Properties

Label 2925.2.a.bo.1.6
Level $2925$
Weight $2$
Character 2925.1
Self dual yes
Analytic conductor $23.356$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2925,2,Mod(1,2925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,4,0,0,10,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.12730624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} + 13x^{2} - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 585)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.43255\) of defining polynomial
Character \(\chi\) \(=\) 2925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.43255 q^{2} +3.91729 q^{4} +4.51056 q^{7} +4.66389 q^{8} +5.03230 q^{11} -1.00000 q^{13} +10.9721 q^{14} +3.51056 q^{16} -2.06414 q^{17} -2.81346 q^{19} +12.2413 q^{22} +4.04291 q^{23} -2.43255 q^{26} +17.6691 q^{28} -7.83457 q^{31} -0.788180 q^{32} -5.02112 q^{34} -6.34513 q^{37} -6.84387 q^{38} +1.47716 q^{41} +6.81346 q^{43} +19.7129 q^{44} +9.83457 q^{46} -9.07521 q^{47} +13.3451 q^{49} -3.91729 q^{52} -9.81556 q^{53} +21.0367 q^{56} -13.2035 q^{59} +8.34513 q^{61} -19.0580 q^{62} -8.93840 q^{64} +15.8346 q^{67} -8.08582 q^{68} +0.569614 q^{71} +0.373086 q^{73} -15.4348 q^{74} -11.0211 q^{76} +22.6985 q^{77} +6.13747 q^{79} +3.59327 q^{82} +0.654981 q^{83} +16.5741 q^{86} +23.4701 q^{88} -5.93985 q^{89} -4.51056 q^{91} +15.8372 q^{92} -22.0759 q^{94} +2.67599 q^{97} +32.4627 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{4} + 10 q^{7} - 6 q^{13} + 4 q^{16} - 12 q^{19} + 32 q^{22} + 28 q^{28} - 8 q^{31} + 4 q^{34} + 18 q^{37} + 36 q^{43} + 20 q^{46} + 24 q^{49} - 4 q^{52} - 6 q^{61} + 56 q^{67} + 12 q^{73} - 32 q^{76}+ \cdots + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.43255 1.72007 0.860035 0.510235i \(-0.170441\pi\)
0.860035 + 0.510235i \(0.170441\pi\)
\(3\) 0 0
\(4\) 3.91729 1.95864
\(5\) 0 0
\(6\) 0 0
\(7\) 4.51056 1.70483 0.852415 0.522865i \(-0.175137\pi\)
0.852415 + 0.522865i \(0.175137\pi\)
\(8\) 4.66389 1.64893
\(9\) 0 0
\(10\) 0 0
\(11\) 5.03230 1.51729 0.758647 0.651502i \(-0.225861\pi\)
0.758647 + 0.651502i \(0.225861\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 10.9721 2.93243
\(15\) 0 0
\(16\) 3.51056 0.877639
\(17\) −2.06414 −0.500627 −0.250314 0.968165i \(-0.580534\pi\)
−0.250314 + 0.968165i \(0.580534\pi\)
\(18\) 0 0
\(19\) −2.81346 −0.645451 −0.322726 0.946493i \(-0.604599\pi\)
−0.322726 + 0.946493i \(0.604599\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 12.2413 2.60985
\(23\) 4.04291 0.843005 0.421503 0.906827i \(-0.361503\pi\)
0.421503 + 0.906827i \(0.361503\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.43255 −0.477062
\(27\) 0 0
\(28\) 17.6691 3.33915
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −7.83457 −1.40713 −0.703565 0.710631i \(-0.748410\pi\)
−0.703565 + 0.710631i \(0.748410\pi\)
\(32\) −0.788180 −0.139332
\(33\) 0 0
\(34\) −5.02112 −0.861114
\(35\) 0 0
\(36\) 0 0
\(37\) −6.34513 −1.04313 −0.521566 0.853211i \(-0.674652\pi\)
−0.521566 + 0.853211i \(0.674652\pi\)
\(38\) −6.84387 −1.11022
\(39\) 0 0
\(40\) 0 0
\(41\) 1.47716 0.230694 0.115347 0.993325i \(-0.463202\pi\)
0.115347 + 0.993325i \(0.463202\pi\)
\(42\) 0 0
\(43\) 6.81346 1.03904 0.519521 0.854458i \(-0.326110\pi\)
0.519521 + 0.854458i \(0.326110\pi\)
\(44\) 19.7129 2.97184
\(45\) 0 0
\(46\) 9.83457 1.45003
\(47\) −9.07521 −1.32376 −0.661878 0.749612i \(-0.730240\pi\)
−0.661878 + 0.749612i \(0.730240\pi\)
\(48\) 0 0
\(49\) 13.3451 1.90645
\(50\) 0 0
\(51\) 0 0
\(52\) −3.91729 −0.543230
\(53\) −9.81556 −1.34827 −0.674135 0.738608i \(-0.735483\pi\)
−0.674135 + 0.738608i \(0.735483\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 21.0367 2.81115
\(57\) 0 0
\(58\) 0 0
\(59\) −13.2035 −1.71895 −0.859474 0.511180i \(-0.829209\pi\)
−0.859474 + 0.511180i \(0.829209\pi\)
\(60\) 0 0
\(61\) 8.34513 1.06848 0.534242 0.845331i \(-0.320597\pi\)
0.534242 + 0.845331i \(0.320597\pi\)
\(62\) −19.0580 −2.42036
\(63\) 0 0
\(64\) −8.93840 −1.11730
\(65\) 0 0
\(66\) 0 0
\(67\) 15.8346 1.93450 0.967250 0.253824i \(-0.0816884\pi\)
0.967250 + 0.253824i \(0.0816884\pi\)
\(68\) −8.08582 −0.980550
\(69\) 0 0
\(70\) 0 0
\(71\) 0.569614 0.0676008 0.0338004 0.999429i \(-0.489239\pi\)
0.0338004 + 0.999429i \(0.489239\pi\)
\(72\) 0 0
