Defining parameters
| Level: | \( N \) | \(=\) | \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2925.dp (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(420\) | ||
| Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2925, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 104 | 20 | 84 |
| Cusp forms | 8 | 8 | 0 |
| Eisenstein series | 96 | 12 | 84 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 2925.1.dp.a | $4$ | $1.460$ | \(\Q(\zeta_{12})\) | $D_{12}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q-\zeta_{12}^{5}q^{4}+(-1+\zeta_{12})q^{7}-\zeta_{12}^{3}q^{13}+\cdots\) |
| 2925.1.dp.b | $4$ | $1.460$ | \(\Q(\zeta_{12})\) | $D_{12}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q-\zeta_{12}^{5}q^{4}+(1-\zeta_{12})q^{7}+\zeta_{12}^{3}q^{13}+\cdots\) |