Properties

Label 2900.2.f.a
Level $2900$
Weight $2$
Character orbit 2900.f
Analytic conductor $23.157$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2900,2,Mod(1449,2900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2900.1449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1566165862\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 580)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{7} - 3 q^{9} - \beta_{3} q^{11} - \beta_1 q^{13} + \beta_{3} q^{19} + 3 \beta_1 q^{23} + (\beta_{3} + 1) q^{29} - \beta_{3} q^{31} + \beta_{2} q^{43} + \beta_{2} q^{47} + 3 q^{49} - \beta_1 q^{53}+ \cdots + 3 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9} + 4 q^{29} + 12 q^{49} - 32 q^{71} + 36 q^{81} + 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 3x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -2\nu^{3} + 10\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{2} - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 10\beta_1 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2900\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\) \(1451\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1449.1
−1.32288 0.500000i
1.32288 0.500000i
1.32288 + 0.500000i
−1.32288 + 0.500000i
0 0 0 0 0 2.00000i 0 −3.00000 0
1449.2 0 0 0 0 0 2.00000i 0 −3.00000 0
1449.3 0 0 0 0 0 2.00000i 0 −3.00000 0
1449.4 0 0 0 0 0 2.00000i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
29.b even 2 1 inner
145.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2900.2.f.a 4
5.b even 2 1 inner 2900.2.f.a 4
5.c odd 4 1 580.2.d.a 2
5.c odd 4 1 2900.2.d.b 2
15.e even 4 1 5220.2.l.c 2
20.e even 4 1 2320.2.g.b 2
29.b even 2 1 inner 2900.2.f.a 4
145.d even 2 1 inner 2900.2.f.a 4
145.h odd 4 1 580.2.d.a 2
145.h odd 4 1 2900.2.d.b 2
435.p even 4 1 5220.2.l.c 2
580.o even 4 1 2320.2.g.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
580.2.d.a 2 5.c odd 4 1
580.2.d.a 2 145.h odd 4 1
2320.2.g.b 2 20.e even 4 1
2320.2.g.b 2 580.o even 4 1
2900.2.d.b 2 5.c odd 4 1
2900.2.d.b 2 145.h odd 4 1
2900.2.f.a 4 1.a even 1 1 trivial
2900.2.f.a 4 5.b even 2 1 inner
2900.2.f.a 4 29.b even 2 1 inner
2900.2.f.a 4 145.d even 2 1 inner
5220.2.l.c 2 15.e even 4 1
5220.2.l.c 2 435.p even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(2900, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 2 T + 29)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 112)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$71$ \( (T + 8)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
show more
show less