\(73\) 0.373086 0.0436664 0.0218332 0.999762i \(-0.493050\pi\)
0.0218332 + 0.999762i \(0.493050\pi\)
\(74\) −15.4348 −1.79426
\(75\) 0 0
\(76\) −11.0211 −1.26421
\(77\) 22.6985 2.58673
\(78\) 0 0
\(79\) 6.13747 0.690519 0.345260 0.938507i \(-0.387791\pi\)
0.345260 + 0.938507i \(0.387791\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.59327 0.396810
\(83\) 0.654981 0.0718935 0.0359467 0.999354i \(-0.488555\pi\)
0.0359467 + 0.999354i \(0.488555\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 16.5741 1.78723
\(87\) 0 0
\(88\) 23.4701 2.50192
\(89\) −5.93985 −0.629623 −0.314811 0.949154i \(-0.601941\pi\)
−0.314811 + 0.949154i \(0.601941\pi\)
\(90\) 0 0
\(91\) −4.51056 −0.472835
\(92\) 15.8372 1.65115
\(93\) 0 0
\(94\) −22.0759 −2.27695
\(95\) 0 0
\(96\) 0 0
\(97\) 2.67599 0.271705 0.135853 0.990729i \(-0.456623\pi\)
0.135853 + 0.990729i \(0.456623\pi\)
\(98\) 32.4627 3.27922
\(99\) 0 0
\(100\) 0 0
\(101\) 11.8797 1.18207 0.591037 0.806645i \(-0.298719\pi\)
0.591037 + 0.806645i \(0.298719\pi\)
\(102\) 0 0
\(103\) −2.20766 −0.217527 −0.108764 0.994068i \(-0.534689\pi\)
−0.108764 + 0.994068i \(0.534689\pi\)
\(104\) −4.66389 −0.457332
\(105\) 0 0
\(106\) −23.8768 −2.31912
\(107\) −10.1500 −0.981234 −0.490617 0.871375i \(-0.663229\pi\)
−0.490617 + 0.871375i \(0.663229\pi\)
\(108\) 0 0
\(109\) 0.373086 0.0357352 0.0178676 0.999840i \(-0.494312\pi\)
0.0178676 + 0.999840i \(0.494312\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 15.8346 1.49623
\(113\) 6.91187 0.650214 0.325107 0.945677i \(-0.394600\pi\)
0.325107 + 0.945677i \(0.394600\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −32.1181 −2.95671
\(119\) −9.31042 −0.853485
\(120\) 0 0
\(121\) 14.3240 1.30218
\(122\) 20.2999 1.83787
\(123\) 0 0
\(124\) −30.6903 −2.75607
\(125\) 0 0
\(126\) 0 0
\(127\) −3.66914 −0.325584 −0.162792 0.986660i \(-0.552050\pi\)
−0.162792 + 0.986660i \(0.552050\pi\)
\(128\) −20.1667 −1.78250
\(129\) 0 0
\(130\) 0 0
\(131\) −18.9900 −1.65916 −0.829580 0.558387i \(-0.811420\pi\)
−0.829580 + 0.558387i \(0.811420\pi\)
\(132\) 0 0
\(133\) −12.6903 −1.10039
\(134\) 38.5183 3.32748
\(135\) 0 0
\(136\) −9.62691 −0.825501
\(137\) 7.02843 0.600479 0.300240 0.953864i \(-0.402933\pi\)
0.300240 + 0.953864i \(0.402933\pi\)
\(138\) 0 0
\(139\) 18.9932 1.61098 0.805489 0.592610i \(-0.201903\pi\)
0.805489 + 0.592610i \(0.201903\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.38561 0.116278
\(143\) −5.03230 −0.420822
\(144\) 0 0
\(145\) 0 0
\(146\) 0.907550 0.0751094
\(147\) 0 0
\(148\) −24.8557 −2.04312
\(149\) −18.9588 −1.55316 −0.776581 0.630017i \(-0.783048\pi\)
−0.776581 + 0.630017i \(0.783048\pi\)
\(150\) 0 0
\(151\) −16.8557 −1.37170 −0.685848 0.727745i \(-0.740569\pi\)
−0.685848 + 0.727745i \(0.740569\pi\)
\(152\) −13.1216 −1.06431
\(153\) 0 0
\(154\) 55.2151 4.44936
\(155\) 0 0
\(156\) 0 0
\(157\) 9.02112 0.719963 0.359982 0.932959i \(-0.382783\pi\)
0.359982 + 0.932959i \(0.382783\pi\)
\(158\) 14.9297 1.18774
\(159\) 0 0
\(160\) 0 0
\(161\) 18.2358 1.43718
\(162\) 0 0
\(163\) 0.841414 0.0659046 0.0329523 0.999457i \(-0.489509\pi\)
0.0329523 + 0.999457i \(0.489509\pi\)
\(164\) 5.78647 0.451848
\(165\) 0 0
\(166\) 1.59327 0.123662
\(167\) 9.91475 0.767227 0.383613 0.923494i \(-0.374680\pi\)
0.383613 + 0.923494i \(0.374680\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 26.6903 2.03511
\(173\) −4.79709 −0.364716 −0.182358 0.983232i \(-0.558373\pi\)
−0.182358 + 0.983232i \(0.558373\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 17.6662 1.33164
\(177\) 0 0
\(178\) −14.4490 −1.08300
\(179\) 7.41701 0.554373 0.277187 0.960816i \(-0.410598\pi\)
0.277187 + 0.960816i \(0.410598\pi\)
\(180\) 0 0
\(181\) 3.69710 0.274803 0.137402 0.990515i \(-0.456125\pi\)
0.137402 + 0.990515i \(0.456125\pi\)
\(182\) −10.9721 −0.813309
\(183\) 0 0
\(184\) 18.8557 1.39006
\(185\) 0 0
\(186\) 0 0
\(187\) −10.3874 −0.759599
\(188\) −35.5502 −2.59276
\(189\) 0 0
\(190\) 0 0
\(191\) −8.55624 −0.619108 −0.309554 0.950882i \(-0.600180\pi\)
−0.309554 + 0.950882i \(0.600180\pi\)
\(192\) 0 0
\(193\) 15.3662 1.10609 0.553043 0.833153i \(-0.313466\pi\)
0.553043 + 0.833153i \(0.313466\pi\)
\(194\) 6.50946 0.467352
\(195\) 0 0
\(196\) 52.2767 3.73405
\(197\) 11.2927 0.804573 0.402286 0.915514i \(-0.368216\pi\)
0.402286 + 0.915514i \(0.368216\pi\)
