Properties

Label 585.2.c.d.469.12
Level $585$
Weight $2$
Character 585.469
Analytic conductor $4.671$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(469,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 9x^{8} - 16x^{6} + 36x^{4} - 64x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.12
Root \(0.721581 + 1.21627i\) of defining polynomial
Character \(\chi\) \(=\) 585.469
Dual form 585.2.c.d.469.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.43255i q^{2} -3.91729 q^{4} +(1.11567 + 1.93785i) q^{5} +4.51056i q^{7} -4.66389i q^{8} +(-4.71392 + 2.71392i) q^{10} +5.03230 q^{11} +1.00000i q^{13} -10.9721 q^{14} +3.51056 q^{16} -2.06414i q^{17} +2.81346 q^{19} +(-4.37040 - 7.59113i) q^{20} +12.2413i q^{22} -4.04291i q^{23} +(-2.51056 + 4.32401i) q^{25} -2.43255 q^{26} -17.6691i q^{28} -7.83457 q^{31} -0.788180i q^{32} +5.02112 q^{34} +(-8.74080 + 5.03230i) q^{35} -6.34513i q^{37} +6.84387i q^{38} +(9.03794 - 5.20336i) q^{40} +1.47716 q^{41} -6.81346i q^{43} -19.7129 q^{44} +9.83457 q^{46} -9.07521i q^{47} -13.3451 q^{49} +(-10.5184 - 6.10705i) q^{50} -3.91729i q^{52} +9.81556i q^{53} +(5.61439 + 9.75186i) q^{55} +21.0367 q^{56} +13.2035 q^{59} +8.34513 q^{61} -19.0580i q^{62} +8.93840 q^{64} +(-1.93785 + 1.11567i) q^{65} +15.8346i q^{67} +8.08582i q^{68} +(-12.2413 - 21.2624i) q^{70} +0.569614 q^{71} -0.373086i q^{73} +15.4348 q^{74} -11.0211 q^{76} +22.6985i q^{77} -6.13747 q^{79} +(3.91663 + 6.80295i) q^{80} +3.59327i q^{82} -0.654981i q^{83} +(4.00000 - 2.30290i) q^{85} +16.5741 q^{86} -23.4701i q^{88} +5.93985 q^{89} -4.51056 q^{91} +15.8372i q^{92} +22.0759 q^{94} +(3.13889 + 5.45207i) q^{95} +2.67599i q^{97} -32.4627i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{4} - 20 q^{10} + 8 q^{16} + 24 q^{19} + 4 q^{25} - 16 q^{31} - 8 q^{34} + 28 q^{40} + 40 q^{46} - 48 q^{49} + 4 q^{55} - 12 q^{61} - 64 q^{70} - 64 q^{76} - 20 q^{79} + 48 q^{85} - 20 q^{91}+ \cdots + 104 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.43255i 1.72007i 0.510235 + 0.860035i \(0.329559\pi\)
−0.510235 + 0.860035i \(0.670441\pi\)
\(3\) 0 0
\(4\) −3.91729 −1.95864
\(5\) 1.11567 + 1.93785i 0.498943 + 0.866635i
\(6\) 0 0
\(7\) 4.51056i 1.70483i 0.522865 + 0.852415i \(0.324863\pi\)
−0.522865 + 0.852415i \(0.675137\pi\)
\(8\) 4.66389i 1.64893i
\(9\) 0 0
\(10\) −4.71392 + 2.71392i −1.49067 + 0.858217i
\(11\) 5.03230 1.51729 0.758647 0.651502i \(-0.225861\pi\)
0.758647 + 0.651502i \(0.225861\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −10.9721 −2.93243
\(15\) 0 0
\(16\) 3.51056 0.877639
\(17\) 2.06414i 0.500627i −0.968165 0.250314i \(-0.919466\pi\)
0.968165 0.250314i \(-0.0805337\pi\)
\(18\) 0 0
\(19\) 2.81346 0.645451 0.322726 0.946493i \(-0.395401\pi\)
0.322726 + 0.946493i \(0.395401\pi\)
\(20\) −4.37040 7.59113i −0.977251 1.69743i
\(21\) 0 0
\(22\) 12.2413i 2.60985i
\(23\) 4.04291i 0.843005i −0.906827 0.421503i \(-0.861503\pi\)
0.906827 0.421503i \(-0.138497\pi\)
\(24\) 0 0
\(25\) −2.51056 + 4.32401i −0.502112 + 0.864803i
\(26\) −2.43255 −0.477062
\(27\) 0 0
\(28\) 17.6691i 3.33915i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −7.83457 −1.40713 −0.703565 0.710631i \(-0.748410\pi\)
−0.703565 + 0.710631i \(0.748410\pi\)
\(32\) 0.788180i 0.139332i
\(33\) 0 0
\(34\) 5.02112 0.861114
\(35\) −8.74080 + 5.03230i −1.47747 + 0.850613i
\(36\) 0 0
\(37\) 6.34513i 1.04313i −0.853211 0.521566i \(-0.825348\pi\)
0.853211 0.521566i \(-0.174652\pi\)
\(38\) 6.84387i 1.11022i
\(39\) 0 0
\(40\) 9.03794 5.20336i 1.42902 0.822724i
\(41\) 1.47716 0.230694 0.115347 0.993325i \(-0.463202\pi\)
0.115347 + 0.993325i \(0.463202\pi\)
\(42\) 0 0
\(43\) 6.81346i 1.03904i −0.854458 0.519521i \(-0.826110\pi\)
0.854458 0.519521i \(-0.173890\pi\)
\(44\) −19.7129 −2.97184
\(45\) 0 0
\(46\) 9.83457 1.45003
\(47\) 9.07521i 1.32376i −0.749612 0.661878i \(-0.769760\pi\)
0.749612 0.661878i \(-0.230240\pi\)
\(48\) 0 0
\(49\) −13.3451 −1.90645
\(50\) −10.5184 6.10705i −1.48752 0.863667i
\(51\) 0 0
\(52\) 3.91729i 0.543230i
\(53\) 9.81556i 1.34827i 0.738608 + 0.674135i \(0.235483\pi\)
−0.738608 + 0.674135i \(0.764517\pi\)
\(54\) 0 0
\(55\) 5.61439 + 9.75186i 0.757044 + 1.31494i
\(56\) 21.0367 2.81115
\(57\) 0 0
\(58\) 0 0
\(59\) 13.2035 1.71895 0.859474 0.511180i \(-0.170791\pi\)
0.859474 + 0.511180i \(0.170791\pi\)
\(60\) 0 0
\(61\) 8.34513 1.06848 0.534242 0.845331i \(-0.320597\pi\)
0.534242 + 0.845331i \(0.320597\pi\)
\(62\) 19.0580i 2.42036i
\(63\) 0 0
\(64\) 8.93840 1.11730
\(65\) −1.93785 + 1.11567i −0.240361 + 0.138382i
\(66\) 0 0
\(67\) 15.8346i 1.93450i 0.253824 + 0.967250i \(0.418312\pi\)
−0.253824 + 0.967250i \(0.581688\pi\)
\(68\) 8.08582i 0.980550i
\(69\) 0 0
\(70\) −12.2413 21.2624i −1.46312 2.54134i
\(71\) 0.569614 0.0676008 0.0338004 0.999429i \(-0.489239\pi\)
0.0338004 + 0.999429i \(0.489239\pi\)
\(72\) 0 0
