Properties

Label 294.2.a.f
Level 294
Weight 2
Character orbit 294.a
Self dual Yes
Analytic conductor 2.348
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 294.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(2.34760181943\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} - q^{10} + 5q^{11} + q^{12} - q^{15} + q^{16} + 4q^{17} + q^{18} - 8q^{19} - q^{20} + 5q^{22} - 4q^{23} + q^{24} - 4q^{25} + q^{27} - 5q^{29} - q^{30} - 3q^{31} + q^{32} + 5q^{33} + 4q^{34} + q^{36} - 4q^{37} - 8q^{38} - q^{40} + 2q^{43} + 5q^{44} - q^{45} - 4q^{46} + 6q^{47} + q^{48} - 4q^{50} + 4q^{51} - 9q^{53} + q^{54} - 5q^{55} - 8q^{57} - 5q^{58} + 11q^{59} - q^{60} + 6q^{61} - 3q^{62} + q^{64} + 5q^{66} - 2q^{67} + 4q^{68} - 4q^{69} + 2q^{71} + q^{72} - 10q^{73} - 4q^{74} - 4q^{75} - 8q^{76} + 3q^{79} - q^{80} + q^{81} + 7q^{83} - 4q^{85} + 2q^{86} - 5q^{87} + 5q^{88} + 6q^{89} - q^{90} - 4q^{92} - 3q^{93} + 6q^{94} + 8q^{95} + q^{96} - 7q^{97} + 5q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 −1.00000 1.00000 0 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(294))\).