\(198\) 0 0
\(199\) −17.8768 −1.26725 −0.633626 0.773639i \(-0.718434\pi\)
−0.633626 + 0.773639i \(0.718434\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 28.8979 2.03325
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −5.37023 −0.374162
\(207\) 0 0
\(208\) −3.51056 −0.243413
\(209\) −14.1582 −0.979340
\(210\) 0 0
\(211\) 15.8346 1.09010 0.545048 0.838405i \(-0.316511\pi\)
0.545048 + 0.838405i \(0.316511\pi\)
\(212\) −38.4503 −2.64078
\(213\) 0 0
\(214\) −24.6903 −1.68779
\(215\) 0 0
\(216\) 0 0
\(217\) −35.3383 −2.39892
\(218\) 0.907550 0.0614670
\(219\) 0 0
\(220\) 0 0
\(221\) 2.06414 0.138849
\(222\) 0 0
\(223\) −1.46149 −0.0978683 −0.0489342 0.998802i \(-0.515582\pi\)
−0.0489342 + 0.998802i \(0.515582\pi\)
\(224\) −3.55513 −0.237537
\(225\) 0 0
\(226\) 16.8135 1.11841
\(227\) −12.2279 −0.811596 −0.405798 0.913963i \(-0.633006\pi\)
−0.405798 + 0.913963i \(0.633006\pi\)
\(228\) 0 0
\(229\) −24.3172 −1.60692 −0.803462 0.595356i \(-0.797011\pi\)
−0.803462 + 0.595356i \(0.797011\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.9470 0.979214 0.489607 0.871943i \(-0.337140\pi\)
0.489607 + 0.871943i \(0.337140\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −51.7218 −3.36680
\(237\) 0 0
\(238\) −22.6480 −1.46805
\(239\) 9.49498 0.614179 0.307090 0.951681i \(-0.400645\pi\)
0.307090 + 0.951681i \(0.400645\pi\)
\(240\) 0 0
\(241\) −2.60580 −0.167854 −0.0839271 0.996472i \(-0.526746\pi\)
−0.0839271 + 0.996472i \(0.526746\pi\)
\(242\) 34.8438 2.23985
\(243\) 0 0
\(244\) 32.6903 2.09278
\(245\) 0 0
\(246\) 0 0
\(247\) 2.81346 0.179016
\(248\) −36.5396 −2.32027
\(249\) 0 0
\(250\) 0 0
\(251\) 1.50835 0.0952065 0.0476033 0.998866i \(-0.484842\pi\)
0.0476033 + 0.998866i \(0.484842\pi\)
\(252\) 0 0
\(253\) 20.3451 1.27909
\(254\) −8.92537 −0.560027
\(255\) 0 0
\(256\) −31.1797 −1.94873
\(257\) −7.41701 −0.462660 −0.231330 0.972875i \(-0.574308\pi\)
−0.231330 + 0.972875i \(0.574308\pi\)
\(258\) 0 0
\(259\) −28.6201 −1.77836
\(260\) 0 0
\(261\) 0 0
\(262\) −46.1940 −2.85387
\(263\) −22.7491 −1.40277 −0.701385 0.712782i \(-0.747435\pi\)
−0.701385 + 0.712782i \(0.747435\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −30.8697 −1.89274
\(267\) 0 0
\(268\) 62.0285 3.78900
\(269\) −8.92537 −0.544189 −0.272095 0.962271i \(-0.587716\pi\)
−0.272095 + 0.962271i \(0.587716\pi\)
\(270\) 0 0
\(271\) −8.16543 −0.496014 −0.248007 0.968758i \(-0.579776\pi\)
−0.248007 + 0.968758i \(0.579776\pi\)
\(272\) −7.24628 −0.439370
\(273\) 0 0
\(274\) 17.0970 1.03287
\(275\) 0 0
\(276\) 0 0
\(277\) 26.3172 1.58125 0.790623 0.612303i \(-0.209757\pi\)
0.790623 + 0.612303i \(0.209757\pi\)
\(278\) 46.2018 2.77100
\(279\) 0 0
\(280\) 0 0
\(281\) −19.7129 −1.17598 −0.587988 0.808870i \(-0.700080\pi\)
−0.587988 + 0.808870i \(0.700080\pi\)
\(282\) 0 0
\(283\) 27.0633 1.60875 0.804374 0.594123i \(-0.202501\pi\)
0.804374 + 0.594123i \(0.202501\pi\)
\(284\) 2.23134 0.132406
\(285\) 0 0
\(286\) −12.2413 −0.723843
\(287\) 6.66283 0.393295
\(288\) 0 0
\(289\) −12.7393 −0.749372
\(290\) 0 0
\(291\) 0 0
\(292\) 1.46149 0.0855270
\(293\) −4.87892 −0.285030 −0.142515 0.989793i \(-0.545519\pi\)
−0.142515 + 0.989793i \(0.545519\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −29.5930 −1.72006
\(297\) 0 0
\(298\) −46.1181 −2.67155
\(299\) −4.04291 −0.233808
\(300\) 0 0
\(301\) 30.7325 1.77139
\(302\) −41.0023 −2.35941
\(303\) 0 0
\(304\) −9.87680 −0.566473
\(305\) 0 0
\(306\) 0 0
\(307\) −12.7855 −0.729707 −0.364854 0.931065i \(-0.618881\pi\)
−0.364854 + 0.931065i \(0.618881\pi\)
\(308\) 88.9164 5.06648
\(309\) 0 0
\(310\) 0 0
\(311\) −27.5462 −1.56200 −0.781001 0.624530i \(-0.785291\pi\)
−0.781001 + 0.624530i \(0.785291\pi\)
\(312\) 0 0
\(313\) 31.2961 1.76896 0.884479 0.466580i \(-0.154514\pi\)
0.884479 + 0.466580i \(0.154514\pi\)
\(314\) 21.9443 1.23839
\(315\) 0 0
\(316\) 24.0422 1.35248
\(317\) 3.70498 0.208092 0.104046 0.994572i \(-0.466821\pi\)
0.104046 + 0.994572i \(0.466821\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 44.3594 2.47205
\(323\) 5.80737 0.323130
\(324\) 0 0
\(325\) 0 0
\(326\) 2.04678 0.113361
\(327\) 0 0
\(328\) 6.88933 0.380400
\(329\) −40.9342 −2.25678
\(330\) 0 0
\(331\) −16.5807 −0.911360 −0.455680 0.890144i \(-0.650604\pi\)
−0.455680 + 0.890144i \(0.650604\pi\)