\(73\) 0.373086i 0.0436664i −0.999762 0.0218332i \(-0.993050\pi\)
0.999762 0.0218332i \(-0.00695028\pi\)
\(74\) 15.4348 1.79426
\(75\) 0 0
\(76\) −11.0211 −1.26421
\(77\) 22.6985i 2.58673i
\(78\) 0 0
\(79\) −6.13747 −0.690519 −0.345260 0.938507i \(-0.612209\pi\)
−0.345260 + 0.938507i \(0.612209\pi\)
\(80\) 3.91663 + 6.80295i 0.437892 + 0.760593i
\(81\) 0 0
\(82\) 3.59327i 0.396810i
\(83\) 0.654981i 0.0718935i −0.999354 0.0359467i \(-0.988555\pi\)
0.999354 0.0359467i \(-0.0114447\pi\)
\(84\) 0 0
\(85\) 4.00000 2.30290i 0.433861 0.249784i
\(86\) 16.5741 1.78723
\(87\) 0 0
\(88\) 23.4701i 2.50192i
\(89\) 5.93985 0.629623 0.314811 0.949154i \(-0.398059\pi\)
0.314811 + 0.949154i \(0.398059\pi\)
\(90\) 0 0
\(91\) −4.51056 −0.472835
\(92\) 15.8372i 1.65115i
\(93\) 0 0
\(94\) 22.0759 2.27695
\(95\) 3.13889 + 5.45207i 0.322043 + 0.559370i
\(96\) 0 0
\(97\) 2.67599i 0.271705i 0.990729 + 0.135853i \(0.0433774\pi\)
−0.990729 + 0.135853i \(0.956623\pi\)
\(98\) 32.4627i 3.27922i
\(99\) 0 0
\(100\) 9.83457 16.9384i 0.983457 1.69384i
\(101\) 11.8797 1.18207 0.591037 0.806645i \(-0.298719\pi\)
0.591037 + 0.806645i \(0.298719\pi\)
\(102\) 0 0
\(103\) 2.20766i 0.217527i 0.994068 + 0.108764i \(0.0346891\pi\)
−0.994068 + 0.108764i \(0.965311\pi\)
\(104\) 4.66389 0.457332
\(105\) 0 0
\(106\) −23.8768 −2.31912
\(107\) 10.1500i 0.981234i −0.871375 0.490617i \(-0.836771\pi\)
0.871375 0.490617i \(-0.163229\pi\)
\(108\) 0 0
\(109\) −0.373086 −0.0357352 −0.0178676 0.999840i \(-0.505688\pi\)
−0.0178676 + 0.999840i \(0.505688\pi\)
\(110\) −23.7219 + 13.6573i −2.26179 + 1.30217i
\(111\) 0 0
\(112\) 15.8346i 1.49623i
\(113\) 6.91187i 0.650214i −0.945677 0.325107i \(-0.894600\pi\)
0.945677 0.325107i \(-0.105400\pi\)
\(114\) 0 0
\(115\) 7.83457 4.51056i 0.730578 0.420612i
\(116\) 0 0
\(117\) 0 0
\(118\) 32.1181i 2.95671i
\(119\) 9.31042 0.853485
\(120\) 0 0
\(121\) 14.3240 1.30218
\(122\) 20.2999i 1.83787i
\(123\) 0 0
\(124\) 30.6903 2.75607
\(125\) −11.1803 0.0409180i −0.999993 0.00365982i
\(126\) 0 0
\(127\) 3.66914i 0.325584i −0.986660 0.162792i \(-0.947950\pi\)
0.986660 0.162792i \(-0.0520499\pi\)
\(128\) 20.1667i 1.78250i
\(129\) 0 0
\(130\) −2.71392 4.71392i −0.238027 0.413438i
\(131\) −18.9900 −1.65916 −0.829580 0.558387i \(-0.811420\pi\)
−0.829580 + 0.558387i \(0.811420\pi\)
\(132\) 0 0
\(133\) 12.6903i 1.10039i
\(134\) −38.5183 −3.32748
\(135\) 0 0
\(136\) −9.62691 −0.825501
\(137\) 7.02843i 0.600479i 0.953864 + 0.300240i \(0.0970667\pi\)
−0.953864 + 0.300240i \(0.902933\pi\)
\(138\) 0 0
\(139\) −18.9932 −1.61098 −0.805489 0.592610i \(-0.798097\pi\)
−0.805489 + 0.592610i \(0.798097\pi\)
\(140\) 34.2402 19.7129i 2.89383 1.66605i
\(141\) 0 0
\(142\) 1.38561i 0.116278i
\(143\) 5.03230i 0.420822i
\(144\) 0 0
\(145\) 0 0
\(146\) 0.907550 0.0751094
\(147\) 0 0
\(148\) 24.8557i 2.04312i
\(149\) 18.9588 1.55316 0.776581 0.630017i \(-0.216952\pi\)
0.776581 + 0.630017i \(0.216952\pi\)
\(150\) 0 0
\(151\) −16.8557 −1.37170 −0.685848 0.727745i \(-0.740569\pi\)
−0.685848 + 0.727745i \(0.740569\pi\)
\(152\) 13.1216i 1.06431i
\(153\) 0 0
\(154\) −55.2151 −4.44936
\(155\) −8.74080 15.1823i −0.702078 1.21947i
\(156\) 0 0
\(157\) 9.02112i 0.719963i 0.932959 + 0.359982i \(0.117217\pi\)
−0.932959 + 0.359982i \(0.882783\pi\)
\(158\) 14.9297i 1.18774i
\(159\) 0 0
\(160\) 1.52738 0.879350i 0.120750 0.0695187i
\(161\) 18.2358 1.43718
\(162\) 0 0
\(163\) 0.841414i 0.0659046i −0.999457 0.0329523i \(-0.989509\pi\)
0.999457 0.0329523i \(-0.0104909\pi\)
\(164\) −5.78647 −0.451848
\(165\) 0 0
\(166\) 1.59327 0.123662
\(167\) 9.91475i 0.767227i 0.923494 + 0.383613i \(0.125320\pi\)
−0.923494 + 0.383613i \(0.874680\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 5.60191 + 9.73019i 0.429647 + 0.746271i
\(171\) 0 0
\(172\) 26.6903i 2.03511i
\(173\) 4.79709i 0.364716i 0.983232 + 0.182358i \(0.0583730\pi\)
−0.983232 + 0.182358i \(0.941627\pi\)
\(174\) 0 0
\(175\) −19.5037 11.3240i −1.47434 0.856015i
\(176\) 17.6662 1.33164
\(177\) 0 0
\(178\) 14.4490i 1.08300i
\(179\) −7.41701 −0.554373 −0.277187 0.960816i \(-0.589402\pi\)
−0.277187 + 0.960816i \(0.589402\pi\)
\(180\) 0 0
\(181\) 3.69710 0.274803 0.137402 0.990515i \(-0.456125\pi\)
0.137402 + 0.990515i \(0.456125\pi\)
\(182\) 10.9721i 0.813309i
\(183\) 0 0
\(184\) −18.8557 −1.39006
\(185\) 12.2959 7.07908i 0.904015 0.520464i
\(186\) 0 0
\(187\) 10.3874i 0.759599i
\(188\) 35.5502i 2.59276i
\(189\) 0 0
\(190\) −13.2624 + 7.63550i −0.962157 + 0.553938i
\(191\) −8.55624 −0.619108 −0.309554 0.950882i \(-0.600180\pi\)
−0.309554 + 0.950882i \(0.600180\pi\)
\(192\) 0 0
\(193\) 15.3662i 1.10609i −0.833153 0.553043i \(-0.813466\pi\)
0.833153 0.553043i \(-0.186534\pi\)
\(194\) −6.50946 −0.467352
\(195\) 0 0
\(196\) 52.2767 3.73405
\(197\) 11.2927i 0.804573i 0.915514 + 0.402286i \(0.131784\pi\)
−0.915514 + 0.402286i \(0.868216\pi\)
\(198\) 0 0
