.891 - 0.453i)T^{2} \) |
| 97 | \( 1 + (-0.364 + 1.96i)T + (-0.933 - 0.358i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.015746157383436694759605243001, −8.102909383621672649297682003707, −7.37755836632747338609337417472, −6.41473970539453645985167831508, −5.77610278943638041012769083335, −4.60481533429088214537591982331, −4.21339630270190419281174245970, −3.21804089546975813887355590606, −2.57110475446162446467141004655, −1.50690902938799149640202000842,
1.83896618476731090923667401367, 2.41170674623195792307584619483, 3.57480825140419989576421428738, 4.16491054563240736345710336075, 4.99434333549766268383505419487, 6.11785831893479309330247928232, 6.73073440812393253748987807103, 7.43024835257664192192876229029, 7.994030575878359979760465831670, 8.888961074646940320641495164848