\(332\) 2.56575 0.140814
\(333\) 0 0
\(334\) 24.1181 1.31968
\(335\) 0 0
\(336\) 0 0
\(337\) 4.04223 0.220194 0.110097 0.993921i \(-0.464884\pi\)
0.110097 + 0.993921i \(0.464884\pi\)
\(338\) 2.43255 0.132313
\(339\) 0 0
\(340\) 0 0
\(341\) −39.4259 −2.13503
\(342\) 0 0
\(343\) 28.6201 1.54534
\(344\) 31.7772 1.71331
\(345\) 0 0
\(346\) −11.6691 −0.627337
\(347\) −6.86123 −0.368330 −0.184165 0.982895i \(-0.558958\pi\)
−0.184165 + 0.982895i \(0.558958\pi\)
\(348\) 0 0
\(349\) 26.9652 1.44341 0.721707 0.692199i \(-0.243358\pi\)
0.721707 + 0.692199i \(0.243358\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.96636 −0.211408
\(353\) 13.4352 0.715082 0.357541 0.933898i \(-0.383615\pi\)
0.357541 + 0.933898i \(0.383615\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −23.2681 −1.23321
\(357\) 0 0
\(358\) 18.0422 0.953561
\(359\) −11.3884 −0.601056 −0.300528 0.953773i \(-0.597163\pi\)
−0.300528 + 0.953773i \(0.597163\pi\)
\(360\) 0 0
\(361\) −11.0845 −0.583393
\(362\) 8.99337 0.472681
\(363\) 0 0
\(364\) −17.6691 −0.926115
\(365\) 0 0
\(366\) 0 0
\(367\) −6.81346 −0.355660 −0.177830 0.984061i \(-0.556908\pi\)
−0.177830 + 0.984061i \(0.556908\pi\)
\(368\) 14.1929 0.739855
\(369\) 0 0
\(370\) 0 0
\(371\) −44.2736 −2.29857
\(372\) 0 0
\(373\) −9.39420 −0.486413 −0.243207 0.969974i \(-0.578199\pi\)
−0.243207 + 0.969974i \(0.578199\pi\)
\(374\) −25.2677 −1.30656
\(375\) 0 0
\(376\) −42.3258 −2.18278
\(377\) 0 0
\(378\) 0 0
\(379\) −29.8768 −1.53467 −0.767334 0.641247i \(-0.778417\pi\)
−0.767334 + 0.641247i \(0.778417\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −20.8135 −1.06491
\(383\) 1.65820 0.0847299 0.0423650 0.999102i \(-0.486511\pi\)
0.0423650 + 0.999102i \(0.486511\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 37.3791 1.90255
\(387\) 0 0
\(388\) 10.4826 0.532173
\(389\) −23.0835 −1.17038 −0.585190 0.810896i \(-0.698980\pi\)
−0.585190 + 0.810896i \(0.698980\pi\)
\(390\) 0 0
\(391\) −8.34513 −0.422031
\(392\) 62.2402 3.14360
\(393\) 0 0
\(394\) 27.4701 1.38392
\(395\) 0 0
\(396\) 0 0
\(397\) −7.09130 −0.355902 −0.177951 0.984039i \(-0.556947\pi\)
−0.177951 + 0.984039i \(0.556947\pi\)
\(398\) −43.4862 −2.17976
\(399\) 0 0
\(400\) 0 0
\(401\) 33.1010 1.65298 0.826492 0.562948i \(-0.190333\pi\)
0.826492 + 0.562948i \(0.190333\pi\)
\(402\) 0 0
\(403\) 7.83457 0.390268
\(404\) 46.5362 2.31526
\(405\) 0 0
\(406\) 0 0
\(407\) −31.9306 −1.58274
\(408\) 0 0
\(409\) −16.0422 −0.793237 −0.396619 0.917983i \(-0.629816\pi\)
−0.396619 + 0.917983i \(0.629816\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8.64803 −0.426058
\(413\) −59.5551 −2.93051
\(414\) 0 0
\(415\) 0 0
\(416\) 0.788180 0.0386437
\(417\) 0 0
\(418\) −34.4404 −1.68453
\(419\) 2.64758 0.129343 0.0646714 0.997907i \(-0.479400\pi\)
0.0646714 + 0.997907i \(0.479400\pi\)
\(420\) 0 0
\(421\) −29.0074 −1.41374 −0.706868 0.707346i \(-0.749892\pi\)
−0.706868 + 0.707346i \(0.749892\pi\)
\(422\) 38.5183 1.87504
\(423\) 0 0
\(424\) −45.7787 −2.22321
\(425\) 0 0
\(426\) 0 0
\(427\) 37.6412 1.82158
\(428\) −39.7603 −1.92189
\(429\) 0 0
\(430\) 0 0
\(431\) 17.2970 0.833169 0.416585 0.909097i \(-0.363227\pi\)
0.416585 + 0.909097i \(0.363227\pi\)
\(432\) 0 0
\(433\) −21.3383 −1.02545 −0.512726 0.858552i \(-0.671364\pi\)
−0.512726 + 0.858552i \(0.671364\pi\)
\(434\) −85.9621 −4.12631
\(435\) 0 0
\(436\) 1.46149 0.0699925
\(437\) −11.3746 −0.544119
\(438\) 0 0
\(439\) −0.675986 −0.0322630 −0.0161315 0.999870i \(-0.505135\pi\)
−0.0161315 + 0.999870i \(0.505135\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.02112 0.238830
\(443\) 11.6583 0.553903 0.276952 0.960884i \(-0.410676\pi\)
0.276952 + 0.960884i \(0.410676\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −3.55513 −0.168340
\(447\) 0 0
\(448\) −40.3172 −1.90481
\(449\) −2.98552 −0.140895 −0.0704477 0.997515i \(-0.522443\pi\)
−0.0704477 + 0.997515i \(0.522443\pi\)
\(450\) 0 0
\(451\) 7.43353 0.350031
\(452\) 27.0758 1.27354
\(453\) 0 0
\(454\) −29.7450 −1.39600
\(455\) 0 0
\(456\) 0 0
\(457\) 28.0565 1.31243 0.656214 0.754575i \(-0.272157\pi\)
0.656214 + 0.754575i \(0.272157\pi\)
\(458\) −59.1527 −2.76402
\(459\) 0 0
\(460\) 0 0
\(461\) 23.4215 1.09085 0.545423 0.838161i \(-0.316369\pi\)
0.545423 + 0.838161i \(0.316369\pi\)
\(462\) 0 0