\(199\) 17.8768 1.26725 0.633626 0.773639i \(-0.281566\pi\)
0.633626 + 0.773639i \(0.281566\pi\)
\(200\) 20.1667 + 11.7090i 1.42600 + 0.827949i
\(201\) 0 0
\(202\) 28.8979i 2.03325i
\(203\) 0 0
\(204\) 0 0
\(205\) 1.64803 + 2.86253i 0.115103 + 0.199928i
\(206\) −5.37023 −0.374162
\(207\) 0 0
\(208\) 3.51056i 0.243413i
\(209\) 14.1582 0.979340
\(210\) 0 0
\(211\) 15.8346 1.09010 0.545048 0.838405i \(-0.316511\pi\)
0.545048 + 0.838405i \(0.316511\pi\)
\(212\) 38.4503i 2.64078i
\(213\) 0 0
\(214\) 24.6903 1.68779
\(215\) 13.2035 7.60157i 0.900470 0.518423i
\(216\) 0 0
\(217\) 35.3383i 2.39892i
\(218\) 0.907550i 0.0614670i
\(219\) 0 0
\(220\) −21.9932 38.2008i −1.48278 2.57550i
\(221\) 2.06414 0.138849
\(222\) 0 0
\(223\) 1.46149i 0.0978683i 0.998802 + 0.0489342i \(0.0155825\pi\)
−0.998802 + 0.0489342i \(0.984418\pi\)
\(224\) 3.55513 0.237537
\(225\) 0 0
\(226\) 16.8135 1.11841
\(227\) 12.2279i 0.811596i −0.913963 0.405798i \(-0.866994\pi\)
0.913963 0.405798i \(-0.133006\pi\)
\(228\) 0 0
\(229\) 24.3172 1.60692 0.803462 0.595356i \(-0.202989\pi\)
0.803462 + 0.595356i \(0.202989\pi\)
\(230\) 10.9721 + 19.0580i 0.723482 + 1.25665i
\(231\) 0 0
\(232\) 0 0
\(233\) 14.9470i 0.979214i −0.871943 0.489607i \(-0.837140\pi\)
0.871943 0.489607i \(-0.162860\pi\)
\(234\) 0 0
\(235\) 17.5864 10.1249i 1.14721 0.660479i
\(236\) −51.7218 −3.36680
\(237\) 0 0
\(238\) 22.6480i 1.46805i
\(239\) −9.49498 −0.614179 −0.307090 0.951681i \(-0.599355\pi\)
−0.307090 + 0.951681i \(0.599355\pi\)
\(240\) 0 0
\(241\) −2.60580 −0.167854 −0.0839271 0.996472i \(-0.526746\pi\)
−0.0839271 + 0.996472i \(0.526746\pi\)
\(242\) 34.8438i 2.23985i
\(243\) 0 0
\(244\) −32.6903 −2.09278
\(245\) −14.8888 25.8609i −0.951209 1.65219i
\(246\) 0 0
\(247\) 2.81346i 0.179016i
\(248\) 36.5396i 2.32027i
\(249\) 0 0
\(250\) 0.0995351 27.1965i 0.00629515 1.72006i
\(251\) 1.50835 0.0952065 0.0476033 0.998866i \(-0.484842\pi\)
0.0476033 + 0.998866i \(0.484842\pi\)
\(252\) 0 0
\(253\) 20.3451i 1.27909i
\(254\) 8.92537 0.560027
\(255\) 0 0
\(256\) −31.1797 −1.94873
\(257\) 7.41701i 0.462660i −0.972875 0.231330i \(-0.925692\pi\)
0.972875 0.231330i \(-0.0743078\pi\)
\(258\) 0 0
\(259\) 28.6201 1.77836
\(260\) 7.59113 4.37040i 0.470782 0.271041i
\(261\) 0 0
\(262\) 46.1940i 2.85387i
\(263\) 22.7491i 1.40277i 0.712782 + 0.701385i \(0.247435\pi\)
−0.712782 + 0.701385i \(0.752565\pi\)
\(264\) 0 0
\(265\) −19.0211 + 10.9509i −1.16846 + 0.672710i
\(266\) −30.8697 −1.89274
\(267\) 0 0
\(268\) 62.0285i 3.78900i
\(269\) 8.92537 0.544189 0.272095 0.962271i \(-0.412284\pi\)
0.272095 + 0.962271i \(0.412284\pi\)
\(270\) 0 0
\(271\) −8.16543 −0.496014 −0.248007 0.968758i \(-0.579776\pi\)
−0.248007 + 0.968758i \(0.579776\pi\)
\(272\) 7.24628i 0.439370i
\(273\) 0 0
\(274\) −17.0970 −1.03287
\(275\) −12.6339 + 21.7597i −0.761851 + 1.31216i
\(276\) 0 0
\(277\) 26.3172i 1.58125i 0.612303 + 0.790623i \(0.290243\pi\)
−0.612303 + 0.790623i \(0.709757\pi\)
\(278\) 46.2018i 2.77100i
\(279\) 0 0
\(280\) 23.4701 + 40.7661i 1.40261 + 2.43624i
\(281\) −19.7129 −1.17598 −0.587988 0.808870i \(-0.700080\pi\)
−0.587988 + 0.808870i \(0.700080\pi\)
\(282\) 0 0
\(283\) 27.0633i 1.60875i −0.594123 0.804374i \(-0.702501\pi\)
0.594123 0.804374i \(-0.297499\pi\)
\(284\) −2.23134 −0.132406
\(285\) 0 0
\(286\) −12.2413 −0.723843
\(287\) 6.66283i 0.393295i
\(288\) 0 0
\(289\) 12.7393 0.749372
\(290\) 0 0
\(291\) 0 0
\(292\) 1.46149i 0.0855270i
\(293\) 4.87892i 0.285030i 0.989793 + 0.142515i \(0.0455189\pi\)
−0.989793 + 0.142515i \(0.954481\pi\)
\(294\) 0 0
\(295\) 14.7307 + 25.5864i 0.857657 + 1.48970i
\(296\) −29.5930 −1.72006
\(297\) 0 0
\(298\) 46.1181i 2.67155i
\(299\) 4.04291 0.233808
\(300\) 0 0
\(301\) 30.7325 1.77139
\(302\) 41.0023i 2.35941i
\(303\) 0 0
\(304\) 9.87680 0.566473
\(305\) 9.31042 + 16.1716i 0.533113 + 0.925986i
\(306\) 0 0
\(307\) 12.7855i 0.729707i −0.931065 0.364854i \(-0.881119\pi\)
0.931065 0.364854i \(-0.118881\pi\)
\(308\) 88.9164i 5.06648i
\(309\) 0 0
\(310\) 36.9316 21.2624i 2.09757 1.20762i
\(311\) −27.5462 −1.56200 −0.781001 0.624530i \(-0.785291\pi\)
−0.781001 + 0.624530i \(0.785291\pi\)
\(312\) 0 0
\(313\) 31.2961i 1.76896i −0.466580 0.884479i \(-0.654514\pi\)
0.466580 0.884479i \(-0.345486\pi\)
\(314\) −21.9443 −1.23839
\(315\) 0 0
\(316\) 24.0422 1.35248
\(317\) 3.70498i 0.208092i 0.994572 + 0.104046i \(0.0331789\pi\)
−0.994572 + 0.104046i \(0.966821\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 9.97231 + 17.3213i 0.557469 + 0.968291i
\(321\) 0 0
\(322\) 44.3594i 2.47205i
\(323\) 5.80737i 0.323130i
\(324\) 0 0
\(325\) −4.32401 2.51056i −0.239853 0.139261i
\(326\) 2.04678 0.113361
\(327\) 0 0
\(328\) 6.88933i 0.380400i
\(329\) 40.9342 2.25678
\(330\) 0 0
\(331\) −16.5807 −0.911360 −0.455680 0.890144i \(-0.650604\pi\)
−0.455680 + 0.890144i \(0.650604\pi\)
\(332\) 2.56575i 0.140814i
\(333\) 0 0
