Properties

Label 2925.1.dp
Level $2925$
Weight $1$
Character orbit 2925.dp
Rep. character $\chi_{2925}(1801,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $8$
Newform subspaces $2$
Sturm bound $420$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2925.dp (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(420\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2925, [\chi])\).

Total New Old
Modular forms 104 20 84
Cusp forms 8 8 0
Eisenstein series 96 12 84

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + 4 q^{16} + 4 q^{19} + 8 q^{31} + 12 q^{49} + 4 q^{76} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2925.1.dp.a 2925.dp 13.f $4$ $1.460$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-3}) \) None 2925.1.dp.a \(0\) \(0\) \(0\) \(-4\) \(q-\zeta_{12}^{5}q^{4}+(-1+\zeta_{12})q^{7}-\zeta_{12}^{3}q^{13}+\cdots\)
2925.1.dp.b 2925.dp 13.f $4$ $1.460$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-3}) \) None 2925.1.dp.a \(0\) \(0\) \(0\) \(4\) \(q-\zeta_{12}^{5}q^{4}+(1-\zeta_{12})q^{7}+\zeta_{12}^{3}q^{13}+\cdots\)