\(463\) 4.51056 0.209623 0.104812 0.994492i \(-0.466576\pi\)
0.104812 + 0.994492i \(0.466576\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 36.3594 1.68432
\(467\) −24.3428 −1.12645 −0.563226 0.826303i \(-0.690440\pi\)
−0.563226 + 0.826303i \(0.690440\pi\)
\(468\) 0 0
\(469\) 71.4227 3.29800
\(470\) 0 0
\(471\) 0 0
\(472\) −61.5796 −2.83443
\(473\) 34.2873 1.57653
\(474\) 0 0
\(475\) 0 0
\(476\) −36.4716 −1.67167
\(477\) 0 0
\(478\) 23.0970 1.05643
\(479\) 16.9120 0.772729 0.386364 0.922346i \(-0.373731\pi\)
0.386364 + 0.922346i \(0.373731\pi\)
\(480\) 0 0
\(481\) 6.34513 0.289313
\(482\) −6.33873 −0.288721
\(483\) 0 0
\(484\) 56.1113 2.55051
\(485\) 0 0
\(486\) 0 0
\(487\) 31.5739 1.43075 0.715375 0.698741i \(-0.246256\pi\)
0.715375 + 0.698741i \(0.246256\pi\)
\(488\) 38.9208 1.76186
\(489\) 0 0
\(490\) 0 0
\(491\) −14.8340 −0.669450 −0.334725 0.942316i \(-0.608643\pi\)
−0.334725 + 0.942316i \(0.608643\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 6.84387 0.307920
\(495\) 0 0
\(496\) −27.5037 −1.23495
\(497\) 2.56928 0.115248
\(498\) 0 0
\(499\) 0.771227 0.0345248 0.0172624 0.999851i \(-0.494505\pi\)
0.0172624 + 0.999851i \(0.494505\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.66914 0.163762
\(503\) 41.5407 1.85221 0.926104 0.377269i \(-0.123137\pi\)
0.926104 + 0.377269i \(0.123137\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 49.4905 2.20012
\(507\) 0 0
\(508\) −14.3731 −0.637703
\(509\) 33.8552 1.50060 0.750302 0.661095i \(-0.229908\pi\)
0.750302 + 0.661095i \(0.229908\pi\)
\(510\) 0 0
\(511\) 1.68283 0.0744439
\(512\) −35.5127 −1.56945
\(513\) 0 0
\(514\) −18.0422 −0.795809
\(515\) 0 0
\(516\) 0 0
\(517\) −45.6691 −2.00853
\(518\) −69.6197 −3.05891
\(519\) 0 0
\(520\) 0 0
\(521\) −25.2677 −1.10700 −0.553500 0.832849i \(-0.686708\pi\)
−0.553500 + 0.832849i \(0.686708\pi\)
\(522\) 0 0
\(523\) 11.2288 0.491000 0.245500 0.969397i \(-0.421048\pi\)
0.245500 + 0.969397i \(0.421048\pi\)
\(524\) −74.3891 −3.24970
\(525\) 0 0
\(526\) −55.3383 −2.41286
\(527\) 16.1716 0.704448
\(528\) 0 0
\(529\) −6.65487 −0.289342
\(530\) 0 0
\(531\) 0 0
\(532\) −49.7114 −2.15526
\(533\) −1.47716 −0.0639831
\(534\) 0 0
\(535\) 0 0
\(536\) 73.8507 3.18986
\(537\) 0 0
\(538\) −21.7114 −0.936044
\(539\) 67.1567 2.89264
\(540\) 0 0
\(541\) 6.41532 0.275816 0.137908 0.990445i \(-0.455962\pi\)
0.137908 + 0.990445i \(0.455962\pi\)
\(542\) −19.8628 −0.853180
\(543\) 0 0
\(544\) 1.62691 0.0697533
\(545\) 0 0
\(546\) 0 0
\(547\) 24.8557 1.06275 0.531376 0.847136i \(-0.321675\pi\)
0.531376 + 0.847136i \(0.321675\pi\)
\(548\) 27.5324 1.17612
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 27.6834 1.17722
\(554\) 64.0178 2.71985
\(555\) 0 0
\(556\) 74.4016 3.15533
\(557\) −35.0450 −1.48491 −0.742453 0.669898i \(-0.766338\pi\)
−0.742453 + 0.669898i \(0.766338\pi\)
\(558\) 0 0
\(559\) −6.81346 −0.288179
\(560\) 0 0
\(561\) 0 0
\(562\) −47.9527 −2.02276
\(563\) 31.7598 1.33852 0.669259 0.743029i \(-0.266612\pi\)
0.669259 + 0.743029i \(0.266612\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 65.8329 2.76716
\(567\) 0 0
\(568\) 2.65662 0.111469
\(569\) −2.95433 −0.123852 −0.0619259 0.998081i \(-0.519724\pi\)
−0.0619259 + 0.998081i \(0.519724\pi\)
\(570\) 0 0
\(571\) −12.7855 −0.535057 −0.267528 0.963550i \(-0.586207\pi\)
−0.267528 + 0.963550i \(0.586207\pi\)
\(572\) −19.7129 −0.824240
\(573\) 0 0
\(574\) 16.2077 0.676495
\(575\) 0 0
\(576\) 0 0
\(577\) 10.0143 0.416900 0.208450 0.978033i \(-0.433158\pi\)
0.208450 + 0.978033i \(0.433158\pi\)
\(578\) −30.9890 −1.28897
\(579\) 0 0
\(580\) 0 0
\(581\) 2.95433 0.122566
\(582\) 0 0
\(583\) −49.3948 −2.04572
\(584\) 1.74003 0.0720031
\(585\) 0 0
\(586\) −11.8682 −0.490271
\(587\) 17.9659 0.741530 0.370765 0.928727i \(-0.379096\pi\)
0.370765 + 0.928727i \(0.379096\pi\)
\(588\) 0 0
\(589\) 22.0422 0.908234
\(590\) 0 0
\(591\) 0 0
\(592\) −22.2749 −0.915494
\(593\) 6.18889 0.254147 0.127074 0.991893i \(-0.459442\pi\)
0.127074 + 0.991893i \(0.459442\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −74.2669 −3.04209
\(597\) 0 0
\(598\) −9.83457 −0.402166
\(599\) −37.6108 −1.53674 −0.768368 0.640009i \(-0.778931\pi\)
−0.768368 + 0.640009i \(0.778931\pi\)
\(600\) 0 0
\(601\) 7.32401 0.298753 0.149376 0.988780i \(-0.452273\pi\)