\(334\) −24.1181 −1.31968
\(335\) −30.6851 + 17.6662i −1.67651 + 0.965206i
\(336\) 0 0
\(337\) 4.04223i 0.220194i 0.993921 + 0.110097i \(0.0351162\pi\)
−0.993921 + 0.110097i \(0.964884\pi\)
\(338\) 2.43255i 0.132313i
\(339\) 0 0
\(340\) −15.6691 + 9.02112i −0.849779 + 0.489239i
\(341\) −39.4259 −2.13503
\(342\) 0 0
\(343\) 28.6201i 1.54534i
\(344\) −31.7772 −1.71331
\(345\) 0 0
\(346\) −11.6691 −0.627337
\(347\) 6.86123i 0.368330i −0.982895 0.184165i \(-0.941042\pi\)
0.982895 0.184165i \(-0.0589581\pi\)
\(348\) 0 0
\(349\) −26.9652 −1.44341 −0.721707 0.692199i \(-0.756642\pi\)
−0.721707 + 0.692199i \(0.756642\pi\)
\(350\) 27.5462 47.4437i 1.47241 2.53597i
\(351\) 0 0
\(352\) 3.96636i 0.211408i
\(353\) 13.4352i 0.715082i −0.933898 0.357541i \(-0.883615\pi\)
0.933898 0.357541i \(-0.116385\pi\)
\(354\) 0 0
\(355\) 0.635502 + 1.10383i 0.0337289 + 0.0585852i
\(356\) −23.2681 −1.23321
\(357\) 0 0
\(358\) 18.0422i 0.953561i
\(359\) 11.3884 0.601056 0.300528 0.953773i \(-0.402837\pi\)
0.300528 + 0.953773i \(0.402837\pi\)
\(360\) 0 0
\(361\) −11.0845 −0.583393
\(362\) 8.99337i 0.472681i
\(363\) 0 0
\(364\) 17.6691 0.926115
\(365\) 0.722987 0.416241i 0.0378429 0.0217871i
\(366\) 0 0
\(367\) 6.81346i 0.355660i −0.984061 0.177830i \(-0.943092\pi\)
0.984061 0.177830i \(-0.0569076\pi\)
\(368\) 14.1929i 0.739855i
\(369\) 0 0
\(370\) 17.2202 + 29.9104i 0.895235 + 1.55497i
\(371\) −44.2736 −2.29857
\(372\) 0 0
\(373\) 9.39420i 0.486413i 0.969974 + 0.243207i \(0.0781993\pi\)
−0.969974 + 0.243207i \(0.921801\pi\)
\(374\) 25.2677 1.30656
\(375\) 0 0
\(376\) −42.3258 −2.18278
\(377\) 0 0
\(378\) 0 0
\(379\) 29.8768 1.53467 0.767334 0.641247i \(-0.221583\pi\)
0.767334 + 0.641247i \(0.221583\pi\)
\(380\) −12.2959 21.3573i −0.630768 1.09561i
\(381\) 0 0
\(382\) 20.8135i 1.06491i
\(383\) 1.65820i 0.0847299i −0.999102 0.0423650i \(-0.986511\pi\)
0.999102 0.0423650i \(-0.0134892\pi\)
\(384\) 0 0
\(385\) −43.9863 + 25.3240i −2.24175 + 1.29063i
\(386\) 37.3791 1.90255
\(387\) 0 0
\(388\) 10.4826i 0.532173i
\(389\) 23.0835 1.17038 0.585190 0.810896i \(-0.301020\pi\)
0.585190 + 0.810896i \(0.301020\pi\)
\(390\) 0 0
\(391\) −8.34513 −0.422031
\(392\) 62.2402i 3.14360i
\(393\) 0 0
\(394\) −27.4701 −1.38392
\(395\) −6.84740 11.8935i −0.344530 0.598428i
\(396\) 0 0
\(397\) 7.09130i 0.355902i −0.984039 0.177951i \(-0.943053\pi\)
0.984039 0.177951i \(-0.0569469\pi\)
\(398\) 43.4862i 2.17976i
\(399\) 0 0
\(400\) −8.81346 + 15.1797i −0.440673 + 0.758985i
\(401\) 33.1010 1.65298 0.826492 0.562948i \(-0.190333\pi\)
0.826492 + 0.562948i \(0.190333\pi\)
\(402\) 0 0
\(403\) 7.83457i 0.390268i
\(404\) −46.5362 −2.31526
\(405\) 0 0
\(406\) 0 0
\(407\) 31.9306i 1.58274i
\(408\) 0 0
\(409\) 16.0422 0.793237 0.396619 0.917983i \(-0.370184\pi\)
0.396619 + 0.917983i \(0.370184\pi\)
\(410\) −6.96324 + 4.00891i −0.343890 + 0.197986i
\(411\) 0 0
\(412\) 8.64803i 0.426058i
\(413\) 59.5551i 2.93051i
\(414\) 0 0
\(415\) 1.26926 0.730743i 0.0623054 0.0358708i
\(416\) 0.788180 0.0386437
\(417\) 0 0
\(418\) 34.4404i 1.68453i
\(419\) −2.64758 −0.129343 −0.0646714 0.997907i \(-0.520600\pi\)
−0.0646714 + 0.997907i \(0.520600\pi\)
\(420\) 0 0
\(421\) −29.0074 −1.41374 −0.706868 0.707346i \(-0.749892\pi\)
−0.706868 + 0.707346i \(0.749892\pi\)
\(422\) 38.5183i 1.87504i
\(423\) 0 0
\(424\) 45.7787 2.22321
\(425\) 8.92537 + 5.18214i 0.432944 + 0.251371i
\(426\) 0 0
\(427\) 37.6412i 1.82158i
\(428\) 39.7603i 1.92189i
\(429\) 0 0
\(430\) 18.4912 + 32.1181i 0.891724 + 1.54887i
\(431\) 17.2970 0.833169 0.416585 0.909097i \(-0.363227\pi\)
0.416585 + 0.909097i \(0.363227\pi\)
\(432\) 0 0
\(433\) 21.3383i 1.02545i 0.858552 + 0.512726i \(0.171364\pi\)
−0.858552 + 0.512726i \(0.828636\pi\)
\(434\) 85.9621 4.12631
\(435\) 0 0
\(436\) 1.46149 0.0699925
\(437\) 11.3746i 0.544119i
\(438\) 0 0
\(439\) 0.675986 0.0322630 0.0161315 0.999870i \(-0.494865\pi\)
0.0161315 + 0.999870i \(0.494865\pi\)
\(440\) 45.4816 26.1849i 2.16825 1.24831i
\(441\) 0 0
\(442\) 5.02112i 0.238830i
\(443\) 11.6583i 0.553903i −0.960884 0.276952i \(-0.910676\pi\)
0.960884 0.276952i \(-0.0893242\pi\)
\(444\) 0 0
\(445\) 6.62691 + 11.5106i 0.314146 + 0.545653i
\(446\) −3.55513 −0.168340
\(447\) 0 0
\(448\) 40.3172i 1.90481i
\(449\) 2.98552 0.140895 0.0704477 0.997515i \(-0.477557\pi\)
0.0704477 + 0.997515i \(0.477557\pi\)
\(450\) 0 0
\(451\) 7.43353 0.350031
\(452\) 27.0758i 1.27354i
\(453\) 0 0
\(454\) 29.7450 1.39600
\(455\) −5.03230 8.74080i −0.235918 0.409775i
\(456\) 0 0
\(457\) 28.0565i 1.31243i 0.754575 + 0.656214i \(0.227843\pi\)
−0.754575 + 0.656214i \(0.772157\pi\)
\(458\) 59.1527i 2.76402i
\(459\) 0 0
\(460\) −30.6903 + 17.6691i −1.43094 + 0.823828i
\(461\) 23.4215 1.09085 0.545423 0.838161i \(-0.316369\pi\)
0.545423 + 0.838161i \(0.316369\pi\)
\(462\) 0 0
\(463\) 4.51056i 0.209623i −0.994492 0.104812i \(-0.966576\pi\)
