Properties

Label 2925.1.dp.b
Level $2925$
Weight $1$
Character orbit 2925.dp
Analytic conductor $1.460$
Analytic rank $0$
Dimension $4$
Projective image $D_{12}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2925,1,Mod(1801,2925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2925.1801"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 11])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2925.dp (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45976516195\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{5} q^{4} + ( - \zeta_{12} + 1) q^{7} + \zeta_{12}^{3} q^{13} - \zeta_{12}^{4} q^{16} + ( - \zeta_{12}^{4} + \zeta_{12}^{3}) q^{19} + ( - \zeta_{12}^{5} - 1) q^{28} + ( - \zeta_{12}^{3} + 1) q^{31} + \cdots + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} + 2 q^{16} + 2 q^{19} - 4 q^{28} + 4 q^{31} + 2 q^{37} - 6 q^{43} + 6 q^{49} + 2 q^{52} - 2 q^{67} - 2 q^{73} + 2 q^{76} + 2 q^{91} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(2251\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{12}^{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1801.1
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 0 −0.866025 + 0.500000i 0 0 1.86603 + 0.500000i 0 0 0
2026.1 0 0 0.866025 + 0.500000i 0 0 0.133975 + 0.500000i 0 0 0
2251.1 0 0 −0.866025 0.500000i 0 0 1.86603 0.500000i 0 0 0
2476.1 0 0 0.866025 0.500000i 0 0 0.133975 0.500000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
13.f odd 12 1 inner
39.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2925.1.dp.b yes 4
3.b odd 2 1 CM 2925.1.dp.b yes 4
5.b even 2 1 2925.1.dp.a 4
5.c odd 4 1 2925.1.do.a 4
5.c odd 4 1 2925.1.do.b 4
13.f odd 12 1 inner 2925.1.dp.b yes 4
15.d odd 2 1 2925.1.dp.a 4
15.e even 4 1 2925.1.do.a 4
15.e even 4 1 2925.1.do.b 4
39.k even 12 1 inner 2925.1.dp.b yes 4
65.o even 12 1 2925.1.do.b 4
65.s odd 12 1 2925.1.dp.a 4
65.t even 12 1 2925.1.do.a 4
195.bc odd 12 1 2925.1.do.a 4
195.bh even 12 1 2925.1.dp.a 4
195.bn odd 12 1 2925.1.do.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2925.1.do.a 4 5.c odd 4 1
2925.1.do.a 4 15.e even 4 1
2925.1.do.a 4 65.t even 12 1
2925.1.do.a 4 195.bc odd 12 1
2925.1.do.b 4 5.c odd 4 1
2925.1.do.b 4 15.e even 4 1
2925.1.do.b 4 65.o even 12 1
2925.1.do.b 4 195.bn odd 12 1
2925.1.dp.a 4 5.b even 2 1
2925.1.dp.a 4 15.d odd 2 1
2925.1.dp.a 4 65.s odd 12 1
2925.1.dp.a 4 195.bh even 12 1
2925.1.dp.b yes 4 1.a even 1 1 trivial
2925.1.dp.b yes 4 3.b odd 2 1 CM
2925.1.dp.b yes 4 13.f odd 12 1 inner
2925.1.dp.b yes 4 39.k even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 4T_{7}^{3} + 5T_{7}^{2} - 2T_{7} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2925, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
show more
show less