0.149376 + 0.988780i \(0.452273\pi\)
\(602\) 74.7582 3.04692
\(603\) 0 0
\(604\) −66.0285 −2.68666
\(605\) 0 0
\(606\) 0 0
\(607\) 18.7575 0.761345 0.380673 0.924710i \(-0.375692\pi\)
0.380673 + 0.924710i \(0.375692\pi\)
\(608\) 2.21751 0.0899320
\(609\) 0 0
\(610\) 0 0
\(611\) 9.07521 0.367144
\(612\) 0 0
\(613\) −1.73933 −0.0702509 −0.0351255 0.999383i \(-0.511183\pi\)
−0.0351255 + 0.999383i \(0.511183\pi\)
\(614\) −31.1013 −1.25515
\(615\) 0 0
\(616\) 105.863 4.26535
\(617\) −1.39180 −0.0560317 −0.0280158 0.999607i \(-0.508919\pi\)
−0.0280158 + 0.999607i \(0.508919\pi\)
\(618\) 0 0
\(619\) 14.2077 0.571054 0.285527 0.958371i \(-0.407831\pi\)
0.285527 + 0.958371i \(0.407831\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −67.0074 −2.68675
\(623\) −26.7920 −1.07340
\(624\) 0 0
\(625\) 0 0
\(626\) 76.1291 3.04273
\(627\) 0 0
\(628\) 35.3383 1.41015
\(629\) 13.0972 0.522221
\(630\) 0 0
\(631\) −35.2288 −1.40244 −0.701218 0.712947i \(-0.747360\pi\)
−0.701218 + 0.712947i \(0.747360\pi\)
\(632\) 28.6245 1.13862
\(633\) 0 0
\(634\) 9.01253 0.357933
\(635\) 0 0
\(636\) 0 0
\(637\) −13.3451 −0.528753
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −35.7957 −1.41384 −0.706922 0.707291i \(-0.749917\pi\)
−0.706922 + 0.707291i \(0.749917\pi\)
\(642\) 0 0
\(643\) 21.8066 0.859969 0.429984 0.902836i \(-0.358519\pi\)
0.429984 + 0.902836i \(0.358519\pi\)
\(644\) 71.4348 2.81492
\(645\) 0 0
\(646\) 14.1267 0.555807
\(647\) −27.4608 −1.07960 −0.539798 0.841794i \(-0.681500\pi\)
−0.539798 + 0.841794i \(0.681500\pi\)
\(648\) 0 0
\(649\) −66.4439 −2.60815
\(650\) 0 0
\(651\) 0 0
\(652\) 3.29606 0.129084
\(653\) 1.34468 0.0526215 0.0263107 0.999654i \(-0.491624\pi\)
0.0263107 + 0.999654i \(0.491624\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5.18567 0.202466
\(657\) 0 0
\(658\) −99.5745 −3.88182
\(659\) 24.8986 0.969912 0.484956 0.874538i \(-0.338836\pi\)
0.484956 + 0.874538i \(0.338836\pi\)
\(660\) 0 0
\(661\) 22.3594 0.869680 0.434840 0.900508i \(-0.356805\pi\)
0.434840 + 0.900508i \(0.356805\pi\)
\(662\) −40.3334 −1.56760
\(663\) 0 0
\(664\) 3.05476 0.118548
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 38.8389 1.50272
\(669\) 0 0
\(670\) 0 0
\(671\) 41.9952 1.62121
\(672\) 0 0
\(673\) −48.7747 −1.88013 −0.940064 0.340999i \(-0.889235\pi\)
−0.940064 + 0.340999i \(0.889235\pi\)
\(674\) 9.83292 0.378750
\(675\) 0 0
\(676\) 3.91729 0.150665
\(677\) 21.1901 0.814402 0.407201 0.913339i \(-0.366505\pi\)
0.407201 + 0.913339i \(0.366505\pi\)
\(678\) 0 0
\(679\) 12.0702 0.463211
\(680\) 0 0
\(681\) 0 0
\(682\) −95.9053 −3.67241
\(683\) 26.0517 0.996840 0.498420 0.866936i \(-0.333914\pi\)
0.498420 + 0.866936i \(0.333914\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 69.6197 2.65809
\(687\) 0 0
\(688\) 23.9190 0.911905
\(689\) 9.81556 0.373943
\(690\) 0 0
\(691\) 19.8346 0.754543 0.377271 0.926103i \(-0.376862\pi\)
0.377271 + 0.926103i \(0.376862\pi\)
\(692\) −18.7916 −0.714348
\(693\) 0 0
\(694\) −16.6903 −0.633554
\(695\) 0 0
\(696\) 0 0
\(697\) −3.04907 −0.115492
\(698\) 65.5941 2.48277
\(699\) 0 0
\(700\) 0 0
\(701\) 50.6297 1.91226 0.956129 0.292946i \(-0.0946356\pi\)
0.956129 + 0.292946i \(0.0946356\pi\)
\(702\) 0 0
\(703\) 17.8517 0.673291
\(704\) −44.9807 −1.69527
\(705\) 0 0
\(706\) 32.6817 1.22999
\(707\) 53.5840 2.01524
\(708\) 0 0
\(709\) 47.1056 1.76909 0.884544 0.466458i \(-0.154470\pi\)
0.884544 + 0.466458i \(0.154470\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −27.7028 −1.03821
\(713\) −31.6745 −1.18622
\(714\) 0 0
\(715\) 0 0
\(716\) 29.0546 1.08582
\(717\) 0 0
\(718\) −27.7028 −1.03386
\(719\) −10.4337 −0.389112 −0.194556 0.980891i \(-0.562327\pi\)
−0.194556 + 0.980891i \(0.562327\pi\)
\(720\) 0 0
\(721\) −9.95777 −0.370847
\(722\) −26.9635 −1.00348
\(723\) 0 0
\(724\) 14.4826 0.538242
\(725\) 0 0
\(726\) 0 0
\(727\) −3.66914 −0.136081 −0.0680405 0.997683i \(-0.521675\pi\)
−0.0680405 + 0.997683i \(0.521675\pi\)
\(728\) −21.0367 −0.779673
\(729\) 0 0
\(730\) 0 0
\(731\) −14.0639 −0.520173
\(732\) 0 0
\(733\) −15.5567 −0.574601 −0.287300 0.957841i \(-0.592758\pi\)
−0.287300 + 0.957841i \(0.592758\pi\)
\(734\) −16.5741 −0.611760
\(735\) 0 0
\(736\) −3.18654 −0.117458
\(737\) 79.6843 2.93521
\(738\) 0 0