0.994492 0.104812i \(-0.0334240\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 36.3594 1.68432
\(467\) 24.3428i 1.12645i −0.826303 0.563226i \(-0.809560\pi\)
0.826303 0.563226i \(-0.190440\pi\)
\(468\) 0 0
\(469\) −71.4227 −3.29800
\(470\) 24.6294 + 42.7798i 1.13607 + 1.97329i
\(471\) 0 0
\(472\) 61.5796i 2.83443i
\(473\) 34.2873i 1.57653i
\(474\) 0 0
\(475\) −7.06335 + 12.1654i −0.324089 + 0.558188i
\(476\) −36.4716 −1.67167
\(477\) 0 0
\(478\) 23.0970i 1.05643i
\(479\) −16.9120 −0.772729 −0.386364 0.922346i \(-0.626269\pi\)
−0.386364 + 0.922346i \(0.626269\pi\)
\(480\) 0 0
\(481\) 6.34513 0.289313
\(482\) 6.33873i 0.288721i
\(483\) 0 0
\(484\) −56.1113 −2.55051
\(485\) −5.18567 + 2.98552i −0.235469 + 0.135565i
\(486\) 0 0
\(487\) 31.5739i 1.43075i 0.698741 + 0.715375i \(0.253744\pi\)
−0.698741 + 0.715375i \(0.746256\pi\)
\(488\) 38.9208i 1.76186i
\(489\) 0 0
\(490\) 62.9079 36.2176i 2.84189 1.63615i
\(491\) −14.8340 −0.669450 −0.334725 0.942316i \(-0.608643\pi\)
−0.334725 + 0.942316i \(0.608643\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −6.84387 −0.307920
\(495\) 0 0
\(496\) −27.5037 −1.23495
\(497\) 2.56928i 0.115248i
\(498\) 0 0
\(499\) −0.771227 −0.0345248 −0.0172624 0.999851i \(-0.505495\pi\)
−0.0172624 + 0.999851i \(0.505495\pi\)
\(500\) 43.7963 + 0.160288i 1.95863 + 0.00716828i
\(501\) 0 0
\(502\) 3.66914i 0.163762i
\(503\) 41.5407i 1.85221i −0.377269 0.926104i \(-0.623137\pi\)
0.377269 0.926104i \(-0.376863\pi\)
\(504\) 0 0
\(505\) 13.2538 + 23.0211i 0.589788 + 1.02443i
\(506\) 49.4905 2.20012
\(507\) 0 0
\(508\) 14.3731i 0.637703i
\(509\) −33.8552 −1.50060 −0.750302 0.661095i \(-0.770092\pi\)
−0.750302 + 0.661095i \(0.770092\pi\)
\(510\) 0 0
\(511\) 1.68283 0.0744439
\(512\) 35.5127i 1.56945i
\(513\) 0 0
\(514\) 18.0422 0.795809
\(515\) −4.27812 + 2.46302i −0.188516 + 0.108534i
\(516\) 0 0
\(517\) 45.6691i 2.00853i
\(518\) 69.6197i 3.05891i
\(519\) 0 0
\(520\) 5.20336 + 9.03794i 0.228183 + 0.396340i
\(521\) −25.2677 −1.10700 −0.553500 0.832849i \(-0.686708\pi\)
−0.553500 + 0.832849i \(0.686708\pi\)
\(522\) 0 0
\(523\) 11.2288i 0.491000i −0.969397 0.245500i \(-0.921048\pi\)
0.969397 0.245500i \(-0.0789521\pi\)
\(524\) 74.3891 3.24970
\(525\) 0 0
\(526\) −55.3383 −2.41286
\(527\) 16.1716i 0.704448i
\(528\) 0 0
\(529\) 6.65487 0.289342
\(530\) −26.6386 46.2698i −1.15711 2.00983i
\(531\) 0 0
\(532\) 49.7114i 2.15526i
\(533\) 1.47716i 0.0639831i
\(534\) 0 0
\(535\) 19.6691 11.3240i 0.850371 0.489580i
\(536\) 73.8507 3.18986
\(537\) 0 0
\(538\) 21.7114i 0.936044i
\(539\) −67.1567 −2.89264
\(540\) 0 0
\(541\) 6.41532 0.275816 0.137908 0.990445i \(-0.455962\pi\)
0.137908 + 0.990445i \(0.455962\pi\)
\(542\) 19.8628i 0.853180i
\(543\) 0 0
\(544\) −1.62691 −0.0697533
\(545\) −0.416241 0.722987i −0.0178298 0.0309694i
\(546\) 0 0
\(547\) 24.8557i 1.06275i 0.847136 + 0.531376i \(0.178325\pi\)
−0.847136 + 0.531376i \(0.821675\pi\)
\(548\) 27.5324i 1.17612i
\(549\) 0 0
\(550\) −52.9316 30.7325i −2.25701 1.31044i
\(551\) 0 0
\(552\) 0 0
\(553\) 27.6834i 1.17722i
\(554\) −64.0178 −2.71985
\(555\) 0 0
\(556\) 74.4016 3.15533
\(557\) 35.0450i 1.48491i −0.669898 0.742453i \(-0.733662\pi\)
0.669898 0.742453i \(-0.266338\pi\)
\(558\) 0 0
\(559\) 6.81346 0.288179
\(560\) −30.6851 + 17.6662i −1.29668 + 0.746532i
\(561\) 0 0
\(562\) 47.9527i 2.02276i
\(563\) 31.7598i 1.33852i −0.743029 0.669259i \(-0.766612\pi\)
0.743029 0.669259i \(-0.233388\pi\)
\(564\) 0 0
\(565\) 13.3942 7.71137i 0.563498 0.324420i
\(566\) 65.8329 2.76716
\(567\) 0 0
\(568\) 2.65662i 0.111469i
\(569\) 2.95433 0.123852 0.0619259 0.998081i \(-0.480276\pi\)
0.0619259 + 0.998081i \(0.480276\pi\)
\(570\) 0 0
\(571\) −12.7855 −0.535057 −0.267528 0.963550i \(-0.586207\pi\)
−0.267528 + 0.963550i \(0.586207\pi\)
\(572\) 19.7129i 0.824240i
\(573\) 0 0
\(574\) −16.2077 −0.676495
\(575\) 17.4816 + 10.1500i 0.729033 + 0.423283i
\(576\) 0 0
\(577\) 10.0143i 0.416900i 0.978033 + 0.208450i \(0.0668418\pi\)
−0.978033 + 0.208450i \(0.933158\pi\)
\(578\) 30.9890i 1.28897i
\(579\) 0 0
\(580\) 0 0
\(581\) 2.95433 0.122566
\(582\) 0 0
\(583\) 49.3948i 2.04572i
\(584\) −1.74003 −0.0720031
\(585\) 0 0
\(586\) −11.8682 −0.490271
\(587\) 17.9659i 0.741530i 0.928727 + 0.370765i \(0.120904\pi\)
−0.928727 + 0.370765i \(0.879096\pi\)
\(588\) 0 0
\(589\) −22.0422 −0.908234
\(590\) −62.2402 + 35.8332i −2.56239 + 1.47523i
\(591\) 0 0
\(592\) 22.2749i 0.915494i
\(593\) 6.18889i 0.254147i −0.991893 0.127074i \(-0.959442\pi\)
0.991893 0.127074i \(-0.0405584\pi\)
\(594\) 0 0
\(595\) 10.3874 + 18.0422i 0.425840 + 0.739659i
\(596\) −74.2669 −3.04209
\(597\) 0 0
\(598\) 9.83457i 0.402166i
\(599\) 37.6108 1.53674 0.768368 0.640009i \(-0.221069\pi\)
0.768368 + 0.640009i \(0.221069\pi\)
\(600\) 0 0
\(601\) 7.32401 0.298753 0.149376 0.988780i \(-0.452273\pi\)
0.149376 + 0.988780i \(0.452273\pi\)
\(602\) 74.7582i 3.04692i
\(603\) 0 0
\(604\) 66.0285 2.68666
\(605\) 15.9809 + 27.7579i 0.649715 + 1.12852i
\(606\) 0 0
\(607\) 18.7575i 0.761345i 0.924710 + 0.380673i \(0.124308\pi\)
−0.924710 + 0.380673i \(0.875692\pi\)
\(608\) 2.21751i 0.0899320i
\(609\) 0 0
\(610\) −39.3383 + 22.6480i −1.59276 + 0.916992i
\(611\) 9.07521 0.367144
\(612\) 0 0
\(613\) 1.73933i 0.0702509i 0.999383 + 0.0351255i \(0.0111831\pi\)
−0.999383 + 0.0351255i \(0.988817\pi\)
\(614\) 31.1013 1.25515
\(615\) 0 0
\(616\) 105.863 4.26535
\(617\) 1.39180i 0.0560317i −0.999607 0.0280158i \(-0.991081\pi\)
0.999607 0.0280158i \(-0.00891888\pi\)
\(618\) 0 0
\(619\) −14.2077 −0.571054 −0.285527 0.958371i \(-0.592169\pi\)
−0.285527 + 0.958371i \(0.592169\pi\)
\(620\) 34.2402 + 59.4732i 1.37512 + 2.38850i
\(621\) 0 0
\(622\) 67.0074i 2.68675i
\(623\) 26.7920i 1.07340i
\(624\) 0 0
\(625\) −12.3942 21.7114i −0.495768 0.868455i
\(626\) 76.1291 3.04273
\(627\) 0 0
\(628\) 35.3383i 1.41015i
\(629\) −13.0972 −0.522221
\(630\) 0 0
\(631\) −35.2288 −1.40244 −0.701218 0.712947i \(-0.747360\pi\)
−0.701218 + 0.712947i \(0.747360\pi\)
\(632\) 28.6245i 1.13862i
\(633\) 0 0
\(634\) −9.01253 −0.357933
\(635\) 7.11027 4.09356i 0.282162 0.162448i
\(636\) 0 0
\(637\) 13.3451i 0.528753i
\(638\) 0 0
\(639\) 0 0
\(640\) −39.0802 + 22.4994i −1.54478 + 0.889368i
\(641\) −35.7957 −1.41384 −0.706922 0.707291i \(-0.749917\pi\)
−0.706922 + 0.707291i \(0.749917\pi\)
\(642\) 0 0
\(643\) 21.8066i 0.859969i −0.902836 0.429984i \(-0.858519\pi\)
0.902836 0.429984i \(-0.141481\pi\)
\(644\) −71.4348 −2.81492
\(645\) 0 0
\(646\) 14.1267 0.555807
\(647\) 27.4608i 1.07960i −0.841794 0.539798i \(-0.818500\pi\)
0.841794 0.539798i \(-0.181500\pi\)
\(648\) 0 0
\(649\) 66.4439 2.60815
\(650\) 6.10705 10.5184i 0.239538 0.412564i
\(651\) 0 0
\(652\) 3.29606i 0.129084i
\(653\) 1.34468i 0.0526215i −0.999654 0.0263107i \(-0.991624\pi\)
0.999654 0.0263107i \(-0.00837594\pi\)
\(654\) 0 0
\(655\) −21.1865 36.7998i −0.827827 1.43789i
\(656\) 5.18567 0.202466
\(657\) 0 0
\(658\) 99.5745i 3.88182i
\(659\) −24.8986 −0.969912 −0.484956 0.874538i \(-0.661164\pi\)
−0.484956 + 0.874538i \(0.661164\pi\)
\(660\) 0 0
\(661\) 22.3594 0.869680 0.434840 0.900508i \(-0.356805\pi\)
0.434840 + 0.900508i \(0.356805\pi\)
\(662\) 40.3334i 1.56760i
\(663\) 0 0
\(664\) −3.05476 −0.118548
\(665\) −24.5919 + 14.1582i −0.953632 + 0.549030i
\(666\) 0 0
\(667\) 0 0
\(668\) 38.8389i 1.50272i
\(669\) 0 0
\(670\) −42.9738 74.6429i −1.66022 2.88371i
\(671\) 41.9952 1.62121
\(672\) 0 0
\(673\) 48.7747i 1.88013i 0.340999 + 0.940064i \(0.389235\pi\)
−0.340999 + 0.940064i \(0.610765\pi\)
\(674\) −9.83292 −0.378750
\(675\) 0 0
\(676\) 3.91729 0.150665
\(677\) 21.1901i 0.814402i 0.913339 + 0.407201i \(0.133495\pi\)
−0.913339 + 0.407201i \(0.866505\pi\)
\(678\) 0 0
\(679\) −12.0702 −0.463211
\(680\) −10.7405 18.6556i −0.411878 0.715408i
\(681\) 0 0
\(682\) 95.9053i 3.67241i
\(683\) 26.0517i 0.996840i −0.866936 0.498420i \(-0.833914\pi\)
0.866936 0.498420i \(-0.166086\pi\)
\(684\) 0 0
\(685\) −13.6201 + 7.84141i −0.520396 + 0.299605i
\(686\) 69.6197 2.65809
\(687\) 0 0
\(688\) 23.9190i 0.911905i
\(689\) −9.81556 −0.373943
\(690\) 0 0
\(691\) 19.8346 0.754543 0.377271 0.926103i \(-0.376862\pi\)
0.377271 + 0.926103i \(0.376862\pi\)
\(692\) 18.7916i 0.714348i
\(693\) 0 0
\(694\) 16.6903 0.633554
\(695\) −21.1901 36.8060i −0.803787 1.39613i
\(696\) 0 0
\(697\) 3.04907i 0.115492i
\(698\) 65.5941i 2.48277i
\(699\) 0 0
\(700\) 76.4016 + 44.3594i 2.88771 + 1.67663i
\(701\) 50.6297 1.91226 0.956129 0.292946i \(-0.0946356\pi\)
0.956129 + 0.292946i \(0.0946356\pi\)
\(702\) 0 0
\(703\) 17.8517i 0.673291i
\(704\) 44.9807 1.69527
\(705\) 0 0
\(706\) 32.6817 1.22999
\(707\) 53.5840i 2.01524i
\(708\) 0 0
\(709\) −47.1056 −1.76909 −0.884544 0.466458i \(-0.845530\pi\)
−0.884544 + 0.466458i \(0.845530\pi\)
\(710\) −2.68512 + 1.54589i −0.100771 + 0.0580162i
\(711\) 0 0
\(712\) 27.7028i 1.03821i
\(713\) 31.6745i 1.18622i
\(714\) 0 0
\(715\) −9.75186 + 5.61439i −0.364699 + 0.209966i
\(716\) 29.0546 1.08582
\(717\) 0 0
\(718\) 27.7028i 1.03386i
\(719\) 10.4337 0.389112 0.194556 0.980891i \(-0.437673\pi\)
0.194556 + 0.980891i \(0.437673\pi\)
\(720\) 0 0
\(721\) −9.95777 −0.370847
\(722\) 26.9635i 1.00348i
\(723\) 0 0
\(724\) −14.4826 −0.538242
\(725\) 0 0
\(726\) 0 0
\(727\) 3.66914i 0.136081i −0.997683 0.0680405i \(-0.978325\pi\)
0.997683 0.0680405i \(-0.0216747\pi\)
\(728\) 21.0367i 0.779673i
\(729\) 0 0
\(730\) 1.01253 + 1.75870i 0.0374753 + 0.0650924i
\(731\) −14.0639 −0.520173
\(732\) 0 0
\(733\) 15.5567i 0.574601i 0.957841 + 0.287300i \(0.0927578\pi\)
−0.957841 + 0.287300i \(0.907242\pi\)
\(734\) 16.5741 0.611760
\(735\) 0 0
\(736\) −3.18654 −0.117458
\(737\) 79.6843i 2.93521i
\(738\) 0 0
\(739\) −13.5459 −0.498296 −0.249148 0.968465i \(-0.580151\pi\)