\(739\) 13.5459 0.498296 0.249148 0.968465i \(-0.419849\pi\)
0.249148 + 0.968465i \(0.419849\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −107.698 −3.95371
\(743\) 6.08616 0.223280 0.111640 0.993749i \(-0.464390\pi\)
0.111640 + 0.993749i \(0.464390\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −22.8518 −0.836665
\(747\) 0 0
\(748\) −40.6903 −1.48778
\(749\) −45.7820 −1.67284
\(750\) 0 0
\(751\) 20.0702 0.732372 0.366186 0.930542i \(-0.380663\pi\)
0.366186 + 0.930542i \(0.380663\pi\)
\(752\) −31.8590 −1.16178
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −9.39420 −0.341438 −0.170719 0.985320i \(-0.554609\pi\)
−0.170719 + 0.985320i \(0.554609\pi\)
\(758\) −72.6767 −2.63974
\(759\) 0 0
\(760\) 0 0
\(761\) −8.50912 −0.308456 −0.154228 0.988035i \(-0.549289\pi\)
−0.154228 + 0.988035i \(0.549289\pi\)
\(762\) 0 0
\(763\) 1.68283 0.0609224
\(764\) −33.5172 −1.21261
\(765\) 0 0
\(766\) 4.03364 0.145741
\(767\) 13.2035 0.476750
\(768\) 0 0
\(769\) −32.6480 −1.17732 −0.588659 0.808381i \(-0.700344\pi\)
−0.588659 + 0.808381i \(0.700344\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 60.1940 2.16643
\(773\) −7.66252 −0.275602 −0.137801 0.990460i \(-0.544003\pi\)
−0.137801 + 0.990460i \(0.544003\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 12.4805 0.448024
\(777\) 0 0
\(778\) −56.1517 −2.01314
\(779\) −4.15594 −0.148902
\(780\) 0 0
\(781\) 2.86647 0.102570
\(782\) −20.2999 −0.725924
\(783\) 0 0
\(784\) 46.8488 1.67317
\(785\) 0 0
\(786\) 0 0
\(787\) −41.2151 −1.46916 −0.734580 0.678522i \(-0.762621\pi\)
−0.734580 + 0.678522i \(0.762621\pi\)
\(788\) 44.2368 1.57587
\(789\) 0 0
\(790\) 0 0
\(791\) 31.1764 1.10851
\(792\) 0 0
\(793\) −8.34513 −0.296344
\(794\) −17.2499 −0.612177
\(795\) 0 0
\(796\) −70.0285 −2.48210
\(797\) −8.47087 −0.300054 −0.150027 0.988682i \(-0.547936\pi\)
−0.150027 + 0.988682i \(0.547936\pi\)
\(798\) 0 0
\(799\) 18.7325 0.662708
\(800\) 0 0
\(801\) 0 0
\(802\) 80.5197 2.84325
\(803\) 1.87748 0.0662549
\(804\) 0 0
\(805\) 0 0
\(806\) 19.0580 0.671288
\(807\) 0 0
\(808\) 55.4056 1.94916
\(809\) 47.6754 1.67618 0.838089 0.545534i \(-0.183673\pi\)
0.838089 + 0.545534i \(0.183673\pi\)
\(810\) 0 0
\(811\) 21.5174 0.755578 0.377789 0.925892i \(-0.376684\pi\)
0.377789 + 0.925892i \(0.376684\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −77.6726 −2.72242
\(815\) 0 0
\(816\) 0 0
\(817\) −19.1694 −0.670651
\(818\) −39.0235 −1.36442
\(819\) 0 0
\(820\) 0 0
\(821\) −10.7093 −0.373756 −0.186878 0.982383i \(-0.559837\pi\)
−0.186878 + 0.982383i \(0.559837\pi\)
\(822\) 0 0
\(823\) −3.89049 −0.135614 −0.0678069 0.997698i \(-0.521600\pi\)
−0.0678069 + 0.997698i \(0.521600\pi\)
\(824\) −10.2963 −0.358688
\(825\) 0 0
\(826\) −144.871 −5.04069
\(827\) −38.6072 −1.34251 −0.671253 0.741229i \(-0.734243\pi\)
−0.671253 + 0.741229i \(0.734243\pi\)
\(828\) 0 0
\(829\) −20.6903 −0.718602 −0.359301 0.933222i \(-0.616985\pi\)
−0.359301 + 0.933222i \(0.616985\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.93840 0.309883
\(833\) −27.5462 −0.954419
\(834\) 0 0
\(835\) 0 0
\(836\) −55.4615 −1.91818
\(837\) 0 0
\(838\) 6.44037 0.222479
\(839\) 9.49498 0.327803 0.163902 0.986477i \(-0.447592\pi\)
0.163902 + 0.986477i \(0.447592\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −70.5619 −2.43173
\(843\) 0 0
\(844\) 62.0285 2.13511
\(845\) 0 0
\(846\) 0 0
\(847\) 64.6093 2.22000
\(848\) −34.4581 −1.18330
\(849\) 0 0
\(850\) 0 0
\(851\) −25.6528 −0.879366
\(852\) 0 0
\(853\) 24.3874 0.835007 0.417504 0.908675i \(-0.362905\pi\)
0.417504 + 0.908675i \(0.362905\pi\)
\(854\) 91.5640 3.13325
\(855\) 0 0
\(856\) −47.3383 −1.61799
\(857\) 28.1020 0.959945 0.479973 0.877283i \(-0.340647\pi\)
0.479973 + 0.877283i \(0.340647\pi\)
\(858\) 0 0
\(859\) 39.1586 1.33607 0.668037 0.744128i \(-0.267135\pi\)
0.668037 + 0.744128i \(0.267135\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 42.0759 1.43311
\(863\) −6.62602 −0.225552 −0.112776 0.993620i \(-0.535974\pi\)
−0.112776 + 0.993620i \(0.535974\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −51.9064 −1.76385
\(867\) 0 0
\(868\) −138.430 −4.69863
\(869\) 30.8856 1.04772
\(870\) 0 0
\(871\) −15.8346 −0.536534
\(872\) 1.74003 0.0589250
\(873\) 0 0
\(874\) −27.6691 −0.935923
\(875\) 0 0
\(876\) 0 0