−0.249148 + 0.968465i \(0.580151\pi\)
\(740\) −48.1667 + 27.7308i −1.77064 + 1.01940i
\(741\) 0 0
\(742\) 107.698i 3.95371i
\(743\) 6.08616i 0.223280i −0.993749 0.111640i \(-0.964390\pi\)
0.993749 0.111640i \(-0.0356103\pi\)
\(744\) 0 0
\(745\) 21.1517 + 36.7393i 0.774940 + 1.34602i
\(746\) −22.8518 −0.836665
\(747\) 0 0
\(748\) 40.6903i 1.48778i
\(749\) 45.7820 1.67284
\(750\) 0 0
\(751\) 20.0702 0.732372 0.366186 0.930542i \(-0.380663\pi\)
0.366186 + 0.930542i \(0.380663\pi\)
\(752\) 31.8590i 1.16178i
\(753\) 0 0
\(754\) 0 0
\(755\) −18.8054 32.6639i −0.684398 1.18876i
\(756\) 0 0
\(757\) 9.39420i 0.341438i −0.985320 0.170719i \(-0.945391\pi\)
0.985320 0.170719i \(-0.0546090\pi\)
\(758\) 72.6767i 2.63974i
\(759\) 0 0
\(760\) 25.4278 14.6394i 0.922365 0.531028i
\(761\) −8.50912 −0.308456 −0.154228 0.988035i \(-0.549289\pi\)
−0.154228 + 0.988035i \(0.549289\pi\)
\(762\) 0 0
\(763\) 1.68283i 0.0609224i
\(764\) 33.5172 1.21261
\(765\) 0 0
\(766\) 4.03364 0.145741
\(767\) 13.2035i 0.476750i
\(768\) 0 0
\(769\) 32.6480 1.17732 0.588659 0.808381i \(-0.299656\pi\)
0.588659 + 0.808381i \(0.299656\pi\)
\(770\) −61.6019 106.999i −2.21998 3.85597i
\(771\) 0 0
\(772\) 60.1940i 2.16643i
\(773\) 7.66252i 0.275602i 0.990460 + 0.137801i \(0.0440034\pi\)
−0.990460 + 0.137801i \(0.955997\pi\)
\(774\) 0 0
\(775\) 19.6691 33.8768i 0.706537 1.21689i
\(776\) 12.4805 0.448024
\(777\) 0 0
\(778\) 56.1517i 2.01314i
\(779\) 4.15594 0.148902
\(780\) 0 0
\(781\) 2.86647 0.102570
\(782\) 20.2999i 0.725924i
\(783\) 0 0
\(784\) −46.8488 −1.67317
\(785\) −17.4816 + 10.0646i −0.623945 + 0.359221i
\(786\) 0 0
\(787\) 41.2151i 1.46916i −0.678522 0.734580i \(-0.737379\pi\)
0.678522 0.734580i \(-0.262621\pi\)
\(788\) 44.2368i 1.57587i
\(789\) 0 0
\(790\) 28.9316 16.6566i 1.02934 0.592616i
\(791\) 31.1764 1.10851
\(792\) 0 0
\(793\) 8.34513i 0.296344i
\(794\) 17.2499 0.612177
\(795\) 0 0
\(796\) −70.0285 −2.48210
\(797\) 8.47087i 0.300054i −0.988682 0.150027i \(-0.952064\pi\)
0.988682 0.150027i \(-0.0479360\pi\)
\(798\) 0 0
\(799\) −18.7325 −0.662708
\(800\) 3.40810 + 1.97877i 0.120495 + 0.0699602i
\(801\) 0 0
\(802\) 80.5197i 2.84325i
\(803\) 1.87748i 0.0662549i
\(804\) 0 0
\(805\) 20.3451 + 35.3383i 0.717072 + 1.24551i
\(806\) 19.0580 0.671288
\(807\) 0 0
\(808\) 55.4056i 1.94916i
\(809\) −47.6754 −1.67618 −0.838089 0.545534i \(-0.816327\pi\)
−0.838089 + 0.545534i \(0.816327\pi\)
\(810\) 0 0
\(811\) 21.5174 0.755578 0.377789 0.925892i \(-0.376684\pi\)
0.377789 + 0.925892i \(0.376684\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 77.6726 2.72242
\(815\) 1.63054 0.938741i 0.0571152 0.0328826i
\(816\) 0 0
\(817\) 19.1694i 0.670651i
\(818\) 39.0235i 1.36442i
\(819\) 0 0
\(820\) −6.45580 11.2133i −0.225446 0.391587i
\(821\) −10.7093 −0.373756 −0.186878 0.982383i \(-0.559837\pi\)
−0.186878 + 0.982383i \(0.559837\pi\)
\(822\) 0 0
\(823\) 3.89049i 0.135614i 0.997698 + 0.0678069i \(0.0216002\pi\)
−0.997698 + 0.0678069i \(0.978400\pi\)
\(824\) 10.2963 0.358688
\(825\) 0 0
\(826\) −144.871 −5.04069
\(827\) 38.6072i 1.34251i −0.741229 0.671253i \(-0.765757\pi\)
0.741229 0.671253i \(-0.234243\pi\)
\(828\) 0 0
\(829\) 20.6903 0.718602 0.359301 0.933222i \(-0.383015\pi\)
0.359301 + 0.933222i \(0.383015\pi\)
\(830\) 1.77757 + 3.08753i 0.0617002 + 0.107170i
\(831\) 0 0
\(832\) 8.93840i 0.309883i
\(833\) 27.5462i 0.954419i
\(834\) 0 0
\(835\) −19.2133 + 11.0616i −0.664905 + 0.382802i
\(836\) −55.4615 −1.91818
\(837\) 0 0
\(838\) 6.44037i 0.222479i
\(839\) −9.49498 −0.327803 −0.163902 0.986477i \(-0.552408\pi\)
−0.163902 + 0.986477i \(0.552408\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 70.5619i 2.43173i
\(843\) 0 0
\(844\) −62.0285 −2.13511
\(845\) −1.11567 1.93785i −0.0383802 0.0666642i
\(846\) 0 0
\(847\) 64.6093i 2.22000i
\(848\) 34.4581i 1.18330i
\(849\) 0 0
\(850\) −12.6058 + 21.7114i −0.432375 + 0.744694i
\(851\) −25.6528 −0.879366
\(852\) 0 0
\(853\) 24.3874i 0.835007i −0.908675 0.417504i \(-0.862905\pi\)
0.908675 0.417504i \(-0.137095\pi\)
\(854\) −91.5640 −3.13325
\(855\) 0 0
\(856\) −47.3383 −1.61799
\(857\) 28.1020i 0.959945i 0.877283 + 0.479973i \(0.159353\pi\)
−0.877283 + 0.479973i \(0.840647\pi\)
\(858\) 0 0
\(859\) −39.1586 −1.33607 −0.668037 0.744128i \(-0.732865\pi\)
−0.668037 + 0.744128i \(0.732865\pi\)
\(860\) −51.7218 + 29.7775i −1.76370 + 1.01541i
\(861\) 0 0
\(862\) 42.0759i 1.43311i
\(863\) 6.62602i 0.225552i 0.993620 + 0.112776i \(0.0359743\pi\)
−0.993620 + 0.112776i \(0.964026\pi\)
\(864\) 0 0
\(865\) −9.29606 + 5.35197i −0.316075 + 0.181972i
\(866\) −51.9064 −1.76385
\(867\) 0 0
\(868\) 138.430i 4.69863i
\(869\) −30.8856 −1.04772
\(870\) 0 0
\(871\) −15.8346 −0.536534
\(872\) 1.74003i 0.0589250i
\(873\) 0 0
\(874\) 27.6691 0.935923
\(875\) 0.184563 50.4292i 0.00623937 1.70482i
\(876\) 0 0
\(877\) 21.3383i 0.720543i 0.932848 + 0.360271i \(0.117316\pi\)
−0.932848 + 0.360271i \(0.882684\pi\)
\(878\) 1.64437i 0.0554947i
\(879\) 0 0
\(880\) 19.7096 + 34.2345i 0.664411 + 1.15404i
\(881\) 49.1214 1.65494 0.827470 0.561509i \(-0.189779\pi\)
0.827470 + 0.561509i \(0.189779\pi\)
\(882\) 0 0
\(883\) 6.28863i 0.211629i −0.994386 0.105815i \(-0.966255\pi\)
0.994386 0.105815i \(-0.0337450\pi\)
\(884\) −8.08582 −0.271956
\(885\) 0 0
\(886\) 28.3594 0.952753
\(887\) 42.4932i 1.42678i 0.700765 + 0.713392i \(0.252842\pi\)
−0.700765 + 0.713392i \(0.747158\pi\)
\(888\) 0 0
\(889\) 16.5499 0.555065
\(890\) −28.0000 + 16.1203i −0.938561 + 0.540353i
\(891\) 0 0
\(892\) 5.72506i 0.191689i
\(893\) 25.5327i 0.854419i
\(894\) 0 0
\(895\) −8.27494 14.3731i −0.276601 0.480439i
\(896\) −90.9632 −3.03887
\(897\) 0 0
\(898\) 7.26242i 0.242350i
\(899\) 0 0
\(900\) 0 0
\(901\) 20.2607 0.674981
\(902\) 18.0824i 0.602078i
\(903\) 0 0
\(904\) −32.2362 −1.07216
\(905\) 4.12475 + 7.16444i 0.137111 + 0.238154i
\(906\) 0 0
\(907\) 43.6132i 1.44815i 0.689719 + 0.724077i \(0.257734\pi\)
−0.689719 + 0.724077i \(0.742266\pi\)
\(908\) 47.9003i 1.58963i
\(909\) 0 0
\(910\) 21.2624 12.2413i 0.704842 0.405795i
\(911\) 10.0646 0.333455 0.166727 0.986003i \(-0.446680\pi\)
0.166727 + 0.986003i \(0.446680\pi\)
\(912\) 0 0
\(913\) 3.29606i 0.109084i
\(914\) −68.2488 −2.25747
\(915\) 0 0
\(916\) −95.2573 −3.14739
\(917\) 85.6553i 2.82859i
\(918\) 0 0
\(919\) −17.3913 −0.573686 −0.286843 0.957978i \(-0.592606\pi\)
−0.286843 + 0.957978i \(0.592606\pi\)
\(920\) −21.0367 36.5396i −0.693561 1.20467i
\(921\) 0 0
\(922\) 56.9738i 1.87633i
\(923\) 0.569614i 0.0187491i
\(924\) 0 0
\(925\) 27.4364 + 15.9298i 0.902104 + 0.523769i
\(926\) 10.9721 0.360567
\(927\) 0 0
\(928\) 0 0
\(929\) 19.3279 0.634128 0.317064 0.948404i \(-0.397303\pi\)
0.317064 + 0.948404i \(0.397303\pi\)
\(930\) 0 0
\(931\) −37.5459 −1.23052
\(932\) 58.5519i 1.91793i
\(933\) 0 0
\(934\) 59.2151 1.93758
\(935\) 20.1292 11.5889i 0.658295 0.378997i
\(936\) 0 0
\(937\) 15.9863i 0.522250i −0.965305 0.261125i \(-0.915906\pi\)
0.965305 0.261125i \(-0.0840935\pi\)
\(938\) 173.739i 5.67279i
\(939\) 0 0
\(940\) −68.8911 + 39.6623i −2.24698 + 1.29364i
\(941\) 16.0044 0.521730 0.260865 0.965375i \(-0.415992\pi\)
0.260865 + 0.965375i \(0.415992\pi\)
\(942\) 0 0
\(943\) 5.97204i 0.194476i
\(944\) 46.3516 1.50862
\(945\) 0 0
\(946\) 83.4056 2.71175
\(947\) 46.0519i 1.49649i −0.663425 0.748243i \(-0.730898\pi\)
0.663425 0.748243i \(-0.269102\pi\)
\(948\) 0 0
\(949\) 0.373086 0.0121109
\(950\) −29.5930 17.1819i −0.960123 0.557455i
\(951\) 0 0
\(952\) 43.4227i 1.40734i
\(953\) 50.7498i 1.64395i −0.569525 0.821974i \(-0.692873\pi\)
0.569525 0.821974i \(-0.307127\pi\)
\(954\) 0 0
\(955\) −9.54595 16.5807i −0.308900 0.536540i
\(956\) 37.1946 1.20296
\(957\) 0 0
\(958\) 41.1392i 1.32915i
\(959\) −31.7021 −1.02372
\(960\) 0 0
\(961\) 30.3805 0.980017
\(962\) 15.4348i 0.497639i
\(963\) 0 0
\(964\) 10.2077 0.328767
\(965\) 29.7775 17.1437i 0.958573 0.551874i
\(966\) 0 0
\(967\) 15.0884i 0.485210i −0.970125 0.242605i \(-0.921998\pi\)
0.970125 0.242605i \(-0.0780019\pi\)
\(968\) 66.8056i 2.14721i
\(969\) 0 0
\(970\) −7.26242 12.6144i −0.233182 0.405024i
\(971\) 30.1938 0.968965 0.484482 0.874801i \(-0.339008\pi\)
0.484482 + 0.874801i \(0.339008\pi\)
\(972\) 0 0
\(973\) 85.6697i 2.74645i
\(974\) −76.8050 −2.46099
\(975\) 0 0
\(976\) 29.2961 0.937744
\(977\) 23.3637i 0.747472i −0.927535 0.373736i \(-0.878077\pi\)
0.927535 0.373736i \(-0.121923\pi\)
\(978\) 0 0
\(979\) 29.8911 0.955323
\(980\) 58.3236 + 101.305i 1.86308 + 3.23606i
\(981\) 0 0
\(982\) 36.0845i 1.15150i
\(983\) 25.3899i 0.809813i −0.914358 0.404906i \(-0.867304\pi\)
0.914358 0.404906i \(-0.132696\pi\)
\(984\) 0 0
\(985\) −21.8836 + 12.5990i −0.697271 + 0.401436i
\(986\) 0 0
\(987\) 0 0
\(988\) 11.0211i 0.350628i
\(989\) −27.5462 −0.875918
\(990\) 0 0
\(991\) 1.69710 0.0539102 0.0269551 0.999637i \(-0.491419\pi\)
0.0269551 + 0.999637i \(0.491419\pi\)
\(992\) 6.17506i 0.196058i
\(993\) 0 0
\(994\) −6.24989 −0.198234
\(995\) 19.9446 + 34.6426i 0.632287 + 1.09825i
\(996\) 0 0
\(997\) 31.6691i 1.00297i −0.865166 0.501486i \(-0.832787\pi\)
0.865166 0.501486i \(-0.167213\pi\)
\(998\) 1.87605i 0.0593852i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.c.d.469.12 yes 12
3.2 odd 2 inner 585.2.c.d.469.1 12
5.2 odd 4 2925.2.a.bn.1.1 6
5.3 odd 4 2925.2.a.bo.1.6 6
5.4 even 2 inner 585.2.c.d.469.2 yes 12
15.2 even 4 2925.2.a.bn.1.6 6
15.8 even 4 2925.2.a.bo.1.1 6
15.14 odd 2 inner 585.2.c.d.469.11 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
585.2.c.d.469.1 12 3.2 odd 2 inner
585.2.c.d.469.2 yes 12 5.4 even 2 inner
585.2.c.d.469.11 yes 12 15.14 odd 2 inner
585.2.c.d.469.12 yes 12 1.1 even 1 trivial
2925.2.a.bn.1.1 6 5.2 odd 4
2925.2.a.bn.1.6 6 15.2 even 4
2925.2.a.bo.1.1 6 15.8 even 4
2925.2.a.bo.1.6 6 5.3 odd 4