\(877\) 21.3383 0.720543 0.360271 0.932848i \(-0.382684\pi\)
0.360271 + 0.932848i \(0.382684\pi\)
\(878\) −1.64437 −0.0554947
\(879\) 0 0
\(880\) 0 0
\(881\) 49.1214 1.65494 0.827470 0.561509i \(-0.189779\pi\)
0.827470 + 0.561509i \(0.189779\pi\)
\(882\) 0 0
\(883\) 6.28863 0.211629 0.105815 0.994386i \(-0.466255\pi\)
0.105815 + 0.994386i \(0.466255\pi\)
\(884\) 8.08582 0.271956
\(885\) 0 0
\(886\) 28.3594 0.952753
\(887\) 42.4932 1.42678 0.713392 0.700765i \(-0.247158\pi\)
0.713392 + 0.700765i \(0.247158\pi\)
\(888\) 0 0
\(889\) −16.5499 −0.555065
\(890\) 0 0
\(891\) 0 0
\(892\) −5.72506 −0.191689
\(893\) 25.5327 0.854419
\(894\) 0 0
\(895\) 0 0
\(896\) −90.9632 −3.03887
\(897\) 0 0
\(898\) −7.26242 −0.242350
\(899\) 0 0
\(900\) 0 0
\(901\) 20.2607 0.674981
\(902\) 18.0824 0.602078
\(903\) 0 0
\(904\) 32.2362 1.07216
\(905\) 0 0
\(906\) 0 0
\(907\) 43.6132 1.44815 0.724077 0.689719i \(-0.242266\pi\)
0.724077 + 0.689719i \(0.242266\pi\)
\(908\) −47.9003 −1.58963
\(909\) 0 0
\(910\) 0 0
\(911\) 10.0646 0.333455 0.166727 0.986003i \(-0.446680\pi\)
0.166727 + 0.986003i \(0.446680\pi\)
\(912\) 0 0
\(913\) 3.29606 0.109084
\(914\) 68.2488 2.25747
\(915\) 0 0
\(916\) −95.2573 −3.14739
\(917\) −85.6553 −2.82859
\(918\) 0 0
\(919\) 17.3913 0.573686 0.286843 0.957978i \(-0.407394\pi\)
0.286843 + 0.957978i \(0.407394\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 56.9738 1.87633
\(923\) −0.569614 −0.0187491
\(924\) 0 0
\(925\) 0 0
\(926\) 10.9721 0.360567
\(927\) 0 0
\(928\) 0 0
\(929\) −19.3279 −0.634128 −0.317064 0.948404i \(-0.602697\pi\)
−0.317064 + 0.948404i \(0.602697\pi\)
\(930\) 0 0
\(931\) −37.5459 −1.23052
\(932\) 58.5519 1.91793
\(933\) 0 0
\(934\) −59.2151 −1.93758
\(935\) 0 0
\(936\) 0 0
\(937\) −15.9863 −0.522250 −0.261125 0.965305i \(-0.584094\pi\)
−0.261125 + 0.965305i \(0.584094\pi\)
\(938\) 173.739 5.67279
\(939\) 0 0
\(940\) 0 0
\(941\) 16.0044 0.521730 0.260865 0.965375i \(-0.415992\pi\)
0.260865 + 0.965375i \(0.415992\pi\)
\(942\) 0 0
\(943\) 5.97204 0.194476
\(944\) −46.3516 −1.50862
\(945\) 0 0
\(946\) 83.4056 2.71175
\(947\) −46.0519 −1.49649 −0.748243 0.663425i \(-0.769102\pi\)
−0.748243 + 0.663425i \(0.769102\pi\)
\(948\) 0 0
\(949\) −0.373086 −0.0121109
\(950\) 0 0
\(951\) 0 0
\(952\) −43.4227 −1.40734
\(953\) 50.7498 1.64395 0.821974 0.569525i \(-0.192873\pi\)
0.821974 + 0.569525i \(0.192873\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 37.1946 1.20296
\(957\) 0 0
\(958\) 41.1392 1.32915
\(959\) 31.7021 1.02372
\(960\) 0 0
\(961\) 30.3805 0.980017
\(962\) 15.4348 0.497639
\(963\) 0 0
\(964\) −10.2077 −0.328767
\(965\) 0 0
\(966\) 0 0
\(967\) −15.0884 −0.485210 −0.242605 0.970125i \(-0.578002\pi\)
−0.242605 + 0.970125i \(0.578002\pi\)
\(968\) 66.8056 2.14721
\(969\) 0 0
\(970\) 0 0
\(971\) 30.1938 0.968965 0.484482 0.874801i \(-0.339008\pi\)
0.484482 + 0.874801i \(0.339008\pi\)
\(972\) 0 0
\(973\) 85.6697 2.74645
\(974\) 76.8050 2.46099
\(975\) 0 0
\(976\) 29.2961 0.937744
\(977\) −23.3637 −0.747472 −0.373736 0.927535i \(-0.621923\pi\)
−0.373736 + 0.927535i \(0.621923\pi\)
\(978\) 0 0
\(979\) −29.8911 −0.955323
\(980\) 0 0
\(981\) 0 0
\(982\) −36.0845 −1.15150
\(983\) 25.3899 0.809813 0.404906 0.914358i \(-0.367304\pi\)
0.404906 + 0.914358i \(0.367304\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 11.0211 0.350628
\(989\) 27.5462 0.875918
\(990\) 0 0
\(991\) 1.69710 0.0539102 0.0269551 0.999637i \(-0.491419\pi\)
0.0269551 + 0.999637i \(0.491419\pi\)
\(992\) 6.17506 0.196058
\(993\) 0 0
\(994\) 6.24989 0.198234
\(995\) 0 0
\(996\) 0 0
\(997\) −31.6691 −1.00297 −0.501486 0.865166i \(-0.667213\pi\)
−0.501486 + 0.865166i \(0.667213\pi\)
\(998\) 1.87605 0.0593852
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2925.2.a.bo.1.6 6
3.2 odd 2 inner 2925.2.a.bo.1.1 6
5.2 odd 4 585.2.c.d.469.12 yes 12
5.3 odd 4 585.2.c.d.469.2 yes 12
5.4 even 2 2925.2.a.bn.1.1 6
15.2 even 4 585.2.c.d.469.1 12
15.8 even 4 585.2.c.d.469.11 yes 12
15.14 odd 2 2925.2.a.bn.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
585.2.c.d.469.1 12 15.2 even 4
585.2.c.d.469.2 yes 12 5.3 odd 4
585.2.c.d.469.11 yes 12 15.8 even 4
585.2.c.d.469.12 yes 12 5.2 odd 4
2925.2.a.bn.1.1 6 5.4 even 2
2925.2.a.bn.1.6 6 15.14 odd 2
2925.2.a.bo.1.1 6 3.2 odd 2 inner
2925.2.a.bo.1.6 6 1.1 even 1 trivial